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The Tree of Life and Other Affine Buildings

Andreas Dress, Werner Terhalle

In this note, we discuss some mathematics which has proven to be of use in the
analysis of molecular evolution – and, actually, was discovered in this context
(cf. [D]).

According to evolutionary theory, the spectrum of present-day species (or bio-
molecules) arose from their common ancestors according to a well-defined scheme
of bi-(or multi-)furcation steps. The task of phylogenetic analysis as defined by
E. Haeckel is to unravel that scheme by comparing systematically all data available
regarding present and extinct species. This task has been simplified enormously in
recent years through the availability of molecular sequence data, first used for that
purpose by W. Fitch and E. Margoliash in their landmark paper from 1967 dealing
with Cytochrome C sequences [FM]. The basic idea in that field is that species (or
molecules) which appear to be closely related should have diverged more recently
than species which appear to be less closely related.

A standard formalization is to measure relatedness by a metric defined on
the set of species (or molecules) in question. The task then is to construct an
(R-)tree which represents the metric (and hence the bifurcation scheme) as closely
as possible. Below, we discuss necessary and sufficient conditions for the existence
of such a tree that represents the metric exactly, as well as some constructions
which lead to that tree if those conditions are fulfilled, and to more or also less
treelike structures if not. Remarkably, the theory we developed in this context
allowed also to view affine buildings (which in the rank 1 case are R-trees) from a
new perspective.

Here are some basic definitions and results:

Definition 1: Given a non-empty set E, an integer m ≥ 2, and a map

v : Em → {−∞} ∪ R,

the pair (E, v) is called a valuated matroid of rank m if the following prop-
erties hold:

(VM0) for every e ∈ E, there exist some e2, . . . , em ∈ E such that

v(e, e2, . . . , em) 6= −∞,

(VM1) v is totally symmetric,

(VM2) for e1, . . . , em ∈ E with #{e1, . . . , em} < m, one has

v(e1, . . . , em) = −∞,
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(VM3) for all e1, . . . , em, f1, . . . , fm ∈ E, one has

v(e1, . . . , em) + v(f1, . . . , fm)

≤ max
1≤i≤m

{v(f1, e1, . . . , ei−1, ei+1, . . . , em) + v(ei, f2, . . . , fm)}.

Condition (VM3) is also called the valuated exchange property.

If {b1, . . . , bm} ⊆ E satisfies v(b1, . . . , bm) 6= −∞, then {b1, . . . , bm} is called a
base of the valuated matroid (E, v).

Note that (VM3) implies the bases exchange property of ordinary matroids for the
set B(E,v) of bases of (E, v).

Here is a “generic” example:
Let K be a field with a non-archimedean valuation w : K → {−∞} ∪ R, that is a
map satisfying the conditions

w(x) = ∞ ⇐⇒ x = 0,

w(x · y) = w(x) + w(y),

and
w(x+ y) ≤ max{w(x), w(y)}

for all x, y ∈ K; then – in view of the Grassmann-Plücker identity

det(e1, . . . , em) · det(f1, . . . , fm)

=

m
∑

i=1

det(e1, . . . , ei−1, f1, ei+1, . . . , em) · det(ei, f2, . . . , fm)

(e1, . . . , em, f1, . . . , fm ∈ Km) – the pair (Km \ {0}, w ◦ det) is a valuated matroid
of rank m.

Definition 2: Given a valuated matroid (E, v) of rank m, we put

T(E,v) := {p : E → R
∣

∣ ∀e ∈ E : p(e) = max
e2,...,em∈E

{v(e, e2, . . . , em)−

m
∑

i=2

p(ei)}}.

T(E,v) is also called the tight span of (E, v) or its T -construction.

