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The Minimum-Entropy Algorithm and Related

Methods for Calibrating Asset-Priing Models

Marco Avellaneda

Abstract. We describe an algorithm for calibrating asset-pricing mod-
els based on minimizing the relative entropy between probabilities. The
algorithm determines a probability measure on path-space which mini-
mizes the Kullback information with respect to a given prior and satisfies
a finite number of moment constraints which correspond to fitting prices.
It admits, generically, a unique, stable, solution that depends smoothly
on the input prices. We study the sensitivities of the model values of
contingent claims to variations in the input prices. We find that hedge
ratios can be interpreted as “risk-neutral” regression coefficients of the
contingent claim’s payoff on the set of payoffs of the input instruments.
We also show that the minimum-entropy algorithm is a special case of a
general class of algorithms for calibrating asset-pricing models based on
stochastic control and convex optimization. As an illustration, we use
minimum-entropy to construct a smooth curve of instantaneous forward
rates from US LIBOR data and to study the corresponding sensitivities
of fixed-income securities to variations in input prices.

1 Introduction

Despite its practical importance, model calibration has received little attention
in Mathematical Finance. Calibrating an asset-pricing model means specifying a
probability distribution for the underlying state-variables in such a way that the
model reproduces, by taking discounted expectations, the current market prices
of a set of reference securities. The reference securities, or inputs, characterize
the market under consideration. The most common models of this kind are yield-
curve models, used for managing portfolios of fixed-income securities.1 Other, less
ubiquitous, examples are the so-called local volatility models used for managing
option portfolios.2

1In this case, it is customary to vary the swap rates or bond yields corresponding to standard
maturities by one basis point and to compute the corresponding dollar change in the portfolio
value. These sensitivities are the so-called “DV01”s (dollar value of one basis point) used to
quantify interest-rate exposure.

2Also known as “smile models”.
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In many cases of interest, the calibration problem is equivalent to a classical
problem in statistics: the determination of a probability distribution from a finite
set of moments. The “moments” correspond to the discounted expectations of
the cash-flows of the reference instruments. It is well-known, however, that such
problems are ill-posed: there can be many solutions or, sometimes, no solution at
all. In financial-economic terms, this signifies that prices may not be consistent
with any risk-neutral probability (and hence that an arbitrage exists) or, more
likely, that there exist several risk-neutral probabilities consistent with the cur-
rent prices due to market incompleteness. Selecting a probability is tantamount
to “completing the market”, in the sense that Arrow-Debreu prices are assigned
to all future states. Thus, any calibration procedure involves making subjective
choices. Taking into account available econometric information and stylized facts
about the market reduces (partially) the ill-posedness of the model selection prob-
lem. Intuitively, a calibrated model which is “near” our prior beliefs and market
knowledge is more desirable than one that is “far away” from the prior. 3

In this paper, we study an algorithm which consists in choosing the risk-
neutral probability that minimizes the relative entropy, or Kullback-Leibler entropy
with respect to a subjective prior. This approach was pioneered in statistics by
Jaynes (1996) and others; see McLaughlin (1984), Cover and Thomas (1991).
An appealing feature of the method is that it takes into account the a priori
(econometric) information available. This information is modeled by the prior
probability, which can be viewed as a “first step” towards adjusting the model to
econometric data but not necessarily to current prices. The entropy minimization
algorithm provides a way of reconciling the prior with the information contained
in current market prices.

Buchen and Kelly(1996) and Gulko(1995, 1996) used entropy minimization
for calibrating one-period asset pricing models; see also Jackwerth and Rubinstein
(1996) and Platen and Rebolledo (1996). In a previous article, Avellaneda, Fried-
man, Holmes and Samperi (1997) applied the minimum relative entropy method
to the calibration of volatility surfaces in the context of commodity option pric-
ing. In the present paper, following Buchen and Kelly and Avellaneda et al, we
use Lagrange multipliers to model the price constraints. However, we go one step
further in the analysis and study also the sensitivities of the model with respect
to the input prices. For this purpose, we use the matrix of second derivatives with
respect to the Lagrange multipliers computed at the critical point.

