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Halving Point Sets

Artur Andrzejak and Emo Welzl

Abstract. Given n points in R
d, a hyperplane is called halving if it has

at most ⌊n/2⌋ points on either side. How many partitions of a point set
(into the points on one side, on the hyperplane, and on the other side)
by halving hyperplanes can be realized by an n-point set in R

d?

1991 Mathematics Subject Classification: 52C10, 52B05, 52B55, 68R05,
68Q25, 68U05
Keywords and Phrases: combinatorial geometry, computational geome-
try, k-sets, k-levels, probabilistic method, matroid optimization, oriented
matroids, Upper Bound Theorem.

Consider the following algorithmic problem first. Given n points in R
d, we want

to find a hyperplane that minimizes the sum of Euclidean distances to these n
points. A glimpse of reflection tells us that an optimal hyperplane cannot have
a majority (⌊n/2⌋ + 1 or more) of the points on either side; otherwise a parallel
motion towards this side will improve its quality [YKII, KM]. A hyperplane with
at most ⌊n/2⌋ points on either side is called halving. How many partitions of a
point set (into the points on one side, on the hyperplane, and on the other side)
by halving hyperplanes can be realized by an n-point set in R

d? The notions
and results mentioned below are closely related to this question. Emphasis in the
presentation is on techniques that may be useful elsewhere, and on interconnections
to other topics in discrete geometry and algorithms. A more complete treatment
is in preparation [AW].

Halving edges and a crossing lemma

Let P be a set of n points in the plane, n even, and no three points on a line. A
halving edge is an undirected edge between two points, such that the connecting
line has the same number of points on either side. Around 1970 L. Lovász [Lo]
and P. Erdős et al. [ELSS] were the first to investigate the geometric graph of
halving edges of a point set, and proved that there cannot be more than O(n3/2)
such edges. Except for a small improvement to O(n3/2/ log∗ n) [PSS], there was no
progress on the problem until T. Dey [De] recently gave an upper bound of O(n4/3).
He shows that the graph of halving edges cannot have more than O(n2) pairs of
crossing edges. Then he employs a crossing lemma (due to M. Ajtai et al. [ACNS]
and T. Leighton [Le]), which has a number of other applications: A geometric
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Figure 1: Graphs of halving edges. The configurations maximize the number of
halving edges for the given number of points [AAHSW]. Note that, in general,
graphs of halving edges are not plane!

graph with n vertices and c pairs of crossing edges has at most O(max(n,
3
√
cn2))

edges.
A variation of Dey’s proof ([AAHSW]) goes via the following identity.

Lemma 1

C +
∑

p∈P

(

(deg p+ 1)/2

2

)

=

(

n/2

2

)

where deg p is the number of halving edges incident to p (this number is always
odd), and C is the number of pairwise crossings of halving edges.

The lemma shows that the number of pairwise crossings in a graph of halving edges
is bounded by

(

n/2
2

)

< n2/4. We will now prove the implication on the number,
m, of halving edges of P . Recall that a geometric graph without crossings of edges
has at most 3n− 6 edges. Now we choose a random induced subgraph Gx of the
graph of halving edges of P by taking each point with probability1 x = 2/ 3

√
n,

independently from the other points. Let Px be the resulting point set, let mx be
the number of halving edges of P with both endpoints in Px, and let Cx be the

1Here we have to assume that n ≥ 8.
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number of pairwise crossings among such edges. We know that mx−Cx ≤ 3nx−6,
since all crossings in Gx can be removed by deletion of Cx edges. The expected
value for nx is xn, for mx it is x2m, and for Cx it is x4C. Hence, due to linearity
of expectation, x2m− x4C ≤ 3xn− 6, which gives2

m ≤ x2C + 3n/x− 6/x2 ≤ 4
3
√
n2

n2

4
+ 3n

3
√
n

2
=

5

2
n4/3 .

For a proof of Lemma 1, we first observe that the identity holds if P is the set
of vertices of a regular n-gon. Then the halving edges are connecting the antipodal
vertices of the polygon. We have n/2 halving edges, deg p = 1 for all points, and
any pair of halving edges crosses. An alternative example is given by the vertices
of a regular (n− 1)-gon together with its center. Then the halving edges connect
this center with the other points, with no crossing of halving edges. In a second
and final step one verifies that the identity remains valid under continuous motion
of a point set. We will not go through this argument, but we mention here a
lemma due to L. Lovász [Lo], which is essential for this argument and for most
proofs in this context.

