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On Multiresolution Methods

in Numerial Analysis

Gregory Beylkin

Abstract. As a way to emphasize several distinct features of the mul-
tiresolution methods based on wavelets, we describe connections between
the multiresolution LU decomposition, multigrid and multiresolution re-
duction/homogenization for self-adjoint, strictly elliptic operators. We
point out that the multiresolution LU decomposition resembles a direct
multigrid method (without W-cycles) and that the algorithm scales prop-
erly in higher dimensions.

Also, the exponential of these operators is sparse where sparsity is defined
as that for a finite but arbitrary precision. We describe time evolution
schemes for advection-diffusion equations, in particular the Navier-Stokes
equation, based on using sparse operator-valued coefficients. We point
out a significant improvement in the stability of such schemes.
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1 Introduction

Multiresolution methods have a fairly long history in numerical analysis, going
back to the introduction of multigrid methods [10], [18] and even earlier [22]. A
renewed interest in multiresolution methods was generated recently by the develop-
ment of wavelet bases and other bases with controlled time-frequency localization
[23], [20], [13], [19], [12], [2], [1], etc.. The introduction of these new tools allows
us to relate numerical analysis with harmonic analysis and signal processing by
the fundamental need of an efficient representation of operators and functions.

It is useful to compare the wavelet approach with the multigrid method (MG)
and the Fast Multipole Method (FMM). For most problems the wavelet approach,
FMM, and MG provide the same asymptotic complexity. The differences are
typically in the “constants” of the complexity estimates. These differences will,
most likely, diminish in the future.
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A typical MG is a fast iterative solver based on a hierarchical subdivision.
Hierarchical subdivision is also used in FMM which was initially proposed for
computing potential interactions [21], [17]. This algorithm requires order N oper-
ations to compute all the sums

pj =
∑

i6=j

qiqj
|xi − xj |

, where xi ∈ R3 i, j = 1, . . . , N, (1)

and the number of operations is independent of the configuration of charges. In the
FMM, the reduction of the complexity of computing the sums in (1) from order N2

to −N log ǫ, where ǫ is the desired accuracy, is achieved by approximating the far
field effect of a cloud of charges located in a box by the effect of a single multipole
at the center of the box.

Although both MG and FMM have been extended well beyond their original
applications, neither of these methods use the notion of bases in their development
and, specifically, orthonormal bases1. On the conceptual level using bases makes it
easier to consider efficient representations of functions and operators that handle
smooth, oscillatory, and scaling behavior.

In particular, to emphasize several distinct features of the wavelet approach,
we consider two topics. First, we describe connections between the multiresolution
LU decomposition, MG, and multiresolution reduction/homogenization for self-
adjoint, strictly elliptic operators. Second, we describe the effects of computing the
exponential of such operators on numerical properties of time evolution schemes
for advection-diffusion equations.

The essence of the first topic is that multiresolution LU decomposition (the
usual LU decomposition interlaced with projections) is equivalent to the direct
MG, i.e., a MG without W-cycles. The reason for the absence of W-cycles is that
on every scale we construct equations for the orthogonal projection of the true

solution. Once these equations are solved, there is no need to return to a coarser
scale to correct the solution (which is the role of W-cycles in MG). Moreover,
equations obtained in this manner on coarser scales are of interest by themselves,
since they can be interpreted as “homogenized” or reduced equations, leading to
(numerical) multiresolution reduction and homogenization.

The essence of the second topic is that we can drastically improve properties
of time evolution schemes for advection-diffusion equations by using the exponen-
tial of operators. As it turns out, for self-adjoint, strictly elliptic operators L the
exponential exp (−tL) is sparse in wavelet bases (for a finite but arbitrary preci-
sion) for all t ≥ 0. This observation makes the construction of exp (−tL) feasible
in two and three spatial dimensions. Given a proper choice of basis and several
additional algorithms, we are led to adaptive numerical schemes for the solution
of advection-diffusion equations [8].