The following proposition details this set of maps:

Proposition 1: Let H := {(t1, . . . , tm) ∈ R
m

∣

∣

m
∑

i=1

ti = 0}. Then, for every base

{b1, . . . , bm} ∈ B(E,v) of a valuated matroid (E, v) of rank m, the map Φb1,...,bm :
H → R

E which maps each (t1, . . . , tm) ∈ H to the map

E → R : e 7→ max
1≤i≤m

{v(e, b1, . . . , bi−1, bi+1, . . . , bm) + ti} −
m−1
m

v(b1, . . . , bm)

is an injective map into T(E,v).
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Furthermore, one has

T(E,v) =
⋃

{b1,...,bm}∈B(E,v)

Φb1,...,bm(H).

Thus, T(E,v) is a union of (images of) affine hyperplanes of dimension m−1, called
the apartments in T(E,v).

These apartments intersect as follows:

Proposition 2:

1) Given two bases B,B′ ⊆ E of a valuated matroid (E, v) of rank m, with suit-
able orderings of their elements as B = {b1, . . . , bm} and B′ = {b′1, . . . , b

′
m},

resp., one has

Φb1,...,bm(H) ∩ Φb′1,...,b
′

m
(H) =

m
⋂

i=0

Φb1,...,bi,b
′

i+1,...,b
′

m
(H).

2) Given a base {b1, . . . , bm} ∈ B(E,v), an element b0 ∈ E \ {b1, . . . , bm}, and a
subset I ⊆ {1, . . . ,m} so that {b0, b1, . . . , bi−1, bi+1, . . . , bm} is a base if and
only if i ∈ I, then one has

Φ−1(Φb1,...,bm(H) ∩ Φb0,b1,...,bi−1,bi+1,...,bm(H))

= {(t1, . . . , tm) ∈ H
∣

∣ ti + v(b0, b1, . . . , bi−1, bi+1, . . . , bm) =
max
j∈I

{tj + v(b0, b1, . . . , bj−1, bj+1, . . . , bm)}}

for every i ∈ I.

We return to our generic example mentioned above, that is, to the valuated matroid
(E := Km \ {0}, v = w ◦ det), with K a field with a non-archimedean valuation
w : K→→{−∞}∪Z. By ΓZ, we denote the group of all affine maps from H to itself
consisting of a translation by an integer vector and a permutation of coordinates,
that is,

ΓZ := {γ : H → H
∣

∣(t1, . . . , tm) 7→ (tσ(1) + a1, . . . , tσ(m) + am) for some

(a1, . . . , am) ∈ H ∩ Z
m and some σ ∈ Sm}.

Every subset

C = {Φb1,...,bm ◦ γ(t1, . . . , tm)
∣

∣ (t1, . . . , tm) ∈ H with

t1 ≤ t2 ≤ . . . ≤ tm ≤ t1 + 1}

with {b1, . . . , bm} ∈ B(E,v) some base and γ ∈ ΓZ is called a chamber of T(E,v);
in case {b1, . . . , bm} is the canonical base of the vector space Km and γ equals
idH , the resulting chamber C0 is called the fundamental chamber, while the
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apartment A0 = Φb1,...,bm(H) for the canonical base is called the fundamental

apartment.
If a map p in T(E,v) satisfies p(e) ≡ i

m
mod 1 for some i ∈ {0, . . . ,m − 1} and

every e ∈ E, then p is called a vertex of T(E,v) (of type i).
It is easy to see that the general linear group GLm(K) acts transitively on the set
of vertices of T(E,v) via its group action defined on T(E,v) by

GLm(K)× T(E,v) → T(E,v) :

(X, p) 7→ (E → R : e 7→ p(X−1e) + 1
m
w ◦ det(X))

(X ∈ GLm(K), p ∈ T(E,v), e ∈ E).
This action induces a transitive action of the group SLm(K) on the set of apart-
ments as well as on the set of chambers of T(E,v); since the stabilizers of these
actions give rise to a BN -pair in the sense of building theory, one has

Theorem 1: For the valuated matroid (E = Km \{0}, v = w ◦det) with K a field
with a non-archimedean valuation w : K→→{−∞} ∪ Z, the T -construction T(E,v)

is a geometrical realization of the affine building defined for the group GLm(K).

