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Uniform Asymptoti
s for Orthogonal Polynomials

P. Deift, T. Kriecherbauer,

K. T-R McLaughlin, S. Venakides and X. Zhou

Abstract. We consider asymptotics of orthogonal polynomials with
respect to a weight e−Q(x)dx on R, where either Q(x) is a polynomial
of even order with positive leading coefficient, or Q(x) = NV (x), where
V (x) is real analytic on R and grows sufficiently rapidly as |x| → ∞.
We formulate the orthogonal polynomial problem as a Riemann-Hilbert
problem following the work of Fokas, Its and Kitaev. We employ the
steepest descent-type method for Riemann-Hilbert problems introduced
by Deift and Zhou, and further developed by Deift, Venakides and Zhou,
in order to obtain uniform Plancherel-Rotach-type asymptotics in the
entire complex plane, as well as asymptotic formulae for the zeros, the
leading coefficients and the recurrence coefficients of the orthogonal poly-
nomials. These asymptotics are also used to prove various universality
conjectures in the theory of random matrices.
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Let w(x)dx = e−Q(x)dx be a measure on the real line. Denote by πn(x,Q) =
πn(x) = xn + . . . the n-th monic orthogonal polynomial with respect to the mea-
sure, and by pn(x,Q) = pn(x) = γnπn(x), γn > 0, the normalized n-th orthogonal
polynomial, or simply the n-th orthogonal polynomial, i.e.

∫

R

pn(x)pm(x)e−Q(x)dx = δn,m , n,m ∈ N. (1)

Furthermore, denote by (an)n∈N, (bn)n∈N the coefficients of the associated three
term recurrence relation, namely, xpn(x) = bnpn+1(x) + anpn(x) + bn−1pn−1(x),
n ∈ N, and denote by x1,n > x2,n > . . . > xn,n the roots of pn.

In [8], the authors considered the case where

Q(x) =

2m
∑

k=0

qkx
k, q2m > 0, m > 0, (2)

is a polynomial of even degree with a positive leading coefficient, and in [7] the
case where

Q(x) = NV (x), V (x) is real analytic on R,

and
V(x)

log(x2 + 1)
→ ∞ as x → ∞.

(3)
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In [8], the authors are concerned with the asymptotics as n → ∞ of the lead-
ing coefficient γn, the recurrence coefficient an, bn and the zeros xjn, as well as
Plancherel-Rotach-type asymptotics for the orthogonal polynomials pn, i.e asymp-
totics for pn(zcn+dn) uniformly for all z ∈ C, where cn, dn are certain quantities re-
lated to the so-called Mhaskar-Rahmanov-Saff numbers (see (5) below). The name
“Plancherel-Rotach” refers to [17] in which the authors prove asymptotics of this
type for the classical case of Hermite polynomials. In [7], the authors are concerned
with the asymptotics of γn, an, bn and pn(z;NV ) in the case c−1N ≤ n ≤ cN for
some c > 1, as N → ∞. These asymptotics are crucial ingredients in proving a
variety of universality conjectures in random matrix theory (see [7]).

Due to the page restrictions in these Proceedings, we limit our considerations
to a description of the results in [8]. Plancherel-Rotach-type asymptotics for poly-
nomial orthogonal with respect to exponential weights of the above type, play a
central role in various questions of weighted approximation on the line (see e.g.
[15]). In order to prove our results we use a reformulation of the orthogonal polyno-
mial problem as a Riemann-Hilbert problem, due to Fokas, Its and Kitaev [13, 14]
(see below). This Riemann-Hilbert problem is then analyzed in turn asymptoti-
cally using the non-commutative steepest-descent method introduced by Deift and
Zhou in [11], and further developed in [12] and [9], and placed eventually in a gen-
eral form by Deift, Venakides and Zhou in [10]. In [8], and particularly in [7], a
basic role is played by the results on the equilibrium measure (see below) obtained
by Deift, Kriecherbauer and Ken McLaughlin in [5]. In this paper we will only
have the opportunity to give a very rough sketch of the steepest descent method:
full details can be found in [8]. For the case of varying weights e−NV (x)dx, we
must, alas, refer the reader to [7], for both a detailed description of the results as
well as their proofs, and the connection to random matrix theory. The methods in
[7] are similar to those in [8], but require additional technical considerations. In
the special case where V is an even quartic polynomial, the results in [7] should
be compared with the results of Bleher and Its [2], who were the first to use the
steepest-descent method in [11] to study the asymptotics of orthogonal polyno-
mials via a Riemann-Hilbert problem. Some of the results in [7] and in [8] were
announced in [6].