1We note that the representation of functions via their values and via coefficients in an ex-
pansion are closely related. In fact if one uses interpolating bases functions then there is a way
to simplify this relation (see [3]).
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2 Multiresolution Direct Solvers

Direct solvers are not used for problems in multiple dimensions since the standard
LU decomposition will fill most of the matrix and, thus, render the method in-
efficient. This is even without considering additional difficulties due to the high
condition numbers typical in these problems. It turns out that both difficulties
can be overcome for self-adjoint, strictly elliptic operators by using wavelet bases
and multiresolution LU decomposition [7], [16].

As usual, we consider multiresolution analysis (MRA), a chain of subspaces

. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . .

such that ⋂

j

Vj = {0} and
⋃

j

Vj = L2(Rd).

Let the subspace Vj be spanned by an orthonormal basis formed by the tensor

product of scaling functions {φj
k(·) = 2−j/2φ(2−j · −k)}k∈Z, where φ satisfies the

two-scale difference equation (see e.g. [13] for details). Let us denote by Wj the
orthogonal complement of Vj in Vj−1, Vj−1 = Vj ⊕Wj. We use Pj and Qj to
denote the projection operators onto Vj and Wj . If x ∈ Vj , we write sx = Pj+1x
and dx = Qj+1x, where sx ∈ Vj+1 and dx ∈ Wj+1.

Given a bounded linear operator S on L2(Rd), let us consider its projection
Sj on Vj , Sj = PjSPj and represent the operator Sj as a (possibly infinite)
matrix in that basis. With a slight abuse of notation, we will use the same symbol
Sj to represent both the operator and its matrix. Since Vj = Vj+1 ⊕Wj+1, we
may also write Sj : Vj → Vj in a block form

Sj =

(
ASj

BSj

CSj
TSj

)
: Vj+1 ⊕Wj+1 → Vj+1 ⊕Wj+1, (2)

where ASj
= Qj+1SjQj+1, BSj

= Qj+1SjPj+1, CSj
= Pj+1SjQj+1, and

TSj
= Sj+1 = Pj+1SjPj+1. Each of the operators may be considered as a matrix

and in the matrix form the transition from Sj in (2) to

(
ASj

BSj

CSj
TSj

)
requires

application of the wavelet transform. We refer to ASj
, BSj

, CSj
and TSj

as the
A, B, C, and T blocks of Sj .

Consider a bounded linear operator Sj : Vj → Vj and a linear equation

Sjx = f, (3)

which we may write as
(

ASj
BSj

CSj
TSj

)(
dx
sx

)
=

(
df
sf

)
. (4)

Formally eliminating dx from (4) by substituting dx = A−1
Sj

(df − BSj
sx)

(Gaussian elimination) yields

(TSj
−CSj

A−1
Sj

BSj
)sx = sf −CSj

A−1
Sj

df . (5)
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We call (5) the reduced equation, and the operator

RSj
= TSj

−CSj
A−1

Sj
BSj

(6)

the one-step reduction of the operator Sj . The right-hand side of (6) is also known

the Schur complement of the block-matrix

(
ASj

BSj

CSj
TSj

)
.

Note that the solution sx of the reduced equation is exactly Pj+1x, the projec-
tion of the solution of the original equation in Vj+1. The solution of the reduced
equation is the same on the subspace Vj+1 as the solution of the original equa-
tion (3). Once we have obtained the reduced equation, it may be reduced again
to produce an equation on Vj+2. Likewise, we may reduce n times to produce
an equation on Vj+n the solution of which is the projection of the solution of
(3) on Vj+n. We note that in the finite-dimensional case, the reduced equation
(5) has 1/2d as many unknowns as the original equation (3). Reduction, there-
fore, preserves the coarse-scale behavior of solutions while reducing the number of
unknowns.

The critical questions are: (i) can we control the sparsity (for any finite but
arbitrary precision) of the matrix CSj

A−1
Sj

BSj
? and, (ii) can we repeat the reduc-

tion step for RSj
? In MG literature the Schur complement appears in a number of

papers but these questions were not answered. In [7] and [16] these questions were
answered affirmatively for a finite number of reduction steps. The key property
that makes this affirmative answer possible is the vanishing moments property of
the basis functions.