The paper is organized as follows: In Section 2, we consider a one-period
model. Under mild no-degeneracy assumptions, we show that if there exists a
probability with finite relative entropy, then the calibration problem has a unique
solution. We establish also that the price-sensitivities of contingent claims depend
smoothly on the input prices. The calibrated model has a remarkable property: the
deltas (price-sensitivities) and the betas (regression coefficients of the cash-flow of a
contingent claim on the space generated by the cash-flows of the input instruments)

3For example, practitioners tend to favor models in which interest rates are mean-reverting
and oscillate about some asymptotic distribution. Processes that have unit roots and can reach
very large values with large probabilities are discarded and appear to fail to pass simple statistical
tests.
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are, in fact, equal. More precisely, let Π denote the model price of a contingent
claim which has a discounted payoff h. Let us denote by Gi, i = 1, 2, ..., N the
discounted cash-flows of the reference instruments, and by C1, ... CN their prices.
Then, we have

∂Π

∂Ci

=
N
∑

j=1

Kij Cov{Gj , h}

where

K = H−1 , Hij = Cov{Gi, Gj}

and Cov represents the covariance operator under the risk-neutral (calibrated)
measure. It is well-known that the right-hand side of the first equation corresponds
to the value of the coefficient βi in the linear regression model

h = α +

N
∑

i=1

βi Gi + ǫ

where ǫ has mean zero and is uncorrelated with the cash-flows {Gj} under the
risk-neutral measure. This property of the minimum-entropy algorithm suggests
that it has econometric relevance. 4

Sections 3 and 4 are devoted to inter-temporal asset-pricing models, where
we formulate the algorithm in terms of partial differential equations. The al-
gorithm involves solving a Hamilton-Jacobi-Bellman partial differential equation
of “quasi-linear” type5 and minimizing the value of the solution at one point in
terms of a finite set of Lagrange multipliers. The gradient of the objective function
corresponds to a coupled system of linearized equations.

In Section 5, we show that the algorithm can be formulated as a constrained
stochastic control problem. This suggests that there are many generalizations of
the “pure” entropy algorithm that can be made by changing the form of the cost
function. Specifically, minimizing relative entropy is equivalent to minimizing the
L2 norm of the risk-premia mi(t), i.e.

EP







Tmax
∫

0

ν
∑

i=1

mi(t)
2 dt







where Tmax is the time-horizon and ν is the number of factors. In practice, it is
computationally advantageous to consider functionals of the form

EP











Tmax
∫

0

e

−

t
∫

0

r(s) ds ν
∑

i=1

mi(t)
2 dt











,

4Calibration via relative entropy minimization is, in a certain sense, the non-parametric coun-
terpart of the maximum-likelihood estimation method; cf Jaynes (1996).

5This means that the nonlinearity appears in the gradient terms.
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because this reduces the dimensionality of the computation, while preserving at
the same time the essential features of the algorithm. 6

In Section 6, we use the algorithm to construct smooth forward rate curves
from US LIBOR data (FRAs and swap rates). We pay particular attention to
the sensitivities with respect to input swap rates, an issue that remains somewhat
controversial among practitioners. Hedges tend to be model-dependent and there-
fore a certain amount of risk is taken when choosing different forward rate curves.
The issue is whether smooth curves, which give rise to “non-local” hedges7, are
preferable to discontinuous forward rate curves, such as the ones obtained by the
bootstrapping method. The latter method tends to give rise to “local” hedges
in which the sensitivities are essentially limited to the nearest maturities. It is
our hope that the minimum-entropy method can compete favorably and perhaps
even improve on some of the other methods used to generate smooth forward-rate
curves, in the sense that the resulting sensitivities are acceptable from a practical
viewpoint. These issues will be investigated in a separate paper.

2 Relative entropy minimization with moment constraints

We consider the problem of determining a probability density function f(X) for a
real-valued random variable X satisfying

∫

Gi(X) f(X) dX = Ci , 1 ≤ i ≤ N , (1)

where G1(X), ...GN (X) are given functions and C1, ...CN are given numbers. 8

Financially, X represents a state-variable describing the economy; Gi(X) and Ci

represent, respectively, the cash-flows and prices of a set of traded securities.
Buchen and Kelly proposed, in the context of option pricing, to choose the

density f(X) that minimizes the functional

H(f |f0) =

∫

f log

(

f

f0

)

dX , (2)

where f0(X) is a prior probability density function. The expression H(f |f0) is
known as the Kullback-Leibler entropy or relative entropy of f with respect to f0.
It represents the “information distance” between f(X) and f0(X). 9

It is well-known (Cover and Thomas) that if there exists a probability density
function f satisfying the constraints (1) and such thatH(f |f0) is finite, the solution
of the constrained entropy minimization problem exists and can be found by the
method of Lagrange multipliers. Namely, we solve

6The advantage of passing from minimum-entropy to a more general control formulation was
also shown in Avellaneda et. al., where the technique was used to “regularize” the relative
entropy of two mutually singular diffusions.

