
Doc.Math. J.DMV 461

Probabilisti Verifiation of Proofs

Madhu Sudan

Abstract. Recent research in the theory of computing has led to the fol-
lowing intriguing result. “There exists a probabilistic verifier for proofs of
mathematical assertions that looks at a proof in only a constant number
of bit positions and satisfies the following properties: (Completeness) For
every valid theorem there exists a proof that is always accepted. (Sound-
ness) For invalid assertions every purported proof is rejected with some
positive probability that is independent of the length of the theorem or
proof.” This result sheds insight into the fundamental complexity class
NP and shows that it is equivalent to a seemingly smaller class of lan-
guages with efficient probabilistically checkable proofs. This result is
especially significant to combinatorial optimization. For many combina-
torial optimization problems it demonstrates that the task of finding even
nearly-optimal solutions is computationally intractable. In this article we
describe some methods used to construct such verifiers.

1991 Mathematics Subject Classification: 68Q10, 68Q15.
Keywords and Phrases: Computational complexity, Algorithms, Combi-
natorial optimization, Logic, Probability, Approximation.

1 Introduction

The notion of efficient verification of proofs has been a central theme in the theory
of computing. The computational view of this notion abstracts the semantics
of the proof system into a verification procedure or verifier, i.e., a polynomial
time computable Boolean function described by a Turing machine. A purported
theorem T and proof π are then just a sequence of bits; π proves T if the verifier
accepts the pair (T, π). The purported theorem T is true if such a proof π exists.
The class NP [15, 32] represents the class of all theorems with “short” proofs; and
allows for very simple combinatorial descriptions of theorems and proofs. As an
example, we describe the problem 3-SAT.

A 3cnf formula φ is described by N “clauses” C1, . . . , CN on n Boolean vari-
ables x1, . . . , xn. A clause consists of up to 3 literals (i.e., a variable or its negation)
and the clause is satisfied by some Boolean assignment to the variables if at least
one literal is assigned a true value. The formula φ is said to be satisfiable, if there
exists an assignment to the n variables which simultaneously satisfies all clauses.
3-SAT is the language of all satisfiable 3cnf formulae.

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

462 Madhu Sudan

The NP-completeness of 3-SAT may be interpreted as follows: For any system
of logic, there exists a polynomial time computable function f such given an asser-
tion T in this system of logic and an integer n, f(T, 1n) computes a 3cnf formula
that is satisfiable if and only if T has a proof of length at most n. Thus, under
the equivalence class of polynomial time computation, the satisfying assignment to
f(T, 1n) is a proof for the theorem T , and the statement f(T, 1n) ∈ 3-SAT is itself
the theorem. While this method of describing theorems and proofs is equivalent
to any other system of logic it has some conceptual simplicity. One formal effect
that captures this simplicity is that an incorrect proof has a very local error: Such
an incorrect proof is an assignment that fails to satisfy at least one clause. Hence
the three bits corresponding to the assignment to the variables participating in
this clause point give the explicit error in the proof. In other words every incor-
rect proof has a witness of the error that is at most 3 bits long. This example
demonstrates some of the power of the computational view of proofs.

Over the course of the last decade a number of new computational notions of
proofs have been proposed and analyzed. The common theme in these definitions
is a probabilistic verifier who is allowed some small probability of making an er-
ror. One of these notions, known as a probabilistically checkable proof (PCP), is
motivated by the following informally stated question: “How fast can the verifier
be compared to the size of the proof?” It is easy to establish that a deterministic
verifier must at the very least “look” at the whole proof. This however need not be
true for probabilistic ones. The notion of “looking at a bit of the proof”. can be
formalized by providing the verifier with oracle access to the proof, i.e., the verifier
can specify the address of a location of the proof and gets back the bit written in
that location and this entire process takes only as much time as required to write
the address. The number of bits of the proof that are “looked” at is now the num-
ber of oracle queries. To contrast such a verifier with the traditional verifier, one
also quantifies the amount of randomness used by such a verifier. Thus we define
(r(·), q(·))-restricted PCP verifier to be a probabilistic verifier with random access
to a proof oracle, such that on input x of length n, the verifier tosses at most r(n)
coins and accesses the oracle at most q(n) times, where the locations accessed are a
function of the random coins. A language L is said to be in class PCP(r, q) if there
exists an (r(·), q(·))-restricted PCP verifier V satisfying the following: If x ∈ L
there exists an oracle π such that the verifier V accepts x with probability 1 on
oracle access to π. If x 6∈ L, for every π, V accepts x with probability at most 1/2.
Notice that the verifier can make mistakes when x 6∈ L. (The definition of a PCP
as defined above is from [6]. Many components in this definition come from earlier
works: The notion of probabilistic verifiers was first proposed in [25, 10], as part
of a larger definition. The notion of oracle machine verifiers was proposed in [22].
The parameters of interest. i.e., r(·) and q(·), were implicit in [19]. A closely re-
lated definition focusing on different parameters, termed transparent proofs, was
also studied by [9].)