Now, we come back to the general case of an arbitrary valuated matroid (E, v) of
rank m.

Lemma 1: For every p ∈ T(E,v), the map

dp : E × E → R

(e, f) 7→ e
sup{v(e,f,e3,...,em)−p(e)−p(f)−

m∑

i=3

p(ei)|e3,...,em∈E}

(with e−∞ := 0) is a (pseudo-ultra-)metric on E.
In addition, for any two maps p and q in T(E,v), the metrics dp and dq are topo-
logically equivalent.

Definition 3: A valuated matroid (E, v) of rank m is called complete if, for
some (or equivalently: for every) p ∈ T(E,v), the metric space (E, dp) is complete.

Up to “projective equivalence” and identifying “parallel elements” (we refer to
[DT1] for details), one has

Theorem 2: Every valuated matroid has an (essentially unique) completion.

(In fact, one only has to complete (E, dp) to a metric space (Ê, d̂) and then to

define v̂ : Êm → {−∞} ∪ R as the continuous extension of v.)

Concerning the T -construction, one has the following result:

Theorem 3: Let (Ê, v̂) be a completion of the valuated matroid (E, v) with Ê ⊇ E.

Then the restriction map from T(Ê,v̂) ⊆ R
Ê to R

E, mapping every p ∈ T(Ê,v̂) to

p
∣

∣

E
, is a bijection into T(E,v).

From now on, we assume for simplicity (E, v) to be a complete valuated matroid
of rank m.

Definition 4: An end of T(E,v) is a map ε from T(E,v) to R satisfying
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(E1) for every base {b1, . . . , bm}, there exist some r ∈ {1, . . . ,m}, some affine
map γ : H → H with a coordinate permutation as linear component, and
some c ∈ R such that, for every (t1, . . . , tm) ∈ H, the equation

ε ◦ Φb1,...,bm ◦ γ(t1, . . . , tm) = max
1≤i≤r

ti + c

holds;

(E2) there exist some base {b1, . . . , bm} and some c ∈ R such that, for every
(t1, . . . , tm) ∈ H,

ε ◦ Φb1,...,bm(t1, . . . , tm) = t1 + c.

The set of all ends of T(E,v) will be denoted by ET(E,v)
.

With this definition, one has

Proposition 3: For every e ∈ E, the map

εe : T(E,v) → R

p 7→ p(e)

is an end of T(E,v).
And, for every ε ∈ ET(E,v)

, there exist some e ∈ E and some c ∈ R such that
ε = εe + c.

And one has

Theorem 4: If one defines a map w from the set Em
T(E,v)

of m-tupels of ends of

(E, v) to {−∞} ∪ R by

w(ε1, . . . , εm) := inf
p∈T(E,v)

m
∑

i=1

εi(p)

for ε1, . . . , εm ∈ ET(E,v)
, then one has

w(εe1 , . . . , εem) = v(e1, . . . , em)

for all e1, . . . , em ∈ E. That is, (ET(E,v)
, w) is a complete valuated matroid of rank

m which – up to “parallel elements” – is isomorphic to (E, v).

We now restrict ourselves to the case that the rank m equals 2. Here, T(E,v) is a
path-infinite R-tree, that is an R-tree being the union of isometric images of the
real line – namely the apartments from above: for any two p, q ∈ T(E,v), there
exists some base {b1, b2} such that p, q ∈ Φb1,b2(H), say p = Φb1,b2((s,−s)) and
q = Φb1,b2((t,−t)) for some s, t ∈ R; then putting d(p, q) := |s − t| leads to a
(well-defined) metric on T(E,v) having the desired property.
And the ends of T(E,v) in our sense correspond to its ends in the way ends are
defined for R-trees, that is, they correspond to (equivalence classes of) isometric
embeddings of real halflines into T(E,v).
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An example which we found particularly intriguing is the following one: Let E
denote the set of subsets of R which are bounded from above, and for e, f ∈ E,
let v(e, f) := sup(e△f) be the supremum of their symmetric difference. Then it is
easy to see that (E, v) is a valuated matroid of rank 2. The corresponding R-tree
has the particular property that omitting any point leads to the same “number”
of connected components, and this number equals #P(R), the cardinality of the
powerset of R.