7By this we mean hedges that imply correlations between bonds with distant maturities.
8Henceforth, we say that a probability satisfying the constraints (1) is calibrated. It is implic-

itly assumed that the functions Gi(X) are such that all integrals considered are well-defined.
9The relative entropy is not symmetric with respect to the variables f and f0, so it is not a

distance in the mathematical sense of the word. Nevertheless, it measures the “deviation” of f
from f0 (Cover and Thomas).
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inf
λi

sup
f

[

−H(f |f0) +
∑

i

λi

(∫

Gi f dX − Ci

)

]

. (3)

Let us first fix λ and seek the density that maximizes this “augmented Lagrangian”.
An elementary calculation of the first-order optimality conditions (Cover and
Thomas) shows that for each λ, the optimal probability density function is given
by

fλ(X) =
1

Z(λ)
f0(X) e

∑

i

λi Gi(X)

(4)

where Z(λ) is the normalization factor

Z(λ) =

∫

f0 e

∑

i

λi Gi

dX.

Substituting expression (3a) into (2), it follows that the optimization over the
Lagrange multipliers is equivalent to minimizing the function

log (Z(λ)) −
∑

i

λi Ci , (5)

over all values of λ = (λ1, ... λN ). The first-order conditions for a minimum are

1

Z(λ)

∂Z(λ)

∂λi

= Ci .

This shows, in view of (4), that if λ is a critical point of (5) then fλ is calibrated.
The stability of the solution, i.e. the continuous dependence of fλ on input

prices, follows from convex duality. To see this, notice first that

(log (Z(λ)))λi, λj
=

Zλi λj

Z
−

Zλi
Zλj

Z2

= Covfλ [Gi(X), Gj(X) ] ≡ Hij .

Since covariance matrices are non-negative definite, log(Z(λ)) − λ · C is convex.
It also follows from this characterization that log(Z(λ)) is strictly convex if the N
payoff functions are linearly independent. 10

Let λ∗ be the value of the Lagrange multipliers that minimizes the objective
function log [Z(λ)] − λC. To assess the sensitivity of the calibrated probability

10As a rule, redundancies within the class of input securities should be avoided when fitting
prices. They lead to instabilities, since the input prices must satisfy linear relation exactly (i.e.
with infinite precision) in order to avoid mispricing these instruments with the model.
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fλ∗ to input prices, consider a new contingent claim with payoff h(X) (the “target
payoff”). Let Π(λ) = Efλ (h(X)). Then, we have

∂Π(λ∗)

∂λj

=
∂

∂λj

∫

f0 e
λ ·G h dX

∫

f0 eλ ·G dX

= Efλ(h(X)Gj(X)) − Efλ(h(X)) Efλ(Gj(X))

= Covfλ∗
( h(X), Gj(X)) .

Hence,

∂Π(λ∗)

∂Ci

=
∑

j

(

∂Π(λ)

∂λj

)

λ = λ∗

∂λ∗

j

∂Ci

=
∑

j

(

∂Π(λ∗)

∂λj

)

λ = λ∗

(

H−1
)

ij

=
∑

j

Covfλ∗
( h(X), Gj(X))

(

H−1
)

ij
. (6)

Here, in deriving the second equation, we made use of the well-known duality
relations (Rockafellar (1970) )

∂Ci

∂λ∗

j

= Hij ,
∂λ∗

j

∂Ci

=
(

H−1
)

ij
.

It follows from equations (4) and (6) that Π = Π (C1, ...CN ) is infinitely dif-
ferentiable as a function of C1, ... CN . In particular the sensitivities ∂Π

∂Ci
vary

continuously with the input prices.
Formula (6) admits a simple interpretation. Consider the linear regression

model

h(X) = α +

N
∑

i=1

βi Gi(X) + ǫ ,

where we assume that ǫ is a random variable with mean zero uncorrelated with
Gi(X) i = 1, .. N under the the risk-neutral measure. The coefficients βi which
minimize the variance of the residual h − α −

∑

i

βi Gi are given by

βi =
∑

j

(

H−1
)

ij
Covfλ∗

(h(X), Gj(X)) =
∂Π

∂Ci

, 1 ≤ i ≤ N .

We summarize the results of this section in

Proposition 1. (a) The minimum-relative-entropy method reduces the
class of candidate solutions of the moment problem to an N -parameter exponential
family fλ(X) given by (4).
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Assume that the input payoffs G1(X), ... GN (X) are linearly independent.
Then:

(b) If there exists a calibrated density f(X) such that H(f |f0) < ∞, the
solution of the constrained entropy-minimization problem is unique.