Lemma 2 Let line ℓ contain a unique point p in P . Assume there are x halving
edges incident to p emanating into the side of ℓ which contains less points from P
than the other side of 3 ℓ. Then there are x+ 1 halving edges emanating into the
other side of ℓ.

The lemma can be proven by rotating a line λ about point p starting in position ℓ
until it coincides with ℓ again. The halving edges incident to p are encountered in
alternation on the large and small side of ℓ, starting and ending on the large side.

It is remarkable, that the graph of halving edges is the unique graph that
satisfies Lemma 2, i.e., it completely characterizes the graph of halving edges of a
point set. Simple implications of the lemma are that the number of halving edges
incident to a point in P is always odd, and that there is exactly one halving edge
incident to each extreme point of P . Moreover, we have the following implication,
which, in fact, is equivalent to Lemma 2.

Corollary 1 Let ℓ be a line disjoint from P with x points from P on one side
and y points on the other side, x+ y = n. Then ℓ crosses min(x, y) halving edges
of P .

The corresponding problem of bounding the number of halving triangles of n points
in R

3, n odd, has also been investigated in a sequence of papers with a currently
best bound of O(n8/3) due to T. Dey and H. Edelsbrunner [DE]. Building blocks
of the proof are a probabilistic argument similar to the one given above, and a
counterpart of Corollary 1: No line crosses more than n2/8 halving triangles.

While the bound in R
3 still allows for a simple proof, the situation gets more

involved in dimensions 4 and higher, where the best bounds due to P. Agarwal
et al. [AACS] are based on a colored version of Tverberg’s Theorem [Tv] by
R. T. Živaljević and S. T. Vrećica [ZV].

2The general bound of O(max(n,
3
√
cn2)) in the crossing lemma [ACNS, Le] is obtained with

x = min(1, 3
√

n/c). The best known constant in the asymptotic bound can be found in [PT].
3This side is unique, since ℓ contains a point, and |P | is even.
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k-Levels and parametric matroid optimization.

Let H be a set of n non-vertical lines in R
2. For 0 ≤ k ≤ n − 1, the k-level of

the arrangement of H is the set of all points which have at most k lines below
and at most n − k − 1 above. Clearly, points on the k-level must lie on at least
one line. Moreover, the k-level can be easily seen to be an x-monotone polygonal
curve from −∞ to +∞, since it intersects every vertical line in exactly one point.

We will now show how the halving edges of a planar point set P , |P | even,
correspond to vertices of the (n/2− 1)- and (n/2)-level of some line arrangement.
To this end we consider the mapping p = (a, b) 7→ p∗ : y = ax + b from points
to non-vertical lines, and the mapping h : y = kx + d 7→ h∗ = (−k, d) from non-
vertical lines to points. This mapping preserves incidences and relative position:
p lies on h iff p∗ contains h∗, and p lies above h iff h∗ lies below p∗. Set P ∗ =
{p∗|p ∈ P}. Now a pair of points p and q is connected by a halving edge iff the
intersection4 of p∗ and q∗ lies both on the (n/2 − 1)- and the (n/2)-level of the
arrangement of P ∗.

The results in [De] imply an upper bound of O(n 3
√
k + 1 ) on the number of

vertices on the k-level. k-levels have a number of applications in the analysis of
algorithmic problems in geometry. We briefly outline here a connection where the
methods for analyzing k-levels proved useful.

A matroid of rank k consists of a set of n elements and a non-empty family of
k-element subsets, called bases. The family of bases is required to fulfill the basis
exchange axiom: for two bases B1, B2 and an element x ∈ B1 \B2 we can always
find y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} is again a basis.

Typical examples of matroids are the set of edges of a graph with its spanning
trees as bases, or a set of vectors with its bases. If we equip the elements e with
weights w(e), we can ask for the minimal weight basis (i.e., the basis with minimal
sum of weights). The matroid property ensures that the greedy method finds such
an optimal basis.

