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Computation with Wavelets in Higher Dimensions

Jan-Olov Strömberg1

Abstract.

In dimension d, a lattice grid of size N has Nd points. The representa-
tion of a function by, for instance, splines or the so-called non-standard
wavelets with error ǫ would require O(ǫ−ad) lattice point values (resp.
wavelet coefficients), for some positive a depending on the spline order
(resp. the properties of the wavelet). Unless d is very small, we easily
will get a data set that is larger than a computer in practice can handle,
even for very moderate choices of N or ǫ.

I will discuss how to organize the wavelets so that functions can be rep-
resented with O((log(1/ǫ))a(d−1)ǫ−a) coefficients. Using wavelet packets,
the number of coefficients may be further reduced.
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1 Introduction

Although we live in a three-dimensional space it is often useful to consider spaces
with much higher dimension. For example, describing the positions in a system
with P particles we may use a 3P dimensional space. Although we in theory can
work very high dimesnsion, it is very limited what we can do in practical numerical
computations. The are properties of the geometry in very high dimension that may
be surprising.. For example, consider a geometric object as simple as a cube in
R

d. A cube with side length as small as a finger nail may still contain a sets as
large as the earth on a three-dimensional subspaces, provided d is large enough.

The fundamental issue of analysis in high dimensions involves the approxi-
mation to prescribed accuracy of transformations of high dimensional data. Ap-
proximating functions with a grid of size N in dimension d means that we have
the Nd grid points with data. With the limited amount of data we can handle in
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practice, this imposes strong restrictions both on N and on d. The current state
of approximation theory is essentially useless in dimensions larger than 10.

One may think that this problem would be solved with faster and faster
computers. But there are limitations how fast computers can be.. Let us illustrate
this by the following example of ”ultimate massive parallel super computer”: (I
have taken physical constants from a standard physics handbook.)

Let the number or parallel processors be as many as the estimate of total
number of protons in universe, let clock cycle speed on each processor defined by
the time to travel the distance of a nuclear radius at the speed of light, and finally
let running time be as long as estimated live time of universe. Totally this will
be about 10120 cycles. This correspond to a the number of grid points Nd with
N = 256 and with d ≈ 50, For a systems or P particles (d = 3P ), this means
that P can not be larger than 17. Let f function be in the unit cube in R

3P

with first order derivatives bounded by 1. Then f may approximated in this grid
with accuracy 1/10 (when P = 17). In reality, it seems to be beyond our reach to
handle P > 3 or maybe even P > 2 particles.

The theory for numerical computation in high dimensions is in a premature
state, but the approach of Jones; Davis and Semmmes([5]), is the first indication
that a powerful theory for high dimensions exists.

In the rest of this paper, I will discuss some ideas which in practice are useful
only in rather low dimensions (≤ 10).

In recent years wavelet methods have appeared as useful tools for reducing
complexity in numerical computations. By expanding functions in wavelet co-
efficients one has been able to compress the data to be handled. For example,
consider Singular Integral Operator on functions on R bounded on L2 and with
kernel K(x, y). Assume the kernel satisfies the standard decay properties away
from the diagonal:

|∂αx ∂
β
yK(x, y)| ≤ C|x− y|−d−α−β (1)

for α, β| ≤ m. Representing the operator with a N × N matrix, we need to use
essentially all N2 matrix elements, even if the elements far away from the diagonal
are very small - the total contribution of all the matrix elements on distance ≈ 2j

from diagonal will not decay by j. In the famous paper by Beylkin, Coifman, and
Rokhlin([2], the authors has shown how the Singular Integral Operators can be
expressed in a wavelet basis with a matrix, where the elements decays much faster
away from the diagonal. In fact, if the accuracy level is ǫ one may use a diagonal
band limited matrix with bandwidth proportional to ǫ

1

m . Here m is the order of
the wavelets. Thus one need only to use NO(ǫ−

1

m ) non-zero matrix elements.