It is immediate from the definition of PCP that NP = ∪c>0PCP(0, n
c) (the

verifier is not randomized, but is allowed unlimited access to the proof). The
results of [8, 9, 19] showed that by allowing the verifier small amounts of ran-
domness, the query complexity can be reduced dramatically and in particular

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

Probabilistic Verification of Proofs 463

NP ⊆ ∪c>0PCP(c log n log log n, c log n log log n). Subsequently [6, 5] showed that
it is possible to restrict the verifier even more significantly to just a constant num-
ber of queries (independent of the theorem, the proof or the system of axioms).
They also reduce randomness to strictly logarithmic in input size. Specifically,
they show

Theorem 1 ∃q <∞ such that NP = ∪c>0PCP(c log n, q).

The consequences to combinatorial optimization may be described informally
as follows: The notion of a PCP verifier allows one to formalize the notion of an
“approximately” correct proof; and the strong results obtained above show that
such a proof exists if and only if a perfectly correct proof exists. Thus the task
of finding an approximately correct proof is as hard as the task of finding a per-
fectly correct proof. The traditional connection between proofs and optimization
[15, 29, 32] now indicates that for some optimization problems (unfortunately, not
necessarily natural ones) finding near-optimal solutions should be as hard as find-
ing optimal ones. The statement can actually be formalized and made applicable
even to natural optimization problems. This connection was discovered by [19]
and its applicability was further extended in [5] to apply to a large number of
optimization problems considered in [34].

In this article we describe some of the methods used in the construction of
probabilistically checkable proofs, from a very high level. In particular, we describe
some of the properties that a probabilistically checkable proof must have. We also
give a hint of how such properties are effected. The primary hope is to motivate
the reader to read more detailed descriptions. The concluding section includes
pointers for further reading as well as to more recent work.

2 Construction and verification of PCPs

In this section we will describe from a high-level the construction of a probabilis-
tically checkable proof. Using the completeness of 3-SAT we will assume that we
restrict our attention to theorems of the form φ ∈ 3-SAT, where φ is a 3cnf for-
mula. It will be useful to think of φ as a function mapping {0, 1}n to {0, 1}, using
the association that 0 represents the Boolean false and 1 represents the Boolean
true. φ(~a) = 1 if φ is satisfied by the assignment ~a ∈ {0, 1}n. We will switch
between 3 possible views of a, the proof of the theorem φ ∈ 3-SAT. a may be
thought of as a string, as a vector (over some appropriate field containing 0 and
1), or as an oracle that on query i responds with the ith coordinate of a.

Recall that our goal is to describe an alternate proof for φ ∈ 3-SAT. More
importantly we wish to describe a new probabilistic verifier V for proofs of satis-
fiability of 3cnf formulae. The verifier will make “few” queries to the new proof,
an oracle A, and then cast a verdict. If φ 6∈ 3-SAT, then no oracle satisfies the
verifier with probability 1/2, while if φ ∈ 3-SAT, then there exists an oracle A
such that V always accepts. In the latter case there exists a effective transfor-
mation T which transforms the proof a ∈ {0, 1}n satisfying φ(a) = 1 into the the
oracle A. It is this transformation that will be our primary focus. For reasons of

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

464 Madhu Sudan

space, we will focus on the weaker goal of describing a verifier V that makes only
q = q(n) = (log n)O(1) queries and the transformation T for such a verifier.