(c) The sensitivities of contingent-claim prices to variations in input prices
are equal to the linear regression coefficients of the target payoff on the input payoffs
under the calibrated measure.

3 Inter-temporal models

We consider a classical continuous-time economy, represented by a state-vector
X(t) = (X1(t), ..., Xν(t)) which follows a diffusion process under the prior prob-
ability measure:

dXi(t) =

ν
∑

j=1

σ
(0)
ij dZj(t) + µ

(0)
i dt 1 ≤ i ≤ ν . (7)

Here (Z1, ... Zν) are independent Brownian motions and σ
(0)
ij and µ(0) are functions

of X and t.

We assume that there are N traded securities, with prices C1, ... CN . Our goal
is to find a risk-neutral probability measure P consistent with these prices based
on the principle of minimum relative entropy with respect to the prior (denoted
by P0).

The price constraints can be written in the form on N equations

Ci = EP







ni
∑

k=1

e
−

Tik
∫

r(s) ds
Gik(X(Tik))







, 1 ≤ i ≤ N , (8)

where {Tik}
ni

k=1 are the cash-flow dates of the ith security and {Gik(X)}ni

j=1 rep-
resent the corresponding cash-flows. We assume that the latter are bounded, con-
tinuous functions of X. The process r(s) = r(X(s), s) represents the short-term
(continuously compounded) interest rate. Notice that in (8) the expectation value
is taken with respect to a calibrated (risk-neutral) measure P which, in general,
is not equal to P0.

We follow the approach of the previous section. First, we consider the
Kullback-Leibler relative entropy of P with respect to P0 in the diffusion setting.
For this purpose, it is convenient to define a finite time horizon 0 < t < Tmax,
( where Tmax ≥ max

ik
Tik). The relative entropy of P with respect to P0 is given

by

H(P |P0) = EP

{

log

(

dP

dP0

)

Tmax

}

,
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where
(

dP
dP0

)

Tmax

is the Radon-Nykodym derivative of P with respect to P0 over

the time-horizon Tmax . 11

Next, we consider the augmented Lagrangian associated with the constraints
(8) (compare with (3))

−EP

{

log

(

dP

dP0

)

Tmax

}

+
N
∑

i=1

λi









∑

j

EP















e

−

Tij
∫

0

r(s)ds

Gij(X(Tij))















− Ci









. (9)

The solution of the inf-sup problem is identical to the one outlined in the
previous section. Accordingly, we define the normalization factor (cf. (4))

Z(λ) = EP0















exp









∑

ij

λi e

−

Tij
∫

0

r(s)ds

Gij(X(Tij))























. (10)

Further, by mimicking equation (4), we obtain a parametric family of measures
{Pλ}λ defined by their Radon-Nykodym derivatives with respect P0:

dPλ

dP0
=

1

Z(λ)
· exp









∑

ij

λi e

−

Tij
∫

0

r(s)ds

Gij(X(Tij))









. (11)

Elementary calculus of variations shows that for any fixed vector λ =
(λ1, λ2, ...λN ), the measure Pλ realizes the supremum of the Lagrangian (9) over
all probability measures. As expected, the supremum is given by

log[Z(λ) ] −

N
∑

i=1

λi Ci .

If λ is a critical point, we have

Ci =
Zλi

Z
= EPλ















ni
∑

j=1

e

−

Tij
∫

0

r(s)ds

Gij(X(Tij))















1 ≤ i ≤ N .

Therefore, the corresponding measure Pλ is calibrated to the input prices.

11In particular, the relative entropy is infinite if P is not absolutely continuous with respect
to P0.
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Define the discounted cash-flows

Γi =

ni
∑

j=1

e

−

Tij
∫

0

r(s)ds

Gij(X(Tij)) , 1 ≤ i ≤ N .

As in the previous section, we can interpret the Hessian of log(Z(λ)) − λC as a
covariance matrix, viz.,

∂2

∂λi ∂λj

(log(Z(λ))− λ ) = CovP [Γi, Γj ] .

Similarly, if h(XT ) is the payoff of a security maturing at time T ≤ Tmax, we
have

∂

∂λj

EP











e

−

T
∫

0

rs ds

h(XT )











= CovP






Γj , e

−

T
∫

0

rs ds

h(XT )






.

Like in the previous section, we conclude that

Proposition 2. (a) Relative entropy minimization is equivalent assuming
that the probability measure belongs to an N -parameter exponential family given
by (11).