The sparsity (for any finite but arbitrary precision) of the multiresolution LU
factorization does not depend on dimension. This is in a sharp contrast with the
usual practice, where LU factorization is not recommended as an efficient approach
in problems of dimension two or higher. For example, if we consider the Poisson
equation, then LU decomposition is not considered as a practical option since the
fill-ins will yield dense LU factors.

A close examination of the algorithm in [16] reveals a striking resemblance
of the multiresolution LU decomposition coupled with the multiresolution forward
and backward substitution to a MG technique. The important difference, however,
is that there are no W-cycles.

As described above, reduction is an algebraic procedure carried out on ma-
trices over a finite number of scales. It relies on the explicit hierarchy of scales
provided by the MRA to algebraically eliminate the fine-scale variables, leaving
only the coarse-scale variables and can be cast as a multiresolution reduction pro-
cedure for the corresponding ODEs and PDEs [11]. The classical homogenization
of partial differential equations is the process of finding “effective” coefficients. In
classical homogenization, the fine scale is associated with a small parameter, and
the limit is considered as this small parameter goes to zero. In dimension one a
connection has been established [15],[14] between multiresolution reduction and
classical homogenization (see e.g. [4]). It is important to point out that reduction
approximately preserves small eigenvalues of elliptic operators, and the accuracy
of this approximation depends on the order of the wavelets [7].
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3 Sparsity of Exponential Operators

If L is a self-adjoint, strictly elliptic operator then the operator eLt is sparse in
wavelet bases (for a finite but arbitrary precision) for all t ≥ 0. This observation
has a significant effect on the methods for solving PDEs.

Let us consider a class of advection-diffusion equations of the form

ut = Lu+N (u), x ∈ Ω ⊂ Rd, (7)

where u = u(x, t), x ∈ Rd, d = 1, 2, 3 and t ∈ [0, T ] with the initial conditions,

u(x, 0) = u0(x), x ∈ Ω, (8)

and the linear boundary conditions

Bu(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ]. (9)

In (7) L represents the linear and N (·) the nonlinear terms of the equation, re-
spectively.

Using the semigroup approach we rewrite the partial differential equation (7)
as a nonlinear integral equation in time,

u(x, t) = e(t−t0)Lu0(x) +

∫ t

t0

e(t−τ)LN (u(x, τ)) dτ, (10)

and describe a new class of time-evolution schemes based on its discretization.
A distinctive feature of these new schemes is exact evaluation of the contribu-
tion of the linear part. Namely, if the nonlinear part is zero, then the scheme
reduces to the evaluation of the exponential function of the operator (or matrix)
L representing the linear part.

We note that the incompressible Navier-Stokes equations can be written in
the form (7). Let us start with the usual form of the Navier-Stokes equations for
x ∈ Ω ⊂ R3,

ut = ν∆u− (u1∂1 + u2∂2 + u3∂3)u−∇p, (11)

∂1u1 + ∂2u2 + ∂3u3 = 0, (12)

u(x, 0) = u0, (13)

where p denotes the pressure and u =




u1

u2

u3


, x =




x1

x2

x3


 and ∂k = ∂

∂xk
. In

addition, we impose the boundary condition

u(x, t) = 0 x ∈ ∂Ω, t ∈ [0, T ], (14)

Let us introduce the Riesz transforms which are defined in the Fourier domain as

̂(Rjf)(ξ) =
ξj
|ξ|

f̂(ξ), j = 1, 2, 3, (15)
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where f̂ denotes the Fourier transform of the function f . It is not difficult to show
that the projection operator on the divergence free functions (the Leray projection)
may be written with the help of the Riesz transforms,

P =




I 0 0
0 I 0
0 0 I


−




R2
1 R1R2 R1R3

R2R1 R2
2 R2R3

R3R1 R3R2 R2
3


 . (16)

Applying the divergence operator to (11), we obtain −∆p =
∑3

k,l=1 ∂k∂lukul

and an expression for pressure in terms of the Riesz transforms, p =
−
∑3

k,l=1 RkRl(ukul). Substituting the expression for the pressure into (11) and
taking into consideration that the Riesz transforms commute with derivatives and,
moreover, Rk∂l = Rl∂k, we obtain

ut = ν∆u−P(

3∑

m=1

um∂mu), (17)

instead of (11) and (12). Equations (17) are now in the form (7), where L = ν∆

and N (u) = −P(
∑3

m=1 um∂mu). The transformation from (11) and (12) to (17)
is well known and appears in a variety of forms in the literature. Here we followed
a derivation presented by Yves Meyer at Summer School at Luminy in 1997.