2.1 Motivation

We start by examining some properties such a transformation T necessarily ex-
hibits. The first interesting property exhibited by A = T (a) is its redundancy. Let
us view A as a string, and suppose Ã is a string obtained by randomly choosing a
small fraction of the bits of A and changing them (from 0 to 1 and vice versa). A
PCP verifier making q queries still accepts with probability the proof Ã with high
probability, where this probability tends to 1 as the fraction of errors in the proof
tend to 0. Furthermore it is possible to determine the acceptance probability of
the verifier on string Ã in polynomial time. Thus even though Ã is far from A, it
preserves its “meaning” (i.e., continues to prove the statement φ ∈ 3-SAT.) The
easiest conceivable way to achieve such an effect is to insist that Ã preserves the
original proof. i.e., ~a itself (despite the fact that 1% of its bits are erroneous).
This leads us to the first property of the transformation T (·) that we will try to
achieve. T is an error-correcting code, i.e., for any two strings a1 and a2, T (a1)
and T (a2) differ in a constant fraction of the bits.

In particular this implies that T is an expansive mapping i.e., maps {0, 1}n →
{0, 1}N for N > n and hence there are many strings in the range that T does not
map to. Given a formula φ 6∈ 3-SAT and a string Ã, the PCP verifier has to reject
the offered proof with probability at least ǫ > 0 after reading just q bits in such
a proof. Furthermore, when the verifier rejects the proof, it must offer an explicit
error in the proof in the three bits it reads. The error described may either claim
(1) Ã is not describing any string in the image of T ; or (2) Ã may be the encoding
of some string ~a; but φ(~a) 6= 1 for any such string.

To use error of the form (1) above with some string A, it must be that there
exist indices i1, . . . , iq ∈ [N] such that for any string T (~a), the projection to
the coordinates i1, . . . , iq does not agree with the projection of A to the same
coordinates. We say that an error-correcting code T is q-locally checkable if for
every string A that is not in the range of T , there exist indices i1, . . . , iq ∈ [N]
with this property. It will be our goal to come up with an appropriate q-locally
checkable code T , for relatively small q.

Finally, T will need to have a “semantic” part: i.e., somehow T must be
dependent on φ, in order for it to exploit the error condition in (2) above. Sum-
marizing, in the next sections we will describe a transformation T that is an
error-correcting code, with good local checkability, that will somehow reveal the
truth of the statement φ ∈ 3-SAT.

2.2 The transformation

We start with a simple transformation which leads to some error-correction proper-
ties. (Here and later we use [n] to denote the set {1, . . . , n}.) The simplest method
for adding some error-correcting feature to any information string is to encode
it using the Reed-Solomon code. Specifically, to encode the information string
a1, . . . , an we pick a finite field F of order Ω(n) and an injective map b : [n] → F .

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

Probabilistic Verification of Proofs 465

We then pick a polynomial Pa : F → F of degree at most n such that Pa(b(i)) = ai
for i ∈ [n] and our first transformation, denoted T1 is given by T1(a) = (Pa(z))z∈F

be the encoding of a. Notice that the encoding does not give us a string in {0, 1}N ,
but rather an element of F |F | that we view as a string over F . Using the elemen-
tary property that two distinct degree n polynomials can agree in at most n places,
we find that this transformation is very redundant. Specifically T1(a1) and T1(a2)
have a Hamming distance of at least |F | − n when viewed as strings over F .

The above transformation has the right error-correcting property, but lacks
local checkability. To get this additional property, we use the idea of encoding
using multivariate polynomials. Specifically, we pick an integer m, and field F
(whose size will be determined shortly), a set H ⊂ F , such that |H|m ≥ n and
an injective function b : [n] → Hm. To encode a string ~a, we pick an m-variate
polynomial Pa : Fm → F of degree |H| in each variable such that Pa(b(i)) = ai
for every i ∈ [n]. (It is easy to prove that such a polynomial Pa always exists.)
The total degree of such a polynomial is at most m|H|. The encoding of a is then
simply the string T2(a) = (Pa(z1, . . . , zm))z1,...,zm∈F . Thus T2 : {0, 1}n → F |F |m

and satisfies the following distance property. For any pair of strings a1 and a2,
T2(a1) and T2(a2) agree in at mostm|H|/|F | fraction of all indices, when viewed as
strings over F . This property follows from a well-known extension of the distance
property of polynomials to the multivariate case, which states that a (multivariate)
polynomial of total degree d can be zero on at most d/|F | fraction of the domain.