(b) If the input payoffs are linearly independent, there is at most one calibrated
measure that minimizes relative entropy.

(c) The model prices and sensitivities of contingent claims depend continu-
ously on input prices.

(d) The sensitivities with respect to input prices can be interpreted as the linear
regression coefficients of the target discounted cash-flows on the space generated by
the discounted cash-flows of the input instruments.

4 PDE formulation

Let L(0) represent the infinitesimal generator of the semi-group corresponding to
the prior P0 i.e.,12

L(0) φ =
1

2

∑

ij

aij φXi Xj
+
∑

i

µ
(0)
i φXi

(12)

where

aij =

ν
∑

p=1

σ
(0)
ip σ

(0)
jp .

12We use the notation φXi
= ∂φ

∂Xi
for partial derivatives.
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It follows from (10) and standard diffusion theory that the normalization
factor is given by

Z(λ) = U(X(0), 1, 0 ;λ) , (13)

where U(X, Y, t ;λ) is the solution of the Cauchy problem

Ut + L(0) U − r Y UY = 0 t 6= Tij (14)

with the boundary conditions at cash-flow dates t = Tij

U(X, Y, Tij − 0 ;λ) = U(X, Y, Tij + 0 ;λ) · exp

(

∑

i

λi Gij(X)Y

)

. (15)

To derive (14), we introduced the auxiliary state-variable Yt = e

−

t
∫

0

r(s) ds

and the
ν+1-dimensional process (Xt, Yt) which is a Markov process with an infinitesimal
generator given by the left-hand side of (14).

From (14) we can derive partial differential equations satisfied by log(Z(λ))
and its gradient with respect to λ. Accordingly, we obtain

log(Z(λ)) = W (X(0), 1, 0 ;λ) ,
Zλi

Z
= V (i)(X(0), 1, 0 ;λ)

where W satisfies the PDE

Wt + L(0)W +
1

2

N
∑

ij=1

aij WXi
WXj

− r Y WY =
∑

ij

λi Gij(X)Y δ(t−Tij) . (16)

The PDE for V (l) is obtained by differentiating (16) with respect to λl, viz.

V
(l)
t + L(0)V (l) +

N
∑

ij=1

aij WXi
V

(l)
Xj

− r Y V
(l)
Y =

ni
∑

j=i

Gij(X)Y δ(t− Tij) . (17)

From this last equation, we deduce the following characterization of the cali-
brated measure.

Proposition 3. The calibrated measure which minimizes the relative entropy
corresponds to the diffusion process

dXi =

ν
∑

j=1

σ
(0)
ij dZj +



 µ
(0)
i +

ν
∑

j=1

σ
(0)
ij mj



 dt
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with

mi =

N
∑

i=1

σ
(0)
ij WXj

, (18)

where W is computed with λ at the critical point.

5 Modified entropies and the optimal control formulation.

It is useful to view the entropy minimization algorithm as a stochastic optimal
control problem with constraints. We recall the following result (Platen and Re-
bolledo): Proposition 4. The class of diffusion measures P which have finite

relative entropy with respect to P0 consists of Ito processes

dXi(t) =

ν
∑

j=1

σ
(0)
ij dZj(t) + µi dt

with

µi = µ
(0)
i +

∑

j

σ
(0)
ij mj ,

where, mj 1 ≤ j ≤ ν are square-integrable. Moreover, the relative entropy
of P with respect to P0 (viewed as measures in path-space with the time horizon
0 < t < Tmax = max

ik
Tik) is given by

H(P |P0) =
1

2
EP







Tmax
∫

0

ν
∑

j=1

mj(t)
2 dt







. (19)

Thus, minimizing the KL entropy is equivalent to selecting the risk-neutral mea-
sure in such a way that the vector of risk-premia has the smallest mean-square
norm (cf. Platen and Rebolledo (1996), Samperi(1997)).

Using (19) we rewrite the augmented Lagrangian (9) as

−EP





Tmax
∫

0

ν
∑

j=1

m2
j (t) dt



 +
N
∑

i=1

λi E
P









ni
∑

j=1

e

−

Tij
∫

0

r(s)ds

Gij(X(Tij))









(20)

The advantage of the stochastic control formulation is that it can be gener-
alized considerably. In fact, we can replace the function

∑

j

m2
j (t) by more gen-

eral functions of the form η(t, m1(t), m2(t), ...mν(t)), which are strictly convex in
mi(t).