In dimension d > 1 one has often used the so called non-standard tensor
extension , using tensor product combinations of the one-dimensional wavelets
and and its scale functions, with all factors of the same scale. Let M = Nd, the
number of grid points in which the functions arthe represented. Instead of using
all M2 elements to represent the Singular Integral Operator, one need only use a
matrix with non-zero element limited to a band around the diagonal (x = y), For

accuracy level ǫ one need to use MO(ǫ−
d

m ) non-zero matrix elements. When d is

large andm small the number of terms O(ǫ−
d

m ) increases very fast as ǫ gets smaller.
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Even in as low dimension as d = 3,4 or 5 we feel the restriction on how small ǫ may
be. We shall see than under certain circumstances, with good control of the mixed
variation of f , the exponential dependence of d in O((1ǫ)

d

m ) may be replaced with

the somewhat better, but still exponential expression; O(log 1
{ǫ

1

m )d−1ǫ−
1

m ). The

error in the approximation, in sup norm, is of magnitude O(log 1
{ǫ

1

m )d−1ǫ). More

exactly, if the smoothness condition on f is stated with the expression α1 + · +
αd <= m replaced by max αi ≤ m. Here α = (α1, .., αd) is the multi-index for
the derivative Dαf . This is a smoothness condition that is especially suitable to
use for functions which are tensor products as f1(x1) · · · fd(xd), or for functions
that behaves almost like such tensor products.

The ideas ,which are presented here ,comes from some very trivial observations
I did trying to work with wavelets in dimension d > 2: First, as said above, we

very easily get a terrible amount of data.

Second, the full tensor extension of the wavelets to higher dimensions seems to
give better compression of the data than the, now classical, non-standard tensor
wavelet extension.

This is certainly not a new observation. There have, for example, been arguments
for using the full tensor wavelet expansion on R2 in image compression. I have
also seen a mixed tensor wavelet representation for Operators on functions on R

d:
The non-standard wavelet tensor basis on R

d was extended to a basis on R
d×R

d

by a full tensor extension of the d dimensional wavelet basis.
I have, so far, only made rather trivial estimates using ideas with full wavelet

tensor extension. My Ph.D student Øyvind Bjørk̊as has done some more detailed
studies in his Cand. Scient. Thesis. ([3]).The implementations would be longer
future projects Some of the ideas presented in here were communicated to R.R.
Coifman, who in a joint paper with D.L. Donoho ([4] has used them in the setting of
stochastic variables and their distribution functions. A tensor wavelets expansion
in 3-dimension has been used by Averbuch, Israeli and Vozovoi ([1]) to implement
a fast PDE solver.

We will, in this presentation, only consider the case m = 1. In this case the
wavelet functions are the classical Haar functions. However, it is not difficult to
generalize the corresponding statements to general m > 0. One may also, without
much difficulty, generalize to the situation with fractional smoothness conditions
(as multi-Lipschitz conditions).

2 Preliminaries

Let χ be characteristic function of interval [0, 1], and the Haar function

H(x) =
−1 when 0 ≤ x ≤ 1

2
1 when 1

2 < x ≤ 1

The family of Haar functions in dimension d = 1 is defined by

Hkj(x) = 2j/2H(2jx− k)
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We also define the corresponding set of so called scale functions by

χkj(x) = 2jχ(2jx− k)

With this notation the set of Haar functions Hkj , 0 ≤ k < 2j , j ≥ 0. together with
function χ00 is an orthonormal basis on the unit interval [0, 1] in R In this paper
I prefer to work the the L∞ normalized Haar functions hj,k = 2−j/2Hjk and the

L1 normalized dual functions h̃jk = 2j/2Hjk. We also write ψ = 2−j/2χjk and

ψ̃jk = 2j/2χjk The expansion of a function f on [0, 1] with the Haar wavelets then
may be written

f =< f, ψ̃ > ψ +
∑

jk

< f, h̃jk > hjk.