The advantage in using the multivariate polynomials is that they exhibit
significantly better local checkability properties. In particular, for every function
Q : Fm → F that is not a polynomial of degree d, there exist d + 2 points that
“prove” this property. We are now ready to describe some useful choices of m, |H|
and |F |. (Incidentally, the choice of the function b : [n] → Hm does not affect the
performance of the transformation T2 in any way.) To get a good locally checkable
code one would like to minimize the degree which is at most m|H|. However, the
choice has to satisfy |H|m ≥ n. To ensure that T2(a) is not too long compared to a,
one needs to ensure that |F |m is only polynomially larger |H|m, which implies |F |
should be a polynomial in |H|. Furthermore, to get a constant distance, |F | better
be larger than the total degree (by at least a constant factor). One such choice of
parameters is (we omit floors and ceilings in the following choices): m = logn

log logn
,

|H| = log n, and |F | = (log n)2. This creates a transformation T2 which maps
n bits to n2 elements from a field of size log2 n, with degree and hence q-local
checkability for q ≤ log2 n.

We now bring in the semantic element to the error correcting code. This
will take some development, so we first outline the plan for this stage. In the
final construction T (a) = Tφ(a) will be a sequence of polynomials f0 : Fm →

F and f1, . . . , fk : Fm′

→ F , described by their value at every input in Fm′

.
(k,m′ will be specified later.) The value of the polynomial fi at some point
u ∈ Fm′

will be determined by a simple formula — or “construction rule” —
applied to the value of the polynomial fi−1 at some l places ψi,1(u), . . . , ψi,l(u).
(Again, l will be determined shortly.) The polynomial f0 will be T2(a). The rules
will be constructed so that fk is identically zero if and only if a satisfies φ.

To get such a sequence, we start by “arithmetizing” the notion of a 3-SAT

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

466 Madhu Sudan

formula and the notion of satisfiability of a clause. Recall that a variable is specified
by an index in [n] and thus a literal can be specified as an element of [n]× {0, 1}.
A clause is a triple of literals and thus an element of [n]× [n]× [n]×{0, 1}3. A 3cnf
formula φ can thus be described by a function φ′ mapping [n]× [n]× [n]× {0, 1}3

to {0, 1}. φ′(i, j, k, b1, b2, b3) = 1 iff the clause with literals (i, b1), (j, b2) and
(k, b3) occurs in φ. Using the function b : [n] → Hm, we can identify a clause

with an element of H3m+3. We say that a polynomial φ̂ : F 3m+3 → F of degree
less than |H| in each variable is the arithmetization of φ if φ′(i, j, k, b1, b2, b3) =

φ̂(b(i), b(j), b(k), b1, b2, b3) for any i, j, k ∈ [n] and b1, b2, b3 ∈ {0, 1}. We will fix

φ̂(u) = 0 for all other u ∈ H3m+3. As claimed earlier, it can be shown that such a

polynomial φ̂ does exist and that it can be computed in polynomial time from φ.
We now move on to the task of arithmetizing the notion of satisfiability. Given

a clause C on literals (i, b1) (j, b2) and (k, b3), and an assignment a1, . . . , an that
has been transformed by the transformation T2 into the polynomial f0 : Fm → F ,
notice that the formula (f0(b(i))− b1) · (f0(b(j))− b2) · (f0(b(k))− b3) is 0 if and
only if the clause C is satisfied. This leads us to the definition of the polynomial
f1 : F 3m+3 → F to be

f1(u, v, w, b1, b2, b3) = φ̂(u, v, w, b1, b2, b3)(f0(u)− b1)(f0(v)− b2)(f0(w)− b3) (1)

where u, v, w ∈ Fm and b1, b2, b3 ∈ F . By construction it is clear that f1 is a
polynomial on m′ = 3m+3 variables having degree at most 2|H| in each variable;
and furthermore is identically zero on the domain Hm′

if and only if φ is satisfied
by the assignment a.