Assume now that the weights are linear functions w(e) = keλ+ de depending
on some real number λ [Gu, KI]. While λ ranges from −∞ to ∞, we obtain a
sequence of minimal weight bases. How long can this sequence be?

By plotting the weights of the elements along the λ-axis, we obtain an ar-
rangement of n lines. The changes of the minimal weight basis occur at vertices of
this arrangement. In the special case of a uniform matroid, i.e., where each set of
k elements forms a basis, the changes of minimal weight basis occur at the vertices
of the (k − 1)-level of the line arrangement. N. Katoh was the first to notice this
connection.

For general rank k matroids it is known [Ep] that the length of the minimal
base sequence is bounded by the total number of vertices of k convex polygons
whose edges do not overlap and are drawn from n lines. T. Dey [De] has shown an
upper bound O(nk1/3+n2/3k2/3) (which is O(nk1/3) for k ≤ n) on this quantity by
a modification of his proof for the complexity of a k-level. This bound is optimal,
due to a lower bound Ω(nk1/3) obtained by D. Eppstein [Ep].

4This intersection may vanish to infinity, if the halving edge is vertical.
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For graphs the problem looks at the number of different minimal spanning
trees for edge weights parameterized by some linear fuction in a parameter λ. The
best lower bound for this quantity is Ω(nα(k)) [Ep], where n is the number of
edges, k + 1 is the number of vertices, and α is a slowly growing inverse of the
Ackermann function. The known upper bound is the same as for general matroids.

Lower bounds and oriented matroids

The upper bounds mentioned may be far from optimal. In the plane sev-
eral constructions of n-point sets with Ω(n log n) halving edges are known
[ELSS, EW, EVW]. If we consider the corresponding problem for oriented ma-
troids (cf. [BLSWZ]) of rank 3 (or pseudoline arrangements in the dual), then

there is an unpublished lower bound of n2Ω(
√
logn ) due to M. Klawe, M. Paterson,

and N. Pippenger, inspired by a connection to sorting networks (cf. [AW]). It is
open whether this construction is realizable (stretchable) or not.

j-Facets and the Upper Bound Theorem

The following notion generalizes halving edges and triangles. Let P be a set
of n > d points in R

d in general position, i.e., no d + 1 points on a common
hyperplane. A j-facet of P is an oriented (d−1)-simplex spanned by d points in P
that has exactly j points from P on the positive side of its affine hull. The 0-facets
correspond to the facets of the convex hull of P . Hence, the Upper Bound Theorem
due to P. McMullen [McM] (cf. [Zi]) gives us a tight upper bound on the number

of 0-facets, which is attained by the vertices of cyclic polytopes: 2
(

n−⌊d/2⌋−1
⌊d/2⌋

)

for d odd, and 2
(

n−⌊d/2⌋
⌊d/2⌋

)

−
(

n−⌊d/2⌋−1
⌊d/2⌋

)

for d even. Below we will use the fact that

these expressions are upper bounded by 2
(

n
⌊d/2⌋

)

. For d fixed, K. L. Clarkson and

P. W. Shor [CS] derive an asymptotically tight bound of O(n⌊d/2⌋(j + 1)⌈d/2⌉) for
the number of (≤ j)-facets (i.e., i-facets with 0 ≤ i ≤ j) by an argument along the
following lines.

We use gj for the number of j-facets of P and Gj for the number of (≤ j)-

facets, i.e., Gj =
∑j

i=0 gi. Now fix some j, 0 ≤ j ≤ n − d and x, 0 < x ≤ 1. We
take a random sample Px of P by selecting each point in P with probability x,
independently from the other points. Let nx = |Px| and let Fx be the number of
0-facets of Px.