The class of functionals of the form
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Hmod(P |P0) =
1

2
E











Tmax
∫

0

e

−

t
∫

0

r(s) ds

η(m(t)) dt











, (21)

where η(m) is a deterministic and strictly convex is of particular importance. In
this case, Hmod(P |P0) can be seen as a “running cost” with respect to the choice
of parameters which penalizes deviations from the prior.

Notice that the definition of entropy in (19) is independent of the interest
rate. One important advantage of discounting the local entropy by the interest
rate is dimension reduction: we can dispense of the auxiliary state variable Y . In
fact, the HJB equation corresponding to the modified entropy (21) is

Wt + L(0)W + η∗
(

σ(0) ·WX

)

− rW =

∑

ij

λi Gij(X) δ(t− Tij) , (22)

where η∗ is the Legendre transform of η (Rockafellar). The function W plays the
role of log(Z(λ) in the “pure entropy” framework. Note, however, that in the
special case η(t, m) = 1

2

∑

j

m2
j we have η = η∗. The corresponding Bellman

equation is

Wt + L(0)W +
1

2

∑

aij WXi
WXj

− rW =

∑

ij

λi Gij(X) δ(t− Tij) , (23)

In the rest of this section we assume this particular form for the modified entropy.
Following the steps outlined in §2, the algorithm consists of minimizing

W (X(0), 0 ; λ1, ... λN )−

M
∑

i=0

λi Ci ,

over λ. This is done with a gradient-based optimization algorithm such as L-BFGS
(Zhu, Boyd, Lu and Nocedal (1994)). The gradient is computed by solving the N

linearized equations:

V
(l)
t + L(0) V (l) +

∑

ij

aij WXi
V

(l)
Xj

− r V (l) =

nl
∑

j=0

Glj(X) δ(t− Tlj) (24)

Notice that the first-order conditions for the minimum in λ are
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V (l) (X(0), 0 ; λ1, ... λN ) − λi Cl = 0 , 1 ≤ l ≤ N .

Formally, these equations imply that the corresponding probability measure is
calibrated, since

V (l) (X(0), 0 ; λ1, ... λN ) = EP







nl
∑

k=1

e
−

Tlk
∫

r(s) ds
Glk(X(Tlk)







.

Here P is the diffusion process with drift µ(0) + WX ·σ(0) , whereW is calculated at
the optimal values of the Lagrange multipliers. We refer to the diffusion measure
implied by solving equation (23) as Pλ, a slight abuse of notation. The optimal
control formulation has the same mathematical structure (i.e. convexity λ) as the
“pure” entropy problem. To study the dependence on the inputs, we consider the
Hessian of W (λ). Differentiating equations (24) with respect to λ, we find that
the Hessian matrix

H(lm) =
∂2W

∂λl∂λm

satisfies

H
(lm)
t + LH(lm) +

∑

ij

aij WXi
H

(lm)
Xj

+
∑

ij

aij V
(l)
Xi

V
(m)
Xj

− r H(lm) = 0 . (25)

In particular, we have

H(lm)(X(0), 0; λ∗) = EP











Tmax
∫

0

e

−

t
∫

0

r(s) ds M
∑

i j =1

aij V
(l)
Xi

V
(m)
Xj

dt











. (26)

Unlike the case of “pure” entropy, the Hessian does not admit a simple inter-
pretation in terms of linear regression coefficients. Nevertheless, we can express
the difference between the Hessian and the covariance matrix of the discounted
input cash-flows as an expectation. More precisely, we have

CovPλ

(

Γ(l), Γ(m)
)

= EPλ











Tmax
∫

0

e

−2

t
∫

0

r(s) ds ν
∑

ij=1

aij V
(l)
Xi

V
(m)
Xj

dt











, (27)

which differs from (26) in the fact that the stochastic discount factor is squared.
Therefore, we conclude that
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H(lm) = CovPλ

(

Γ(l), Γ(m)
)

+

EPλ











Tmax
∫

0






e

−

t
∫

0

r(s) ds

− (e
−2

t
∫

0

r(s) ds







ν
∑

ij=1

aij V
(l)
Xi

V
(m)
Xj

dt











. (28)

In particular, this shows that if the instruments are not linearly dependent with
P0-probability 1, the Hessian matrix is positive definite.13 14 Barring trivial
redundancies, the argument establishes that there is at most one λ that minimizes
the objective function.

Finally, we analyze the sensitivities of model prices to input prices.
Given a contingent claim with a payoff h(XT ) due date T, (T < Tmax), let

Π and Π(l) denote, respectively, the model price and the sensitivity of this price
with respect to λl.