This is close in spirit to what we desire. In what follows, we will develop a
sequence of polynomials which will move the condition on f1 being zero on the
domain Hm to the condition that fm′+1 being zero on Fm′

. This will be achieved
inductively: specifically we will define fi : F

m′

→ F to be such that fi+1 is zero
on the domain F i ×Hm−i if and only if fi is zero on the domain F i−1 ×Hm−i+1.
This is achieved by the following rule.

fi+1(r1, . . . , ri; zi+1, . . . , zm′) =

|H|∑

j=1

rji · fi(r1, . . . , ri−1; ζj ; zi+1, . . . , zm′), (2)

where ζ1, . . . , ζ|H| is any enumeration of the elements of H. It is easy to argue that
the polynomials fi+1 satisfies the desired property by an inductive argument on
i. This concludes the transformation T , that we summarize as follows: given φ, a,
we pick a field F , a subset H, an integer m, an injective map b : [n] → Hm and an
enumeration ζ1, . . . , ζ|H| of the elements of H. We then let f0 = T2(a), f1 be as
defined by (1), f2, . . . , fm′+1 be as defined by (2) and let T (a) = (f0, . . . , fm′+1).

2.3 The verification

We now describe the verifier for the transformation T . The verifier will be given
oracles for functions f0, . . . , fm′+1 and needs to verify that (a) The oracles fi, i ∈
{0,m′+1} describe polynomials of the correct degree. (b) For every i ∈ [m′+1], the

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

Probabilistic Verification of Proofs 467

polynomial fi is constructed from pi−1 using (1) or (2) (as appropriate). (c) The
polynomial fm′+1 is identically zero. Assuming that the functions f0, . . . , fm′+1

are indeed polynomials of the correct degree, (b) and (c) can be verified very easily,
probabilistically. To verify (c) the verifier queries the oracle fm′+1 at a randomly
chosen input u ∈ Fm′

. By the distance property of polynomials, if fm′+1 is not
identically zero then fm′+1(u) 6= 0 with high probability. To check (b) the verifier
checks that the appropriate rule (1) or (2) holds for the oracles fi+1 and fi for
randomly chosen u. If the polynomial fi+1 is not identical to the polynomial
obtained by applying the rule to fi, then this difference will be witnessed by the
point u with high probability. (Once again the distance property of polynomial is
being used here.)

Thus the entire verification process reduces to the task of checking condition
(a). A test for this condition is termed a “low-degree test” and has been a sub-
ject of active investigation recently. Specifically a low-degree test probabilistically
queries q locations in an oracle Q and behaves as follows: If Q is a polynomial of
total degree d, then the test accepts with probability 1. If the test accepts with
probability 1−δ, then there is a polynomial P : Fw → F such that Q and P agree
in all but at most ǫ fraction of the inputs, where ǫ, δ are parameters associated
with the test.

To test that Q is a polynomial of degree at most d, one exploits the geometry
of the space Fm as follows: For u, v ∈ Fm and t ∈ F , let lu,v(t) = u + tv and let
the line through u with slope v, denoted lu,v, be the parameterized set of points
{lu,v(t)|t ∈ F}. It is immediate that for any polynomial P : Fm → F of degree at
most and a line l = lu,v, the function P |l : F → F given by P |l(t) = P (lu,v(t)) is a
univariate polynomial of degree at most d. Based on this observation a low-degree
test was proposed in [37]: “Pick u, v uniformly and independently at random from
Fm and verify that the points {(t, Q(lu,v(t))|t ∈ F} are described by a univariate
polynomial of degree at most d.” It is clear that the tester makes |F | queries to
the oracle for Q and accepts all degree d polynomials. The “converse” is harder
to prove and we will not attempt to hint at the proof here. A sequence of results
[37, 6, 5, 36, 7] concludes showing that this test works for every ǫ < δ < 1, provided
|F | is polynomially larger that d/(1− δ).

We are still not done, since the low-degree test does not guarantee that the
oracle Q is always equal to a low-degree polynomial, but only close to one. To
patch this problem, we again resort to the error-correcting nature of polynomials;
by using a probabilistic (and highly-efficient) error-correcting algorithm C for low-
degree polynomials, due to [11]. C will have oracle access to some function Q :
Fw → F and behave as follows on input u ∈ Fw: If Q is a degree d polynomial,
it will return Q(u). If Q is ǫ-close to a degree d polynomial P , it will return P (u)
or “error” with high probability (over its internal coin tosses). Again C uses the
property of lines in Fm. “Given ~u ∈ Fw C picks at random ~v ∈ Fw and considers
the function q(t) = Q|l~u,~v

(t). If q is a polynomial in t of degree at most d, then
outputs q(0) else outputs error.” A simple probabilistic argument shows that C
has the desired properties for every ǫ < 1, provided F is large enough.