Now, it is well-known that, for the metric d of an R-tree T , the so-called four-point
condition

d(x, y) + d(z, w) ≤ max

{

d(x, z) + d(y, w),
d(x,w) + d(y, z)

}

holds for all x, y, z, w ∈ T . But this four-point condition is literally the exchange
property (VM3) in the rank 2 case! Of course, one has d(x, x) = 0 instead of
d(x, x) = −∞ (cf. (VM2)).

This observation led us to the definition of matroidal trees:

Definition 5: A matroidal tree or, for short, matree, is a pair (X,u) con-
sisting of a non-empty set X together with a map u : X×X → {−∞}∪R satisfying
the following three conditions:

(MT0) for every x ∈ X, there exists some y ∈ X with u(x, y) 6= −∞,

(MT1) u is symmetric,

(MT2) for all x1, x2, y1, y2 ∈ X, one has

u(x1, x2) + u(y1, y2) ≤ max

{

u(y1, x2) + u(x1, y2),
u(y1, x1) + u(x2, y2)

}

(and no restriction on the diagonal corresponding to (VM2)).

Note that, for every matree (X,u), the restriction u
∣

∣

{x∈X|u(x,x)=0}2 is a

(pseudo)metric.

Now, let’s have a look at the set

H(X,u) :={f : X → {−∞} ∪ R
∣

∣ f(x) + u(y, z) ≤

max

{

f(y) + u(x, z),
f(z) + u(x, y)

}

for all x, y, z ∈ X, f 6≡ −∞},

the set of all one-point extensions of a matree (X,u) (containing at least all maps

ha : X → {−∞} ∪ R :

x 7→ u(a, x)

for a ∈ X).
If one wants to make a new matree (H(X,u), w) from this set, and one wants the
map w : H(X,u)×H(X,u) → {−∞}∪R to satisfy w(hx, hy) = u(x, y) for all x, y ∈ X
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(in order to have an “homomorphism” X → H(X,u) : x 7→ hx), and, slightly more
general, w(f, hx) = f(x) for every f ∈ H(X,u) and every x ∈ X, then w necessarily
has to satify

w(f, g) + u(x, y) ≤ max

{

f(x) + g(y),
f(y) + g(x)

}

for all f, g ∈ H(X,u) and all x, y ∈ X.
And, indeed, one has

Theorem 5: If, for a matree (X,u) and for H(X,u) as above, one defines

w := w(X,u) : H(X,u) ×H(X,u) → {−∞} ∪ R

(f, g) 7→ inf
x,y∈X

{

max

{

f(x) + g(y),
f(y) + g(x)

}

− u(x, y)

}

(with the convention (−∞)− (−∞) := +∞), then (H(X,u), w) is again a matree.
In addition, for every f ∈ H(X,u) and every x ∈ X, one has

w(f, hx) = f(x)

– in particular, one has w(hx, hy) = u(x, y) for all x, y ∈ X.

The matree (H(X,u), w) can be seen as a “hull” of (X,u), as one has

Theorem 6: If, for F ∈ H(H(X,u),w(X,u)), one defines

ϕ(F ) : X → {−∞} ∪ R

x 7→ F (hx),

and, for f ∈ H(X,u),

ψ(f) : H(X,u) → {−∞} ∪ R

g 7→ w(X,u)(f, g),

then ϕ is a bijective map from H(H(X,u),w(X,u)) to H(X,u), and ψ is a bijective map in
the other direction; both maps are inverse to each other; and for all f, g ∈ H(X,u),
one has

w(H(X,u),w(X,u))(ψ(f), ψ(g)) = w(f, g).