The functions Π and Π(l) are readily computed by solving the system of
equations

Πt + L(0) Π +
∑

ij

aij WXi
ΠXj

− rΠ = δ(t− T )h(X) , (29)

and

Π
(l)
t + L(0) Π(l) +

∑

ij

aij WXi
Π

(l)
Xj

+
∑

ij

aij ΠXi
V

(l)
Xj

− rΠ(l) = 0 . (30)

It follows from this that the Π(l) = Π(l)(X(0), 0) satisfies

Π(l) = EPλ











Tmax
∫

0

e

−

t
∫

0

r(s) ds ν
∑

ij=1

aij V
(l)
Xi

ΠXj
dt











= CovPλ






e

−

T
∫

0

r(s) ds

h(XT ), Γ(l)






+

13This property also follows directly from equation (25). The strict positivity of the Hessian
holds for any strictly convex modified entropy function η(m, t), provided that the inputs are not
linearly dependent.

14For example, the following set of inputs is linearly dependent, or redundant: (i) a one-year
swap resetting quarterly, and (ii) four 3-month forward-rate agreements starting at the swap
reset dates. This constitutes a redundancy because the swap can be replicated exactly with the
FRAs.
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EPλ











Tmax
∫

0






e

−

t
∫

0

r(s) ds

− e

−2

t
∫

0

r(s) ds







ν
∑

ij=1

aij V
(l)
Xi

ΠXj
dt











. (31)

As in §2, we can compute the sensitivities of Π with respect to the input
prices C1, ...., CN using the inverse Hessian and the sensitivities with respect to
λ. Accordingly, we have

∂Π

∂Cm

=

N
∑

l=1

∂Π

∂λl

∂λl

∂Cm

=

N
∑

l=1

Π(l)
(

H−1
)

lm
(32)

where H−1 is the inverse of H.

6 Forward-rate modeling and hedging portfolios of interest rate
swaps

To illustrate the minimum-entropy algorithm, we calibrate a one-factor interest-
rate model to the prices of standard instruments in the US LIBOR market.

We consider a set of input instruments consisting of forward-rate agreements
(FRAs) and swaps with standard maturities. Using the algorithm, we compute
a probability measure on the process driving the short-term rate which has the
property that all the input instruments are priced correctly by the model by dis-
counting cash-flows. Since we do not use options to calibrate the model, we view
the algorithm as a way of generating a curve of instantaneous forward rates from
the discrete dataset. In other words, we are primarily concerned with the modeling
of “straight” debt instruments and not the study of the volatility of the forward
rate curve. The curve is generated by the formula

f(T ) = −
∂

∂T
log P (T )

= −
∂

∂T
log EP











e

−

T
∫

0

rt dt











.

where f(T ) and P (T ) represent the instantaneous forward rate and the discount
factor (present value of a dollar) associated with the maturity date T . The in-
stantaneous forward-rate curve allows us to price arbitrary fixed-income securities
without optionality. Hedge-ratios for different instruments are derived from the
sensitivities of the curve to input prices.
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We consider a prior distribution for the short-term interest rate

drt

rt
= σ dZt + µ

(0)
t dt , (33)

where σ is constant and µ
(0)
t is given. For simplicity, we take µ

(0)
t ≡ 0 under

the prior, which, as we shall see, corresponds essentially to a prior belief of a flat
forward-rate curve. 15

Given the considerations of the previous sections, the family of candidate
probability measures for the short rates has the form (33) where µ(0) is replaced
by an unknown drift µt.

The modified entropy functional (21) with η = 1
2m

2 is

Hmod(P |P0) =
1

2σ2
E











Tmax
∫

0

e

−

t
∫

0

rs ds
(

µt − µ
(0)
t

)2

dt











=
1

2σ2
E











Tmax
∫

0

e

−

t
∫

0

rs ds

µ2
t dt











. (34)

We calibrated this model to a data-set extracted from the US LIBOR market
in late November 1997, consisting of FRAs and swap rates; cf. Table 1. The
futures data corresponds to a series of 3-month Eurodollar contracts from January
1998 to December 2002. Forward-rates were computed from futures prices using an
empirical convexity adjustment, which is displayed on the left of the futures price.
Swap rates were computed from Treasury bond yields adding the corresponding
credit spread, also displayed on the right of the yield. 16 Accordingly, the 3-month
forward rate four months from today is computed as follows:

forward rate = futures-implied rate − conv. adjustment

= (100− 94.20) − 0.12

= 5.68 %

The 6-year swap rate was taken to be

swap rate = Treasury yield + spread

= 5.8150 + 0.3975

= 6.2125 %

15Of course, we could have chosen any other drift for prior probability on short rates– this
constitutes the “subjective” portion of the method. The significance of different priors will be
clarified below.