The apparent problem with (17) for use in numerical computations is that
the Riesz transforms are integral operators (which makes (17) into an integro-
differential equation). Let us point out that the presence of the Riesz transforms
does not create serious difficulties if we represent operators Rj , j = 1, 2, 3 in a
wavelet basis with a sufficient number of vanishing moments (for a given accu-
racy). The reason is that these operators are nearly local on wavelets, and thus,
have a sparse representation. This approximate locality follows directly from the
vanishing moments property. Vanishing moments imply that the Fourier trans-
form of the wavelet and its several first derivatives vanish at zero, and therefore,
the discontinuity of the symbol of the Riesz transform at zero has almost no effect.
The precise statements about such operators can be found in [6] and [5].

Finally, in rewriting (17) as ut = Lu + N (u), we incorporate the boundary
conditions into the operator L. For example, u = L−1v means that u solves
Lu = v with the boundary conditions Bu = 0. Similarly, u(x, t) = eLtu0(x)
means that u solves ut = Lu, u(x, 0) = u0(x) and Bu(x, t) = 0.

Computing and applying the exponential or other functions of operators in the
usual manner typically requires evaluating dense matrices and is highly inefficient
unless there is a fast transform that diagonalizes the operator. For example, if L
is a circulant matrix, then computing functions of operators can be accomplished
using the FFT. It is clear that in this case the need of the FFT for diagonalization
prevents one from extending this approach to the case of variable coefficients.

In the wavelet system of coordinates computing the exponential of self-adjoint,
strictly elliptic operators always results in sparse matrices, and therefore, using the
exponential of operators for numerical purposes is an efficient option [8].

Further development of the approach of [8] can be found in [9], where issues
of stability of time-discretization schemes with exact treatment of the linear part
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(ELP) schemes are considered. The ELP schemes are shown to have distinctly
different stability properties as compared with the usual implicit-explicit schemes.
The stability properties of traditional time-discretization schemes for advection-
diffusion equations are controlled by the linear term and, typically, these equations
require implicit treatment to avoid choosing an unreasonably small time step. As
it is shown in [9], using an explicit ELP scheme, it is possible to achieve stability
usually associated with implicit predictor-corrector schemes.

If an implicit ELP scheme is used, as it is done in [8], an approximation is
used only for the nonlinear term. This changes the behavior of the corrector step
of implicit schemes. The corrector step iterations of usual implicit schemes for
advection-diffusion equations involve either both linear and nonlinear terms or
only the linear term. Due to the high condition number of the matrix representing
the linear (diffusion) term, convergence of the fixed point iteration requires a
very small time step, making the fixed point iteration impractical. Implicit ELP
schemes do not involve the linear term and, typically, the fixed point iteration is
sufficient as in [8].

We would like to note, that (10) in effect reduces the problem to an ODE–type
setup, and for that reason, a variety of methods can be used for its solution. We
present operator valued coefficients of multistep ELP schemes and our main point
is that these coefficients can be represented by sparse matrices and applied in an
efficient manner.

Let us consider the function u(x, t) at the discrete moments of time tn =
t0 + n∆t, where ∆t is the time step so that un ≡ u(x, tn) and Nn ≡ N (u(x, tn)).
Discretizing (10) yields

un+1 = elL∆tun+1−l +∆t

(
γNn+1 +

M−1∑

m=0

βmNn−m

)
, (18)

where M+1 is the number of time levels involved in the discretization, and l ≤ M .
The expression in parenthesis in (18) may be viewed as the numerical quadrature
for the integral in (10). The coefficients γ and βm are functions of L∆t. In what
follows we restrict our considerations to the case l = 1. We observe that the
algorithm is explicit if γ = 0 and it is implicit otherwise. Typically, for a given
M , the order of accuracy is M for an explicit scheme and M + 1 for an implicit
scheme due to one more degree of freedom, γ.