On the one hand, the Upper Bound Theorem implies Fx ≤ 2
(

nx

⌊d/2⌋
)

and so

E(Fx) ≤ 2

(

n

⌊d/2⌋

)

x⌊d/2⌋ , (1)

since E(
(

X
i

)

) =
(

N
i

)

xi for a random variable X following the binomial distribution
of N Bernoulli trials with success probability x. On the other hand, an i-facet of
P appears as a 0-facet of Px with probability xd(1 − x)i – we have to select the
d points that determine the i-facet, but none of the i points on its positive side.
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Hence,

E(Fx) =

n−d
∑

i=0

xd(1− x)igi ≥ xd(1− x)j
j

∑

i=0

gi = xd(1− x)jGj . (2)

Combining (1) and (2), we have Gj ≤ 2(1 − x)−j
(

n
⌊d/2⌋

)

x−⌈d/2⌉. By setting x =

⌈d/2⌉/(j + ⌈d/2⌉),

Gj ≤ 2

(

n

⌊d/2⌋

)

(j + ⌈d/2⌉)j+⌈d/2⌉

jj⌈d/2⌉⌈d/2⌉
≤ 2

(

e

⌈d/2⌉

)⌈d/2⌉ (
n

⌊d/2⌋

)

(j + ⌈d/2⌉)⌈d/2⌉

and the claimed asymptotic bound follows.
Except for dimensions 2 and 3, no exact upper bounds for the number of (≤ j)-

facets are known. In particular, it is not known whether the exact maximum is
attained for sets in convex position or not. It is still possible that the exact
maximum can be obtained for points on the moment curve, where the number of
(≤ j)-facets can be easily counted.

We summarize the known bounds for the number of j-facets.

Proposition 1 Let P be a set of n > d points in R
d in general position, i.e., no

d+ 1 points on a common hyperplane. Let 0 ≤ j ≤ n− d.
(0) There is a constant εd > 0 dependent on d only, such that

gj = O(n⌊d/2⌋(j + 1)⌈d/2⌉−εd)

[AACS]. There are point sets with g⌊(n−d)/2⌋ = Ω(nd−1 log n) [Ed].

Gj = O(n⌊d/2⌋(j + 1)⌈d/2⌉)

which, for d fixed, is asymptotically tight for points on the moment curve [CS].
(1) If d = 2 then

gj = O(n 3

√

j + 1 )

[De]. Gj ≤ n(j + 1) for j < n/2− 1 [AG, Pe], which is tight for points in convex
position.
(2) If d = 3 then

gj = O(n(j + 1)5/3)

[AACS].
Gj ≤ (j + 1)(j + 2)n− 2(j + 1)(j + 2)(j + 3)/3

for j ≤ n/4− 2, which is tight if P is in convex position [AAHSW].

And k-sets?

We have met halving edges and triangles, k-levels and j-facets, but if the reader
inspects the references, she will repeatedly encounter the term ‘k-set.’ In fact,
many people think of the problem in the following setting (although proofs and
applications go via the notions we have discussed above):
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Let P be a set of n points in R
d. A subset S of P is called k-set, if |S| = k and

S can be separated from P \S by a hyperplane. The maximum possible number of
k-sets of n-point sets in R

d is related to the maximum possible number of k-facets,
although the connection is somewhat subtle [AAHSW, AW].
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[ELSS] Paul Erdős, László Lovász, A. Simmons, and Ernst G. Straus, Dissec-
tion graphs of planar point sets, in A Survey of Combinatorial Theory
(Eds. Jagdish N. Srivastava et al.), North Holland Publishing Com-
pany (1973) 139–149

[Ep] David Eppstein, Geometric lower bounds for parametric matroid opti-
mization, in “Proc 27th Symp Theory Comput” (1995) 662–671

Documenta Mathematica · Extra Volume ICM 1998 · III · 471–478



478 Artur Andrzejak and Emo Welzl

[Gu] Dan Gusfield, Bounds for the parametric spanning tree problem, in
“Proc Humboldt Conf on Graph Theory, Combinatorics, and Comput-
ing”, Utilitas Mathematica (1979) 173–183

[KI] Naoki Katoh and Toshihide Ibaraki, On the total number of pivots
required for certain parametric problems, Tech. Report Working Paper
71, Inst. Econ. Res., Kobe Univ. Commerce (1983)

[KM] Nikolai M. Korneenko and Horst Martini, Hyperplane approximations
and related topics, in “New Trends in Discrete and Computational
Geometry” (János Pach, Ed.), Algorithms and Combinatorics 10 (1993)
135–161

[Le] Tom Leighton, Complexity Issues in VLSI, Foundation of Computing
Series, MIT Press, Cambridge (1983)
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ETH Zürich
CH-8092 Zürich
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