Clearly, | < f, ψ̃ > | ≤ ‖|f ||∞. Also, if there is a constant A > 0 such that

|f(x)− f(y)| ≤ A|x− y| (2)

then

| < f, h̃jk > | ≤
1

4
A2−j . (3)

Note that the factor 2−j is equal to the length of the supporting interval of h̃jk

3 The non-standard tensor wavelet extension

I non-standard tensor extension, all the 2d combinations of the wavelets hjk and
the scale functionswhere for each scale j are used exept for the tensor product
where all factors are scale functions. The latter tensor product is unly used on
coarses scale. Estimating the wavelets coefficients we have the the worst cases
tensor products with only on wavelet factor and thus only one directions where we
have the estimate decreasing with j as above . The number of functions needed
for accuracy level ǫ is (1ǫ)d. We will later compare this with the full wavelet tensor
expansion (See figure 1)

4 Mixed variation

With good control of the mixed variation ,we will get better estimates for the
wavelet coefficients in the full tensor wavelet expansion. To define what we mean
with mixed variation, we need some definition. Let R be a rectangle in R

d of
dimension s, 0 ≤ s ≤ d, which is parallel to the axes. Let Corner(R) be the set of
corners of R. For p = (x1, . . . , xd) ∈ Corner(R) we associate the number δp equal
to +1 or −1. We do this by setting p = 1 at the point p for which x1 + · + xd is
maximal and by changing the sign of the value of p as me move along each of the
edges (of dimension 1) of R. The difference operator △R is defined bye

△Rf =
∑

p∈Corner(R)

δpf(p)

(In the case s = 0 R is a point and p = R and △Rf = f(p).)
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Definition 1 A function f on the unit cube Id in R
d is of bonded mixed variation

of order m = 1 and with constant A if

|△Rf | ≤ A(|R|s) (4)

for each rectangles R parallel to the axes and of dimension s, 0 ≤ s ≤ d,. We use
notation |R|s for the s dimensional volume of R. (In the case s = 0 R is a point
and |R|s = 1.)

Let M(x1, . . . , xm) = x1 + · · ·+ xm be a mapping R
md to R

d

Definition 2 The function f onf Id has bounded mixed variation higher order m
with constant A if for the function F (x) = f(M(x) we have

|△RF | ≤ A|R|s (5)

for each sub-rectangle R in R
md of of dimension s, 0 ≤ s ≤ md contained in Id

As a direct consequence of the classical mean value theorem, the condition 4 holds
for any function f satisfying the mixed derivative condition ∂αf/∂xα satisfying

|∂αf/∂xα| ≤ A (6)

for all multi index α = (α1, . . . , αd) with

max αi ≤ m (7)

5 The full tensor wavelet expansion

In the full tensor wavelet expansion we use tensor products

ηJ = ηj1,k1
⊗ · · · ⊗ ηjd,kd

,

where ηR = η ∈ {h, χ} with 0 ≤< ki < 2ji . Here the scale index in the i-direction
ji ≥ 0 when η = h and ji = 0 when η = χ. R indicates the supporting rectangle
of the this wavelet function. For the full tensor wavelet extension of the one
dimensional wavelet we get the estimate of the of the coefficients related to the
volume of the supporting rectangle. In case of the Haar wavelet extension we have,
more precisely,

| < f, η̃R > | ≤ (1/4)sA|R|d (8)

where s is the number of h factors in the tensor product ηR. This is much better
estimate than the estimate for the non-standard extension of the wavlets where a
coefficients in the worst case are related to the side length of the supporting cube.