There is a vast literature on asymptotic questions for orthogonal polynomials.
The list of researchers who have made important contributions close to the results
of [7] and [8], includes, in addition to Plancherel and Rotach, and Bleher and
Its, Bauldry, Chen, Criscuolo, Della Vechia, Geronimo, Ismail, Lubinsky, Magnus,
Maskar, Mastroiani, Mate, Nevai, Rahmanov, Saff, Sheen, Totik and Van Assche,
but there are many others. Again, we do not have the opportunity to describe
their work in any detail. Fortunately there is an excellent review [15]: also, a
detailed description of the work of the above authors related to the present paper
is given in [8].

Henceforth we will assume that the potential Q(x) is of the form (2). The
statement of our results involves the n-th Mhaskar-Rahmanov-Saff numbers (in
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short: MRS-numbers [16], [18]) αn, βn which can be determined from the equations

1

2π

∫ βn

αn

Q′(t)(t− αn)
√

(βn − t)(t− αn)
dt = n,

1

2π

∫ βn

αn

Q′(t)(βn − t)
√

(βn − t)(t− αn)
dt = −n, (4)

and in particular the interval [αn, βn] whose width and midpoint are given by

cn :=
βn − αn

2
, dn :=

βn + αn

2
. (5)

For the weights under consideration it is straightforward to prove the existence of
the MRS-numbers for sufficiently large n. Moreover, they can be expressed in a
power series in n−

1
2m . We obtain

cn = n
1

2m

∞
∑

l=0

c(l)n−
l

2m , dn =

∞
∑

l=0

d(l)n−
l

2m , (6)

where the coefficients c(l), d(l) can be computed explicitly. From now on we will
assume that n is sufficiently large for (6) to hold.

Statement of Results

To simplify the analysis, we normalize the interval [αn, βn] to be [−1, 1] by making
the linear change of variable

λn : C → C : z 7→ cnz + dn, (7)

which takes the interval [−1, 1] onto [αn, βn], and we work with the function

Vn(z) :=
1

n
Q(λn(z)). (8)

The function Vn is again a polynomial of degree 2m with leading coefficient
(mAm)−1 > 0, whereas all other coefficients tend to zero as n tends to ∞.

We present our results in terms of the well-known equilibrium measure µn

(see e.g. [19]) with respect to Vn which is defined as the unique minimizer in
M1(R) = {probability measures on R} of the functional

IVn : M1(R) → (−∞,∞] : µ 7→
∫

R2

log |x− y|−1dµ(x)dµ(y) +

∫

R

Vn(x)dµ(x). (9)

The equilibrium measure and the corresponding variational problem emerge natu-
rally in our asymptotic analysis of the Riemann-Hilbert problem. The minimizing
measure is given by

dµn(x) =
1

2π

√

1− x2hn(x)1[−1,1](x)dx, (10)

where 1[−1,1] denotes the indicator function of the set [−1, 1] and hn is a polynomial
of degree 2m− 2,

hn(x) =
2m−2
∑

k=0

hn,kx
k, (11)
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and the coefficients hn,k can be expanded in an explicitly computable power series

in n−
1

2m .
Finally, to state our first theorem, we define

ln :=
1

π

∫ 1

−1

√

1− t2hn(t) log |t|dt− Vn(0), (12)

which also has an explicitly computable power series in n−
1

2m .

Asymptotics of the leading and recurrence coefficients of
the orthogonal polynomials pn

Theorem 13. In the above notation we have

γn
√

πc2n+1
n enln = 1− 1

n

(

4hn(1)− 3h′n(1)

48hn(1)2
+

4hn(−1) + 3h′n(−1)

48hn(−1)2

)

+O
(

1

n2

)

,

bn−1

cn
=

1

2
+O

(

1

n2

)

, an = dn +
cn
2n

(

1

hn(1)
− 1

hn(−1)
+O

(

1

n

))

.

(14)

In all three cases there are explicit integral formulae for the error terms which all

have an asymptotic expansion in n−
1

2m , e.g. O
(

1
n

)

= 1
n

(

κ0 + κ1n
− 1

2m + . . .
)

.

The coefficients of these expansions can be computed via the calculus of residues
by purely algebraic means.