We are now ready to specify the complete PCP verifier for verifying φ ∈
3-SAT. The verifier has access to the oracles f0, . . . , fm′+1. It performs a low-

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

468 Madhu Sudan

degree test on every oracle fi, i ∈ {0, . . . ,m′ + 1}. If all low-degree tests pass,
it then picks a random u ∈ Fm′

and verifies that for every i that the oracles
Cfi+1 satisfies the appropriate rule (1 or 2) w.r.t Cfi . (Notice that we are now
working with the oracles Cfi rather than fi. This is the right choice, since C

fi is a
polynomial — not merely close to one.) Finally it checks that Cfm′+1(u) = 0. If all
checks pass, then it accepts the proof, else it rejects the proof. Thus for the choices
of m, |F | etc. as made above, the construction yields a verifier making a total of
O(logc n) queries to all the oracles, for some absolute constant c. A formalization
of the arguments above yields (modulo the analysis of the low-degree test) that
the verifier accepts incorrect proofs with probability o(1), as n → ∞. Thus we
conclude:

Theorem 2 NP ⊆ PCP(O(log n), logc n).

Notes The result from Theorem 2 is essentially due to [8, 9], though the ran-
domness efficiency was not reduced to O(log n) until the work of [6]. To get the
full effect of Theorem 1 a number of new ideas are required. A central theme is a
paradigm to compose proof systems, developed by [6]. In addition [5] present two
new PCP constructions to prove Theorem 1. The interested reader may read the
original papers for further details. Additional details may be found in [1, 38].

Subsequently there has been a significant amount of work improving the con-
stant q of Theorem 1. This quest was initiated in [13] and further pursued in
[20, 14, 35, 12]. Recently, a surprisingly sharp result, essentially showing q = 3,
has been obtained by [27] (see also [23] for a variant of this result). This work
introduces novel techniques to analyze the soundness of verifiers and while the
result does rely on some prior work, may be read completely independently.

The consequences to optimization problems have also improved significantly
since the initial works of [19, 5]. In particular, a number of new optimization
problems have been related to PCPs and sharp results obtained in [33, 3, 21, 18, 26,
39]. Detailed surveys of such connections are available in [4, 17]. The connections
have also motivated some new systematic study of combinatorial optimization
problems — see [16, 31, 30].

The renewed interest in the approximability of optimization problems has also
resulted, surprisingly, in a new spurt in algorithmic results. Particularly striking
results in this direction are [24, 2]. Some of these algorithmic results, in particu-
lar [28, 40], are needed to analyze the tightness of the new PCP constructions of
[27].

References

[1] S. Arora. Probabilistic Checking of Proofs and Hardness of Approx-

imation Problems. PhD thesis, U.C. Berkeley, 1994. Available from
http://www.cs.princeton.edu/~arora.

[2] S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other
geometric problems. Proc. 37th Symposium on Foundations of Computer Science,
IEEE, 1996.

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

Probabilistic Verification of Proofs 469

[3] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. J. Computer and System

Sciences, 54(2):317-331, April 1997.

[4] S. Arora and C. Lund. Hardness of approximations. In Approximation Algorithms

for NP-hard problems, D. Hochbaum, ed. PWS Publishing, 1996.

[5] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and the hardness of approximations. To appear J. ACM, 45(3), 1998.

[6] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization
of NP. J. ACM, 45(1):70-122, 1998.

[7] S. Arora and M. Sudan. Improved low degree testing and its applications. Proc.

29th Annual Symposium on Theory of Computing, ACM, 1997.

[8] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3-40, 1991.

[9] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in
polylogarithmic time. Proc. 23rd Annual Symposium on Theory of Computing,
ACM, 1991.

[10] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and
a hierarchy of complexity classes. J. Computer and System Sciences, 36(2):254-276,
1988.

[11] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. Proc.
Symposium on Theoretical Aspects of Computer Science, 1990.

[12] M. Bellare, O. Goldreich and M. Sudan. Free bits, PCPs and non-
approximability — towards tight results. SIAM J. Computing, 27(3):804-915, 1998.

[13] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilisti-
cally checkable proofs. Proc. 25th Annual Symposium on Theory of Computing,
ACM, 1993.

