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Wavelet Based Numerial Homogenization

Bjorn Engquist

Abstract. In analytic homogenization, a differential equation and its
solution with multiple scales are replaced by an approximating equation
and its corresponding smoother solution with fewer scales. The scales
related to the shortest wavelengths are eliminated. We shall start from a
discretization of the original differential equation, which includes all the
scales. The solution and the difference operator will be represented in a
wavelet basis and the homogenized discrete operator will correspond to
a particular form of an approximative projection onto the coarser scales.
We shall show that this new operator inherits many of the properties
of the original discrete operator, including sparseness. Some numerical
examples will be presented and comparisons with the analytic homoge-
nization process will be given. We shall also discuss direct coarse grid
approximation.

1. Introduction. Homogenization is a classical analytical way to approximate
the effect of some classes of periodic or stochastic oscillations. The problem is
often formulated as follows. Consider a set of operators Lǫ, indexed by the small
parameter ǫ, and a right hand side f . Find the homogenized operator L̄ defined by

Lǫuǫ = f, lim
ǫ→0

uǫ = ū, L̄ū = f. (1)

In certain cases the convergence above and existence of the homogenized operator
can be proved, [3].

In the d-dimensional elliptic case, let A(y) ∈ R
d×d be one-periodic in each of

its arguments and let Id denote the unit square. It can then be shown, [3], that

Lǫ = −∇ ·
(

A
(x

ǫ

)

∇
)

, L̄ = −∇ · (H∇), H =

∫

Id

A(y)−A(y)Dχ(y)dy, (2)

where Dχ is the Jacobian of the vector valued function χ(y) ∈ R
d, whose compo-

nents χk are given by solving the so called cell problems

∇ · (A(y)∇χk) =
d

∑

i=1

∂

∂yi
aik(y), k = 1, . . . , d, (3)

with periodic boundary conditions for χk. Note that H is a constant matrix. See
[9] for a direct numerical application of this analytic formalism.
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In this paper we present a general procedure for constructing numerical sub-
grid models to be used on a coarse grid where the smallest scales are not resolved.
As in analytic homogenization the subgrid phenomina can be oscillations. The
wave length ǫ in the oscillations may be smaller than the the typical grid step size
h. The objective is to find models that accurately reproduce the effect of subgrid
scales and that in some sense are similar to the original differential operator as
is the case in analytic homogenization. The starting point is a finite-dimensional
approximation, Lu = f , of a differential equation where L approximates the dif-
ferential operator and u the solution. The operator L can be written on the form

L = P (∆, A, h, ǫ), (4)

where ∆ is a collection of difference operators, A are discretized variable coeffi-
cients, typically diagonal matrices, h represents the grid size, and ǫ the smallest
scale of significance in the problem.

We shall first briefly discuss the possibility of directly discretizing (4) on a
coarse grid, h > ǫ. In general, for finite difference and finite element methods, a
reasonable number of grid points or elements are required per wave length of the
oscillation, h << ǫ. Phase and group velocity errors will otherwise be O(1).

For a special type of problems and numerical methods it is, however, possible
to prove convergence in a weak sense even if the oscillations are not resolved on
the computational grid. These types of techniques are studied in [10], [11] and
commented on in section 2.

For the wavelet based homogenization technique we start with a resolved
discretization, h << ǫ, and a coarse grid approximation. The specific scale ǫ does
not play a role any longer and is dropped in the notation.

We seek a finite dimensional operator L̃ and a right hand side f̄ with the fol-
lowing properties. First, L̃ũ = f̄ and ũ is a projection of u onto a lower dimensional
subspace. Second, L̃ can be written on the same form as L,

L̃ = P (∆, H, h̄), (5)

but with h̄ >> h and the structure of H close inheting essential properties from
the structure of A, typically diagonal dominance and sparsity. The sparsity of the
discrete operator is important and corresponds to L̃ being an approximation of a
differential operator. We interpret H as the subgrid model of A. If A corresponds
to a material coefficient, H can be seen as the effective material coefficient. The
procedure outlined above resembles that of the analytic homogenization technique
used for the continuous case, see section 4. In view of this, we will call L̃ the
homogenized operator. See Bensoussan et al., [3], for a thorough presentation of
classical homogenization.