Next we will state the Plancherel-Rotach type asymptotics of the orthogonal
polynomials pn, i.e. the limiting behavior of the rescaled n-th orthogonal polyno-
mial pn(λn(z)), as n tends to infinity and z ∈ C remains fixed. We will give the
leading order behavior and produce error bounds which are uniform in the entire
complex plane C.
Notation: In the following, (·)α, α ∈ R, denotes the principal branch of the αth

root. On the other hand, we will reserve the notation
√
a for nonnegative numbers

a, and we always take
√
a nonnegative: thus

√
1− x2, −1 ≤ x ≤ 1 in (10) is

positive.

Plancherel-Rotach Asymptotics

We state our second theorem in terms of the function

ψn : C \ ((−∞,−1] ∪ [1,∞)) → C : z 7→ 1

2π
(1− z)1/2(1 + z)1/2hn(z). (15)

The function ψn is an analytic extension of the density of µn on (−1, 1) to C \
((−∞,−1] ∪ [1,∞)) and is thus closely linked to the equilibrium measure (cf.
(10)). We show that there exist analytic functions fn, f̃n in a neighborhood of 1,
respectively −1, satisfying
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(−fn(z))3/2 = −n3π
2

∫ z

1

ψn(y)dy, for |z− 1| small, z /∈ [1,∞).

(f̃n(z))
3/2 = n

3π

2

∫ z

−1

ψn(y)dy, for |z + 1| small, z /∈ (−∞,−1].

(16)

As pn(z) = pn(z̄), it is sufficient to describe the asymptotics of pn(cnz + dn)
in the closed upper half plane C+. Depending on a small parameter δ, we divide
C+ into six closed regions, as shown in Figure 17 below. We only describe the
asymptotics in Aδ, C1,δ, C2,δ and Bδ. The asymptotics in Dj,δ, j = 1, 2, is of a

similar form to that in Cj,δ, j = 1, 2 respectively, with f̃n replacing fn. Let Ai(z)
denote the Airy function [1, 10.4].
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Figure 17. Different asymptotic regions for pn(cnz + dn) in C±.

Theorem 18. There exists a δ0 such that for all 0 < δ ≤ δ0 the following holds
(see Figure 17):

(i) For z ∈ Aδ:

pn(cnz + dn)e
− 1

2
Q(cnz+dn) =

√

1

4πcn
exp

(

−nπi
∫ z

1

ψn(y)dy

)

(19)

×
(

(z − 1)1/4

(z + 1)1/4
+

(z + 1)1/4

(z − 1)1/4

)(

1 +O
(

1

n

))

.

(ii) For z ∈ Bδ:

pn(cnz + dn)e
− 1

2
Q(cnz+dn) =

√

2

πcn
(1− z)−1/4(1 + z)−1/4 (20)

×
{

cos

(

nπ

∫ z

1

ψn(y)dy +
1

2
arcsin z

)(

1 +O
(

1

n

))

+sin

(

nπ

∫ z

1

ψn(y)dy +
1

2
arcsin z

)

O
(

1

n

)}

.
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(iii) For z ∈ C1,δ:

pn(cnz + dn)e
− 1

2
Q(cnz+dn) (21)

=

√

1

cn

{(

(z + 1)1/4

(z − 1)1/4
(fn(z))

1/4
Ai (fn(z))

)(

1 +O
(

1

n

))

−
(

(z − 1)1/4

(z + 1)1/4
(fn(z))

−1/4
Ai′ (fn(z))

)(

1 +O
(

1

n

))}

. (22)

(iv) For z ∈ C2,δ:

pn(cnz + dn)e
− 1

2
Q(cnz+dn) =

√

1

cn

{

(z + 1)1/4

(z − 1)1/4
(fn(z))

1/4
Ai(fn(z))

− (z − 1)1/4

(z + 1)1/4
(fn(z))

−1/4
Ai′(fn(z))

}(

1 +O
(

1

n

))

. (23)

All the error terms are uniform for δ ∈ compact subsets of (0, δ0] and for
z ∈ Xδ, where X ∈ {A,B,C1, C2}. There are integral formulae for the error

terms from which one can extract an explicit asymptotic expansion in n−
1

2m .

Remarks:
(a) Some of the expressions in Theorem 18 are not well defined for all z ∈ R

(see e.g. (z − 1)1/4,
∫ z

1
ψn(y)dy). In these cases we always take the limiting

expressions as z is approached from the upper half-plane.
(b) The function arcsin is defined as the inverse function of

sin : {z ∈ C : |Re(z)| < π

2
} → C \ ((−∞,−1] ∪ [1,∞)) .