[14] M. Bellare and M. Sudan. Improved non-approximability results. Proc. 26th
Annual Symposium on Theory of Computing, ACM, 1994.

[15] S. Cook. The complexity of theorem-proving procedures. Proc. 3rd Annual Sym-

posium on Theory of Computing, ACM, 1971.

[16] N. Creignou. A dichotomy theorem for maximum generalized satisfiability prob-
lems. J. Computer and System Sciences, 51(3):511-522, 1995.

[17] P. Crescenzi and V. Kann, A compendium of NP optimization prob-
lems. Technical Report, Dipartimento di Scienze dell’Informazione, Uni-
versità di Roma “La Sapienza”, SI/RR-95/02, 1995. Available from
http://www.nada.kth.se/ viggo/problemlist/compendium.html.

[18] U. Feige. A threshold of ln n for Set Cover. Proc. 28th Annual Symposium on

Theory of Computing, ACM, 1996.

[19] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, 43(2):268-292, 1996.

[20] U. Feige and J. Kilian. Two prover protocols — Low error at affordable rates.
Proc. 26th Annual Symposium on Theory of Computing, ACM, 1994.

[21] U. Feige and J. Kilian. Zero knowledge and chromatic number. Proc. 11th Annual

Conference on Structure in Complexity Theory, IEEE, 1996.

[22] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive
protocols. Theoretical Computer Science, 134(2):545-557, 1994.

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

470 Madhu Sudan

[23] V. Guruswami, D. Lewin, M. Sudan and L. Trevisan. A tight characterization
of NP with 3 query PCPs. ECCC Tech. Report TR98-034, 1998. Available from
http://www.eccc.uni-trier.de/eccc/.

[24] M. Goemans and D. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115-1145, 1995.

[25] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of in-
teractive proof-systems. SIAM J. Computing, 18(1):186-208, 1989.

[26] J. Håstad. Clique is hard to approximate within n
1−ǫ. Proc. 37th Symposium on

Foundations of Computer Science, IEEE, 1996.

[27] J. Håstad. Some optimal inapproximability results. Proc. 29th Annual Symposium

on Theory of Computing, ACM, 1997.

[28] H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? Proc.

38th Symposium on Foundations of Computer Science, IEEE, 1997.

[29] R. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, Advances in Computing
Research, pp. 85-103. Plenum Press, 1972.

[30] S. Khanna, M. Sudan and L. Trevisan. Constraint satisfaction: The approx-
imability of minimization problems. Proc. 12th Annual Conference on Structure in

Complexity Theory, IEEE, 1997.

[31] S. Khanna, M. Sudan, and D. P. Williamson. A complete classification of the
approximability of maximization problems derived from Boolean constraint satis-
faction. Proc. 29th Annual Symposium on Theory of Computing, ACM, 1997.

[32] L. Levin. Universal’ny̆ıe pereborny̆ıe zadachi (Universal search problems : in Rus-
sian). Problemy Peredachi Informatsii, 9(3):265-266, 1973.

[33] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41(5):960-981, September 1994.

[34] C. Papadimitriou and M. Yannakakis. Optimization, approximation and com-
plexity classes. J. Computer and System Sciences 43(3):425-440, 1991.

[35] R. Raz. A parallel repetition theorem. SIAM J. Computing, 27(3):763-803, 1998.

[36] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. Proc. 29th Annual Sympo-

sium on Theory of Computing, ACM, 1997.

[37] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with ap-
plications to program testing. SIAM J. Computing 25(2):252-271, 1996.

[38] M. Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Ap-

proximation Problems. ACM Distinguished Theses, Lecture Notes in Computer Sci-
ence, no. 1001, Springer, 1996.

[39] L. Trevisan. When Hamming meets Euclid: The approximability of geometric TSP
and MST. Proc. 29th Annual Symposium on Theory of Computing, ACM, 1997.

[40] U. Zwick. Approximation algorithms for constraint satisfaction problems involving
at most three variables per constraint. Proc. 9th Annual Symposium on Discrete

Algorithms, ACM-SIAM, 1998.

Madhu Sudan
LCS, MIT, 545 Technology Square
Cambridge, MA 02139, U.S.A.
email: madhu@lcs.mit.edu

Documenta Mathematica · Extra Volume ICM 1998 · III · 461–470