Our method is based on multiresolution analysis with wavelet projections and
approximation of the discrete operator. Although it can be used with any type
of discretization, it is algebraic and, in the present form, only deals with linear
systems of equations. The great advantage of this procedure to derive subgrid
models is its generality. It can be used on any system of differential equations
and does not require separation into the distinct O(ǫ) and O(1) scales or periodic
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coefficients. It can also be used to test if it is physically reasonable to represent
fine scale effects on a coarse grid with a local operator.

This work was initially presented in Dorobantu and Engquist [8], Andersson,
Engquist, Ledfelt and Runborg [1], and based on ideas from Brewster and Beylkin,
[5]. See also [13] for analysis in the one-dimensional case. Moreover, there are
similarities with numerical homogenization based on techniques from algebraic
multigrid, [15,16] and from the use of special purpose finite element methods, [14].

2. Direct discretization. Let us first consider the simple approach of using
a coarse grid even if not all scales of the original differential equation are clearly
resolved. For solutions which are highly oscillatory relative to the grid discretiza-
tion, numerical techniques without phase velocity errors are needed. In [10], [11]
particle scheme or method of characteristics approximations of hyperbolic partial
differential equations are analyzed. For a restricted class of schemes it is possible
to prove convergence, or weak convergence, in Lp of the numerical approximation
to the analytic solution as h → 0 essentially independent of ǫ. Convergence es-

sentially independent of ǫ means that a set of ratios of h/ǫ with arbitrary small
Lebesque measure must be excluded to avoid resonance, [10], [11].

One simple but typical example for which a rigorous theory is possible is the
method of characteristics for the Carleman equations,

∂u

∂t
+

∂u

∂x
+ u2 − v2 = 0

∂v

∂t
−

∂v

∂x
+ v2 − u2 = 0 (6a)

u(x, 0) = a(x, x/ǫ)

v(x, 0) = b(x, x/ǫ)

a(x, y), b(x, y), 1-periodic in y

u(xj , tn) ∼ un
j

xj = j∆x, tn = n∆t, ∆t = ∆x,

un+1

j = un
j−1 +∆t((vnj−1)

2 − (un
j−1)

2),

vn+1

j = vnj+1 +∆t((un
j+1)

2 − (vnj+1)
2), (6b)

u0
j = a(xj , xj/ǫ)

v0j = b(xj , xj/ǫ)

The homogenization theory of Tartar [17] applies to the differential equations (6a)
and is also used in the convergence proof. The local truncation errors are large
for h > ǫ and a cancelation of the errors must be established. The theorem gives
strong convergence in L∞ essentially independent of ǫ as h → 0.

The wavelet based type of homogenization was derived in order to handle
wider classes of differential equations.
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3. Wavelet based homogenization. Given the full discrete solution operator
on a fine grid we wish to find an operator of lower dimension that extracts only
the coarse scales of the solution. Let Vj and Wj refer to the usual scaling and
wavelet spaces, see e.g. [7]. Then, for a solution in Vj+1 = Vj ⊕ Wj , the coarse
scale is represented by Vj , and we are thus interested in the operator that yields
the solution’s projection onto Vj .

Consider the equation

Lj+1U = F, U, F ∈ Vj+1, (7)

originating from a discretization of a differential equation, where U , in the Haar
case, is identified as a piecewise constant approximation. We introduce the or-
thogonal transformation

Wj : Vj+1 → Wj × Vj , WjU ≡

[

Uh

Ul

]

Uh ∈ Wj , j Ul ∈ Vj , (8)

and note that the linear operator WjLj+1W
T
j can be decomposed into four oper-

ators Lj+1 = Aj + Bj + Cj + Lj , acting between the subspaces Vj and Wj , and
such that (7) becomes

[

Aj Bj

Cj Lj

] [

Uh

Ul

]

=

[

Fh

Fl

]

, Uh, Fh ∈ Wj , Ul, Fl ∈ Vj . (9)

when we applyWj from the left. Block Gaussian elimination now gives an equation
for Ul, the coarse part of the solution,

L̄jUl = F̄j , L̄j = Lj − CjA
−1

j Rj , F̄j = Fl − CjA
−1

j Fh. (10)

Hence, our new “coarse grid operator” L̄j is the Schur complement of WjLj+1W
T
j .