6 The Multi Scale Space Grid

In dimension one we have a sequence of nested spaces Vj which we may think
of as points along a line. In the Haar case Vj is the space of functions partially
constant on intervals of length 2−j . In dimension d ≥ 1 we will consider the spaces

Documenta Mathematica · Extra Volume ICM 1998 · III · 523–532



528 Jan-Olov Strömberg

Figure 1: (left:) Approximation with full tensor expansion, (right:) Approximation
with non-standard tensor expansion

Vj = Vj1,...jd = Vj1 ⊗ · · · ⊗ Vjd as points j = (j1, . . . , jd) in a d dimensional integer
grid. Let Pj be the projection to Vj . We evaluate a function f at the space point
j as the function Pjf . As above may define the mixed different △R for any axes
parallel rectangle R on this grid (with dimension s, 0 ≤ s ≤ d). One can show
that △R is a projection. In this space grid we identify rectangles R as the space
corresponding to projection △R Now, we may make simple algebraic rules of how
any rectangle R and its lower dimensional boundaries are related. We may also
add together collections of rectangles Ri and express the sum in terms of their
union and its boundaries. We introduce the variable J = j1 + · · · + jd and turn
out multi-scale grid with the J-axis (not drawn) pointing vertically upwards:

Let Q be the whole Multi Scale Space Grid as a cube in R
d The space cor-

responding to the top point of Q is Vn,...,n, while the bottom point is the space
V0,...,0 In the full tensor expansion of the wavelets the top point is decomposed
as a direct sum of all spaces corresponding to all the small s-dimensional cubes,
0 ≤ s ≤ d, lying on those s - dimensional boundary cubes of Q, which contains the
bottom point. These spaces are indicated on the left part of figure 1 as all filled
squares,all bold line segment and finally the bottom point.

7 Approximation with full tensor wavelets expansions

The main observation is, that the a priori estimate of the wavelet coefficient for a
the subspace in this decomposition is essentially proportional to

2−J
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or the J - coordinate of the position of this subspace. On the other hand the
number of bases element in the subspace is proportional to

2J

This means that it strategic to approximate a functions in the top space by using
the projection with all subspaces with J coordinate under some level, such as
J ≤ n. We get

Theorem 1 Let ǫ > 0. Then there is a set S with O((log 1
ǫ )

d−1ǫ−1) Haar full
tensor wavelets functions such that any function f be a function in the unit cube
in R

d satisfying condition 7 may be approximated by

∑

h∈S

< f, h̃ > h

with accuracy in sup norm O((log 1
ǫ )

d−1ǫ) (in L2 norm O((log 1
ǫ )

fracd−12ǫ)). The
value of f at a single point may be computed in O((log 1

ǫ )
d steps.

8 A sparse set of rectangles

The approximation in the theorem above is done with subspaces with space grid
coordinate J ≤ N . All those subspaces are in the span of the subspaces Vj with
the coordinate J = n. This means in the Haar case we that the mean fR0

may be
computed from the mean values fR, R dyadic rectangle (with some accuracy).

Theorem 2 Let f be a function on the unit cube in R
d satisfying condition 7.

Let R0 be a dyadic sub rectangle with volume |R0|d ≤ 2−n. and let Rk be the set
of dyadic rectangle R in the unit cube with volume |R|d = 2−k and let fR the mean
value of f over R Then, with errorr O(nd−12−n) we have

fR0
≈

d−1
∑

k=0

(−1)k
(

d− 1
k

)

∑

R ∈ Rn−k

R ⊃ R0

fR

9 A sparse subset of grid points

We would not have much practical use of the full tensor approximation with with
the sparse set of O((logN)d−1N) wavelet coefficients if, in order to compute them,
we need all Nd samples points of the function. However, it is not very difficult to
show that that these wavelet coefficients may be calculated from a sparse set of
sample values of the function.

Let GN be the set of grid points in the unit cube in Rd where the grid size
is 1/N Let SN be the subset of GN consisting of all corners of dyadic rectangles
with volumes ≥ 1/N . The number of points in SN is O((logN)d−1N).
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Theorem 3 Let f be a function satisfying 5. Given the value of f at SN one may
also compute the the sparse set of (O((logN)d−1N) coefficients < f, h̃jk> with an

error bounded by O((logN)d−1 1
/N) (with h̃jk L1- normalized) This can be done

in O((logN)d−1N) steps.