Thus, (H(H(X,u),w(X,u)), w(H(X,u),w(X,u))) and (H(X,u), w(X,u)) are canonically iso-
morphic matrees.

In addition, one has

Theorem 7: H(X,u) is the smallest set of maps X → {−∞}∪R that a) contains

{hx
∣

∣ x ∈ X} and b) is closed under addition of constants, under suprema, and
under limites.
More precisely: for every f ∈ H(X,u), one of the following three possibilities hold:

(i) there exist some x ∈ X and some c ∈ R such that f = hx + c,
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(ii) there exist some x, y ∈ X and some b, c ∈ R such that

f = max{hx + d, hy + c},

(iii) there exist sequences (xn)n∈N in X and (cn)n∈N in R such that

f = lim
n→∞

(hxn
+ cn).

Essential for the study of matrees is the following

Fundamental Lemma: Let (X,u) be a matree; for x, y ∈ X with u(x, y) 6= −∞,
put

sx,y :=
1

2
(u(y, y)− u(x, y)) ∈ {−∞} ∪ R,

sx,y :=
1

2
(u(x, y)− u(x, x)) ∈ R ∪ {+∞},

and I(x, y) := [sx,y, s
x,y] ∩ R; for t ∈ R, define ht ∈ H(X,u) by

ht := max{hx + t, hy − t} −
1

2
xy.

Then the map I(x, y) → H(X,u) : t 7→ ht is a surjective isometry onto the set

{f ∈ H(X,u)

∣

∣ w(hx, hy) = w(f, hx) + w(f, hy) and w(f, f) = 0}

– with isometry meaning that w(hs, ht) = |s− t| holds for all s, t ∈ I(x, y).

Corollary: The set
{f ∈ H(X,u)

∣

∣ w(f, f) = 0}

is connected; hence – since the restriction of w to it is a metric satisfying the
four-point condition – it is an R-tree relative to the restriction of w (cf. [D]).

We want to close this section by a short discussion on the relationship between
H(E,v) and T(E,v) for a valuated matroid (E, v) of rank 2.
For this, let

T ′
(E,v) := {p : E → R

∣

∣ p(e) = sup
f∈E

{v(e, f)− p(f)} for every e ∈ E}

– note the “sup” instead of “max” as for T(E,v); and define the canonical metric
d on T ′

(E,v) by d(p, q) := sup
e∈E

|p(e) − q(e)|. It is easy to see that T ′
(E,v) is the

completion of T(E,v) relative to this metric.
One should remark that T ′

(E,v) is the set of all minimal elements in the polytope

P(E,v) := {p : E → R | p(e) + p(f) ≥ v(e, f) for all e, f ∈ E}

relative to the order p ≤ q : ⇐⇒ p(e) ≤ q(e) for every e ∈ E.
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Coming back to the comparison of H(E,v) with T ′
(E,v), the following holds: The

maps p ∈ T ′
(E,v) are exactly those maps in H(E,v) satisfying

w(E,v)(p, p) = 0,

and one has
d = w(X,u)

∣

∣

{p∈H(E,v)|w(E,v)(p,p)=0}2 .

Slightly more general, one has

{p ∈ H(E,v)

∣

∣ w(E,v)(p, p) 6= −∞} = {p+ c
∣

∣ p ∈ T ′
(E,v), c ∈ R}.

And the maps p ∈ H(E,v) satisfying w(E,v)(p, p) = −∞ correspond to the ends of
the R-tree T(E,v).

Based on these considerations, an algorithm for analyzing distance data and for
constructing phylogenetic trees if those data fit exactly into trees and phyloge-
netic networks based on the T-construction if the data do not fit into a tree
has been developed jointly with D. Huson and others which is available via
http://bibiserv.techfak.uni-bielefeld.de/splits/ where also further ref-
erences can be found.
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