Asymptotic Location of the Zeros

In order to state our result on the location of the zeros, we denote the zeros of the
Airy function Ai by 0 > −ι1 > −ι2 > . . . . Recall that the all the zeros of Ai lie
in (−∞, 0), so that there exists a largest zero −ι1 < 0. Furthermore, note that

[−1, 1] ∋ x 7→
∫ 1

x
ψn(t)dt ∈ [0, 1] is bijective and we define its inverse function to

be ζn : [0, 1] 7→ [−1, 1].

Theorem 24. The zeros x1,n > x2,n > . . . > xn,n of the n-th orthogonal polyno-
mials pn satisfy the following asymptotic formulae:

(i) Fix k ∈ N. Then

xk,n − dn
cn

= 1−
(

2

hn(1)2

)1/3
ιk
n2/3

+O
(

1

n

)

, as n→ ∞, (25)

and

xn−k,n − dn
cn

= −1 +

(

2

hn(−1)2

)1/3
ιk
n2/3

+O
(

1

n

)

, as n→ ∞. (26)
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(ii) There exist constants k0, C > 0, such that for all k0 ≤ k ≤ n − k0 the
following holds:

xk,n − dn
cn

∈
(

ζn

(

6k − 1

6n

)

, ζn

(

6k − 5

6n

))

. (27)

∣

∣

∣

∣

xk,n − dn
cn

− ζn

(

6k − 3

6n
+

1

2πn
arcsin (ζn (k/n))

)
∣

∣

∣

∣

≤ C

n2[α(1− α)]4/3
, (28)

where α := k/n.
(iii) There exists a constant C1 > 0 such that

1

C1
<

xk,n − xk+1,n

cn[nk(n− k)]1/3
< C1 for all 1 ≤ k ≤ n− 1. (29)

Remarks:
(a) Using the asymptotic expansion for the error terms in Theorem 18 one

can of course approximate the k-th zero xk,n of the orthogonal polynomial pn to
arbitrary accuracy.

(b) Note that the error term in (28) is at most of order O(n−2/3). Furthermore
it is obvious that for any compact subset K of (0, 1), there exists a constant CK ,
such that the error term in (28) is bounded by CK/n

2, as long as α = k/n ∈ K.

As noted earlier, our approach to the asymptotic problem for orthogonal
polynomials, is based on the reformulation of the orthogonal polynomial problem
as a Riemann-Hilbert problem due to Fokas, Its and Kitaev (see [13], [14]: a
specialized version appeared also in [4]).

A general reference for Riemann-Hilbert problems is, for example, [3]. Let Σ
be an oriented contour in C.
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...................................
...........................................................................................................................................................................................................................................................................................................................................................

......
......
....

............
....

............
....
................

............
....
................

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
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+
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−

−

Figure 30.

As indicated in the Figure, the (+)-side (resp, (−)-side) of the contour lies to left
(resp, right) as one moves along the contour in the direction of the orientation.
Let v be a given map from Σ to Gl(k,C). We say that m = m(z) is a solution of
the Riemann-Hilbert problem (Σ, v) if

• m(z) is analytic in C− Σ,
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• m+(z) = m−(z)v(z) , z ∈ Σ,

where m±(z) = limz′→zz′∈(±)−sidem(z′). The matrix v is called the jump matrix
for the Riemann-Hilbert problem. If in addition

• m(z) → I as z → ∞,

we say that the the Riemann-Hilbert problem is normalized at infinity.

Theorem 31. ([13, 14]) Let w : R → R+ denote a function with the property that
w(s)sk belongs to the Sobolev space H1(R) for all k ∈ N. Suppose furthermore that
n is a positive integer. Then the Riemann-Hilbert problem on Σ = R, oriented from
−∞ to +∞,

Y : C \ R → C
2×2 is analytic , Y+(s) = Y−(s)

(

1 w(s)
0 1

)

for s ∈ R,

Y (z)

(

z−n 0
0 zn

)

= I +O
(

1

|z|

)

, as |z| → ∞,

(32)

has a unique solution, given by

Y (z) =

(

πn(z)
∫

R

πn(s)w(s)
s−z

ds
2πi

−2πiγ2n−1πn−1(z)
∫

R

−γ2
n−1πn−1(s)w(s)

s−z ds

)