There is also a fast algorithm to recover the values of functions at any grid point
in GN

Theorem 4 Let f be a function satisfying 5. Given the value of f at all points
in SN one may compute the values of f at any point p ∈ GN with error bounded
by O((logN)d−1 1

N ). The complexity of such a computation is O((logN)d−1).

We do not have room here to include any proofs of this.

10 Tensor wavelets on Singular Integral Operators

Wavelets was used with great success, by Beylkin, Coifman and Rokhlin with great
success to reduce complexity for the computation of Singular Integral Operators
. The operator T is assumed to be bounded on L2(Rd) and its kernel K(x, y)
satisfies the usual smoothness conditions 1 away away from the diagonal. Let us
consider the problem as to compute the inner product

< f, Tg >=< f ⊗ g,K > .

We may think of K represented by a matrix (2d dimensional tensor) with N2d

elements, N = 2n. Beylkin, Coifman and Rokhlin represent this inner product by
use the non-standard tensor bases extension of the wavelets (of orderm) onR

2d. In
this bases the Kernel is represented by a matrix, which may by approximated with
accuracy level ǫ to a matrix with finite diagonal bandwidth containing NdO(ǫ

d

m )
non-zero elements. We see that estimate for the number of non-zero elements in
this matrix is not very good when d is large. Using a hybrid of non-standard and
full tensor basis extension it is possible to improve their result:

Theorem 5 There is a hybrid tensor wavelet extension basis on the unit cube I2d

in R
2d, in which the kernel K is represented with accuracy level ǫ by a matrix with

NdO(1/ǫ) non-zero elements. The coefficients of K in this basis may be computed
in O(N2d) steps. The wavelet coefficients of f ⊗g in this basis are simple products
of coefficients taken from on set of coefficients for f and one set set of coefficients
for g, Each of these two sets is order O(Nd) and may be computed in O(Nd) steps.

We will not give the proof here.

11 The Haar packets

A C∞ function may be approximated much better with wavelet packets than by
wavelets. We will for simplicity only consider wavelet packets of the Haar functions
for approximating functions f satisfying

dk|f

dxk
(x)| ≤ 1 for all k ≥ 0 (9)
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Then we have

Theorem 6 Let ǫ > 0 then there is as set of

Mǫ = O

(

exp

(

c

√

log(
1

ǫ
)

))

Haar wavelet packet functions {Wk}
Mǫ

k=1 on the interval [0, 1], such that any func-
tion f as above is approximated with error less than ǫ by

f ≈

Mǫ
∑

k=1

< f,Wk > Wk.

The smoothness condition 9 on the function f is very strong. However, one may
get some rather similar estimates with much weaker condition on f . The wavelet
packe tree starting from the top consists of nodes, which are connected by branches
of low-pass and high-pass filters. At the bottom of the tree, each space is of
dimensions one. Let j1, j2, . . . , js be a sequence of positve integers which indicates
the levels of the branshes, where we have passed through the high-pass filter to
reach a node. Then we get, by iteration of the mean value theorem, the a priori
estimate

2−(j1+···+js)2−2s.

(We assume have normalized the filters so that the Low-pass filter does not increase
the norm.) Let 2−n = ǫ. To get the Theorem above we mainly hove to solve the
following problem in combinatorics: Estimate the number of finite sequences of
integers (j1, j2, · · · js) with

0 < j1 < j2 < · · · < js ≤ n

such that
j1 + j2 + · · ·+ js ≤ n.

Approximating with the Haar packets on the unit cube i Rd leads to a similar
combinatorics problem with sets where up to d indices jk may assume the same
integer values. One will get the estimate

M = O

(

exp

(

c

√

d log(
1

ǫ
)

))

The problem with the approximating Singular Integral Operator kernels with Haar
packets will also lead to a combinatoric problem. As in the compression of the
kernel K by Haar wavelets above one my use Whitney decomposition also in this
case. We have not analized this in detailed yet. However, one would probably get
something like, that the kernel K, may be approximated at accuracy level ǫ using
a set of

NdO

(

exp

(

c

√

d log(
1

ǫ
)

))

,

Haar Packet functions.
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