We also get the homogenized right hand side, F̄j .
For higher dimensions, a standard tensor product extension of the multireso-

lution analysis allows us to use essentially the same derivation as above to obtain
coarse grid operators.

We should note that in general L̄j will not be sparse even if Lj+1 is. For the
method to be efficient we must be able to approximate L̄j with a sparse matrix

L̃j . This is possible in many important cases. The fact that L̄j is approximately

sparse is fundamental. The finite dimensional operator L̃j is our numerically
homogenized operator.

The homogenization procedure can be applied recursively on L̄j to get L̄j−1

and so on. This can easily be verified when Lj+1 is symmetric positive definite.
Furthermore, the condition number will not deteriorate. From [2], Chapter 3 with
Lj+1 = LT

j+1 and

c1‖U‖2 ≤ 〈Lj+1U,U〉 ≤ c2‖U‖2, ∀U ∈ R
2
j+1

(11)
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we have the same constants c1, c2,

c1‖V ‖2 ≤ 〈LjV, V 〉 ≤ c2‖V ‖2, ∀V ∈ R
2
j

, (12)

where L̄j is defined by (10) and 〈u, v〉 =
∑

k ūkvk. For the first step in the process
an improvement in the condition number can often be estimated from

〈L̄jV, V 〉 = 〈(Lj −BT
j Λ

−1

j Bj)V, V 〉 = 〈LjV, V 〉 − 〈A−1

j BjV,BjV 〉

≤ 〈LjV, V 〉. (13)

When the operator Lj+1 is derived from a finite difference, finite element or finite
volume discretization, it is sparse and of a certain structure. In one dimension it
might for instance be tridiagonal. However, as remarked above, the matrix L̄j is
not sparse since A−1

j is usually dense. Computing all components of L̄j would be

inefficient. Fortunately, L̄j will be diagonal dominant in many important cases.
For instance, in [8] we proved that for a class of elliptic problems the matrix
elements of L̄j decay exponentially away from the diagonal. We are then able to
find a sparse matrix that is a close approximation of L̄j . In general the sparse
approximation property follows from the analysis of Calderon-Zygmund operators
in Beylkin, Coifman and Rokhlin, [4].

One simple way approximate L̄j is to set all components outside a prescribed
bandwidth equal to zero. Let us define truncation of M to bandwidth ν as

trunc(M,ν)ij =

{

Mij , if 2|i− j| ≤ ν − 1
0, otherwise.

(14)

There are natural extensions to multi dimensions. This procedure was introduced
in [4] and used in [8]. We propose that L̄j be projected onto banded form in a
more effective manner. Let {vj}

ν
j=1 be a set of linearly independent vectors in

R
2
j

. We define the band projection, band(M,ν), of a matrix M as the projection
of M onto the subspace of matrices with bandwidth ν such that

Mx = band(M,ν)x, ∀x ∈ span{v1, v2, . . . , vν}. (15)

In our setting M will usually operate on vectors representing smooth functions,
for instance solutions to elliptic equations, and a natural choice for the vj vectors
in one dimension are thus the first ν polynomials,

vj = {1j−1, 2j−1, . . . , N j−1}T . (16)

For the case ν = 1 we should remark that we get the standard “masslumping” of
a matrix.

This technique is similar to the probing technique used by Chan et al, [6]. In
that case the vectors vj are sums of unit vectors. Other probing techniques have
been suggested by Axelsson, Pohlman and Wittum, see e.g. Chapter 8 in [2]. In
some cases the band projection technique only gives improvements for small values
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