, (33)

where πn denotes the n-th monic orthogonal polynomial with respect to the measure
w(x)dx on R and γn > 0 denotes the leading coefficient of the n-th orthogonal
polynomial pn = γnπn. Furthermore, there exist Y1, Y2 ∈ C

2×2 such that

Y (z)

(

z−n 0
0 zn

)

= I +
Y1
z

+
Y2
z2

+O
(

1

|z|3
)

, as |z| → ∞,

and γn−1 =
√

(Y1)21/− 2πi, γn = 1/
√

−2πi(Y1)12,

an = (Y1)11 + (Y2)12/(Y1)12, bn−1 =
√

(Y1)21(Y1)12,

(34)

where an, bn are the recurrence coefficients associated to the orthogonal polynomi-
als pn.
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Figure 35. The contour ΣS .
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We are interested in the case where w(x) = e−Q(x), and Q(x) satisfies (2).
Theorem 31 converts the problem of computing the asymptotics of γn, an, bn, . . .
into a problem of computing the asymptotics of the Riemann-Hilbert problem
(32) as n → ∞. As indicated, this is achieved by using the steepest descent
method for Riemann-Hilbert problems introduced in [11], and further developed
in [12]. We conclude with a brief sketch of the method, which involves a sequence
of transformations of the Riemann-Hilbert problem:

(i) rescaling: Y → Un(z) ≡
(

c−n
n 0
0 cnn

)

Y (cnz + dn), where cn, dn are

related to the MRS-numbers as in (5).
(ii) introduction of the “g-function” which is the analog for the Riemann-

Hilbert problem of the phase function of linear WKB theory: U → T (z) ≡
e−nlσ3/2U(z)e−n(g(z)−l/2)σ3 where σ3 is the Pauli matrix

(

1 0
0 −1

)

and l = ln
is given in (12). The function g(z) is analytic in C \ R, has asymptotics
g(z) ∼ log z as z → ∞ and is uniquely determined as in [10] by requiring that
g±(z) ≡ limǫ→0+ g(z ± iǫ) satisfy certain equalities and inequalities (“Phase Con-
ditions”) on R. A simple computation shows that T (z) is the solution of the
following Riemann-Hilbert problem, normalized at infinity:

• T (z) is analytic in C \ R,

• T+(z) = T−(z)

(

e−n(g+(z)−g−(z)) en(g+(z)+g−(z)−Vn(z)−l)

0 en(g+(z)−g−(z))

)

for z ∈ R,

• T (z) = I +O( 1
|z| ) as z → ∞.

(iii) involves a factorization of the jump matrix and a deformation of
the contour: T → S. The 2×2 matrix function S = S(z) solves a Riemann-Hilbert
problem on a contour of type ΣS as in Figure 35. Now the Phase Conditions in (ii)
are chosen precisely to ensure that the jump matrix vS for S on Σ1,Σ3,Σ4 and
Σ5, converges exponentially to the identity matrix as n→ ∞, whereas vS =

(

0 1
−1 0

)

on Σ2 = [−1, 1]. Thus as n → ∞, we expect that S converges to the solution of
the simple Riemann-Hilbert problem (Σ2 = [−1, 1], v =

(

0 1
−1 0

)

), which may be
solved in turn in terms of elementary radicals.

The final step (iv) involves the construction, following [12], of a parametrix
for S at the points of self-intersection {−1, 1} of ΣS : S → R. Although vS → I on
Σ1∪Σ3∪Σ4∪Σ5, the convergence is not uniform and is slower and slower near 1 and
−1. This is the central analytical difficulty in the method, and requires delicate
consideration. The parametrix for S is chosen so that R solves a Riemann-Hilbert
problem on an extended contour ΣR ⊃ ΣS with a jump matrix vR satisfying
‖vR − I‖L∞(ΣR) → 0 as n → ∞. By standard Riemann-Hilbert methods, R can
then be solved in terms of a Neumann series, and retracing the steps R → S →
T → U → Y , we obtain the asymptotics for γn, an, bn, xkn and pn(cnz + dn) as
advertised in Theorem 13, 18 and 24.

Finally we note that it is a remarkable piece of luck that the phase condition
in (ii) above can be expressed simply in terms of the equilibrium measure dµn cor-
responding to Vn(z) as in (9), (10) above. Indeed, if we set g(z) =

∫

log(z − x)dµn,
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then it turns out that the Euler-Lagrange variational equations for µn, the min-
imizing measure in (9), are equivalent to the desired phase condition on g. In
this way we construct the g-function in terms of the equilibrium measure.
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