For l = 1 we provide Tables 1 and 2 for M = 1, 2, 3 with expressions for the
coefficients of the implicit (γ 6= 0) and the explicit (γ = 0) schemes in terms of
Qk = Qk(L∆t), where

Qk(L∆t) =
eL∆t − Ek(L∆t)

(L∆t)k
, (19)

and

Ek(L∆t)) =
k−1∑

l=0

(L∆t)l

l!
(20)
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M γ β0 β1 β2

1 Q2 Q1 −Q2 0 0
2 1

2Q2 +Q3 Q1 − 2Q3 Q3 −
1
2Q2 0

3 1
3Q2 +Q3 +Q4 Q1 +

1
2Q2 − 2Q3 − 3Q4 Q3 −Q2 + 3Q4

1
6Q2 −Q4

Table 1: Coefficients of implicit ELP schemes for l = 1, where Qk = Qk(L∆t)).

M β0 β1 β2

1 Q1 0 0
2 Q1 +Q2 −Q2 0
3 Q1 + 3Q2/2 + Q3 −2(Q2 +Q3) Q2/2 + Q3

Table 2: Coefficients of explicit ELP schemes for l = 1, where Qk = Qk(L∆t).

In Tables 1 and 2 we have presented examples of the so-called “bare” coefficients.
Modified coefficients [8] differ in high order terms: these terms do not affect the or-
der of accuracy but do affect the stability properties. Modified coefficients depend
on a particular form of the nonlinear term.

Let us describe a method to compute operators Q0, Q1, Q2, . . . . without
computing (L∆t)−1. In computing the exponential, Q0, we use the scaling and
squaring method which is based on the identity

Q0(2x) = (Q0(x))
2
. (21)

First we compute Q0(L∆t2−l) for some l chosen so that the largest singular value
of L∆t2−l is less than one. This computation is performed using the Taylor
expansion. Using (21), the resulting matrix is then squared l times to obtain the
final answer. In all of these computations it is necessary (and possible) to remove
small matrix elements to maintain sparsity, and at the same time, maintain a
predetermined accuracy.

A similar algorithm may be used for computing Qj(L∆t), j = 1, 2, . . . for any
finite j. Let us illustrate this approach by considering j = 1, 2. It is easy to verify
that

Q1(2x) =
1
2 (Q0(x)Q1(x) + Q1(x)) , (22)

Q2(2x) =
1
4 (Q1(x)Q1(x) + 2Q2(x)) . (23)

Thus, a modified scaling and squaring method for computing operator-valued
quadrature coefficients for ELP schemes starts by the computation of Q0(L∆t2−l),
Q1(L∆t2−l) and Q2(L∆t2−l) for some l selected so that the largest singular value
of all three operators is less than one. For these evaluations we use the Taylor
expansion. We then proceed by using identities in (21), (22) and (23) l times to
compute the operators for the required value of the argument.

As an example consider Burgers’ equation

ut + uux = νuxx, 0 ≤ x ≤ 1, t ≥ 0, (24)
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for ν > 0, together with an initial condition,

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (25)

and periodic boundary conditions u(0, t) = u(1, t). Burgers’ equation is the sim-
plest example of a nonlinear partial differential equation incorporating both linear
diffusion and nonlinear advection. In [8] a spatially adaptive approach is used to
compute solutions of Burgers’ equation via

un+1 = Q0(L∆t)un −
∆t

2
Q1(L∆t) [un∂xun+1 + un+1∂xun] . (26)

We refer to [9] for the analysis of stability of ELP schemes.

4 Conclusions

The wavelet based algorithms described above are quite efficient in dimension one.
Although algorithms described above scale properly with size in all dimensions,
establishing ways of reducing operation counts remains an important task in di-
mensions two and three. This is an area of the ongoing research and the progress
will be reported elsewhere.
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