16We shall not be concerned here about how convexity adjustments were generated or about
the computation of the spread between swaps and Treasurys.
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Table 1: Data for US LIBOR Market

ED futures / FRAs Bonds / Swaps
04m 94.20 0.0012 06y 5.8150 0.3975
10m 94.14 0.0023 07y 5.8236 0.4150
13m 94.08 0.0030 10y 5.8470 0.4475
16m 93.98 0.0044 12y 5.8683 0.4700
19m 93.98 0.0092 15y 5.9002 0.4800
22m 93.94 0.0131 20y 5.9535 0.4750
25m 93.91 0.0176 30y 6.0600 0.3750
28m 93.85 0.0234
31m 93.87 0.0232
34m 93.85 0.0371
37m 93.83 0.0447
40m 93.77 0.0522
43m 93.79 0.0637
46m 93.77 0.0730
49m 93.75 0.0830

In implementing the calibration algorithm for these instruments, we assumed
that the discounted cash-flows of the FRAs per dollar notional are given by

Γf = e

−

T
∫

0

rt dt

− e

−

T+0.25
∫

0

rt dt
(

1 +
FRA× 0.25

100

)

where FRA is the 3-month forward rate (expressed in percentages) corresponding
to the maturity T . The discounted cash-flows of a semi-annual vanilla interest
swap with N cash-flow dates is

Γs = 1 −

N
∑

n=1

e

−

0.5n
∫

0

rt dt
(

SWAP × 0.5

100

)

− e

−

0.5N
∫

0

rt dt

,

where SWAP is the swap rate and where we assumed that the floating leg of the
swap is valued at par.

In both cases (FRAs, swaps) we assumed that, under the risk-neutral proba-
bility, we have

EP { Γi } = 0 i = f, s .

These equations represent the constraints for calibration in this context. We have
therefore 22 constraints: 15 for the FRAs and 7 for the swaps. The entropy-mini-

mization was implemented by solving the partial differential equations (23), (24),
(25) using a finite-difference scheme (trinomial lattice) and using L-BFGS to find
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the minimum of the augmented Lagrangian. We assumed a discretization of 12
periods per year.

Figure 1 shows the corresponding forward rate curve which derives from the
data. We assumed a value of σ = .10 in this calculation. We noticed that the
sensitivity of the curve to σ is negligible for σ ≤ 10%. The hedging properties
of the model can be quantified by analyzing the sensitivities of the prices of par
bonds with N years to maturity, for N = 1, 2, 3 ... 30. These results are exhibited
in the bar graphs diplayed hereafter. Each chart considers a par swap with a
give maturity. The bars on the graph represent the sensitivity of the price of the
instrument with respect to the prices of the input securities. Notice, in particular
that the maturities that correspond to an input security consist of a single column.
Intermediate maturities (not represented in the input instruments) give rise to
multiple bars that decay as we move away from the corresponding maturity.

Finally, we point out that the volatility parameter σ in this model has an
interesting interpretation. Heuristically speaking, the construction of the forward
rate curve can be viewed as a problem in interpolation from a discrete set of
data. Since the problem is ill-posed, various regularizations have been proposed
at the level of forward-curve building, without having recourse to an underlying
probability model. These regularizations typically penalize oscillations in the curve
by means of penalization functions of the form

Tmax
∫

0

η(f(t), f ′(t), f ′′(t), t) dt

that are typically minimized subject to the constraints and to a choice of function
space for f(t).

It is easy to see that, in the limit σ ≪ 1, the minimum-entropy calibration
algorithm is associated with a special choice of the above functional, namely,

Tmax
∫

0

e

−

t
∫

0

f(s) ds (
f ′(t)

f(t)
− µ(0)

)2

dt . (35)

This can be seen from the results of Section 5 and by letting σ formally tend to
zero in the entropy functional

EP







Tmax
∫

0

m2(t) dt







=
1

σ2
EP







Tmax
∫

0

(

µ(t) − µ(0)(t)
)2

dt







.

This result corresponds mathematically to the relation between the “viscous” so-
lution of the penalized problem associated with (35) and the stochastic control
problem discussed in Section 5. Form a numerical point of view, we can there-
fore view the minimum-entropy algorithm as an “articifial viscosity” method for
minimizing the functional (35) subject to the price constraints.
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