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A New Version of the Fast Gauss Transform

Leslie Greengard and Xiaobai Sun

Abstract. The evaluation of the sum of N Gaussians at M points
in space arises as a computational task in diffusion, fluid dynamics, fi-
nance, and, more generally, in mollification. The work required for direct
evaluation grows like the product NM , rendering large-scale calculations
impractical. We present an improved version of the fast Gauss transform
[L. Greengard and J. Strain, SIAM J. Sci. Stat. Comput. 12, 79 (1991)],
which evaluates the sum of N Gaussians at M arbitrarily distributed
points in O(N+M) work, where the constant of proportionality depends
only on the precision required. The new scheme is based on a diagonal
form for translating Hermite expansions and is significantly faster than
previous versions.
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1 Introduction

Many problems in mathematics and its applications involve the Gauss transform

Gδf(x) = (πδ)−d/2

∫

Γ

e−|x−y|2/δf(y) dy (δ > 0) (1)

of a function f , where Γ is some subset of Rd. This is, of course, the exact solution
to the Cauchy problem

ut(x, t) = ∆u(x, t), t > 0

u(x, 0) = f(x), x ∈ R
d

at time t = δ/4 and corresponds to a mollification of the function f . Similar
transforms occur in solving initial/boundary value problems for the heat equation
by means of potential theory [3, 10, 11] and in nonparametric statistics [4, 17].

In the present paper, we will focus our attention on the discrete Gauss trans-

form

G(x) =

N
∑

j=1

qj e
−|x−sj |2/δ , (2)
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where the coefficients qj and “source” locations sj are given, and we wish to
evaluate the expression (2) at a large number of “target” points xj .

If the number of target points is denoted by M , we can define the rectangular
transform matrix G by the formula

Gij = e−|xi−sj |2/δ. (3)

Direct application of this matrix to the vector q = (q1, . . . , qN )T . requires O(NM)
work, which makes large scale calculations prohibitively expensive.

To overcome this obstacle, Greengard and Strain developed a fast Gauss trans-
form [9], which requires only O(N + M) work, with a constant prefactor which
depends on the physical dimension d and the desired precision. The amount of
memory required is also proportional to N +M , so that the algorithm is asymp-
totically optimal in terms of both work and storage. In this scheme, the sources
and targets can be placed anywhere; methods based on the fast Fourier trans-
form (FFT), by contrast, are restricted to a regular grid and require O(N logN)
operations. For the case where the variance δ is not constant:

G(x) =

N
∑

j=1

qj e
−|x−sj |2/δj , (4)

a generalization of the fast Gauss transform has been developed by Strain [18],
but we will consider only the simpler case (2) here.

The fast Gauss transform is an analysis-based fast algorithm. Like the closely
related fast multipole methods for the Laplace and Helmholtz equations [1, 5, 7,
13, 8, 14, 15, 16], it achieves a speedup in computation by using approximation
theory to attain a specified, albeit arbitrarily high, precision. The FFT, on the
other hand, is exact in exact arithmetic. It is an algebra-based fast algorithm which
uses symmetry properties to reduce the computational work.

2 The original fast Gauss transform

The starting point for the fast algorithms of [9, 18] is the generating function for
Hermite polynomials [2, 12]

e2xs−s2 =

∞
∑

n=0

sn

n!
Hn(x) ,

where
Hn(x) = (−1)nex

2

Dne−x2

x ∈ R

and D = d/dx. A small amount of algebra leads to the expansion

e−(x−s)2/δ =

∞
∑

n=0

1

n!

(

s− s0√
δ

)n

hn

(

x− s0√
δ

)

,

where
hn(x) = (−1)nDne−x2
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and s0 is an arbitrary point.
This formula describes the Gaussian field e−(x−s)2/δ at the target x due to the

source at s as an Hermite expansion centered at s0. The higher dimensional analog
of (5) is obtained using multi-index notation. Let x and s lie in d-dimensional
Euclidean space R

d, and consider the Gaussian

e−|x−s|2 = e−(x1−s1)
2−...−(xd−sd)

2

.

For any multi-index α = (α1, α2, . . . , αd) and any x ∈ R
d, we define

|α| = α1 + α2 + . . .+ αd

α! = α1!α2! . . . αd!

xα = xα1
1 xα2

2 . . . xαd

d

Dα = ∂α1
1 ∂α2

2 . . . ∂αd

d

where ∂i is differentiation with respect to the ith coordinate in R
d. If p is an

integer, we say α ≥ p if αi ≥ p for 1 ≤ i ≤ d.
The multidimensional Hermite polynomials and Hermite functions are defined

by
Hα(x) = Hα1

(x1) . . . Hαd
(xd)

hα(x) = e−|x|2Hα(x) = hα1
(x1) . . . hαd

(xd) (5)

where |x|2 = x2
1 + . . . + x2

d. The Hermite expansion of a Gaussian in R
d is then

simply

e−|x−s|2 =
∑

α≥0

(x− s0)
α

α!
hα(s− s0) . (6)

Lemma 2.1 ([9], 1991) Let NB sources sj lie in a box B with center sB and side

length
√
δ. Then the Gaussian field due to the sources in B,

G(x) =

NB
∑

j=1

qj e
−|x−sj |2/δ, (7)

is equal to a single Hermite expansion about sB:

G(x) =
∑

α≥0

Aα hα

(

x− sB√
δ

)

.

The coefficients Aα are given by

Aα =
1

α!

NB
∑

j=1

qj

(

sj − sB√
δ

)α

. (8)

The error EH(p) due to truncating the series after pd terms satisfies the bound:

|EH(p)| = |
∑

α≥p

Aαhα

(

x− sB√
δ

)

| ≤ 2.75d QB

(

1

p!

)d/2 (
1

2

)(p+1)d/2

(9)

where QB =
∑ |qj |.
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Lemma 2.2 ([9], 1991) Let NB sources sj lie in a box B with center sB and

side length
√
δ and let x be a target point in a box C with center xC . Then the

corresponding Hermite expansion

G(x) =
∑

α≥0

Aα hα

(

x− sB√
δ

)

.

can be expanded as a Taylor series of the form

G(x) =
∑

β≥0

Bβ

(

x− xC√
δ

)β

.

The coefficients Bβ are given by

Bβ =
(−1)|β|

β!

∑

α≥0

Aα hα+β

(

sB − xC√
δ

)

. (10)

The error ET (p) due to truncating the series after pd terms satisfies the bound:

|ET (p)| = |
∑

β≥p

Bβ

(

x− xC√
δ

)β

| ≤ 2.75d QB

(

1

p!

)d/2 (
1

2

)(p+1)d/2

(11)

These are the only tools required to construct a simple fast algorithm for the
evaluation of

G(xi) =

N
∑

j=1

qje
−|xi−sj |2/δ (12)

for 1 ≤ i ≤ M , using O(M + N) work. By shifting the origin and rescaling δ if
necessary, we can assume (as a convenient normalization) that the sources sj and
targets xi all lie in the unit box B0 = [0, 1]d.

Algorithm

Step 1. Subdivide B0 into smaller boxes with sides of length
√
δ parallel to the

axes. Assign each source sj to the box B in which it lies and each target xi to the
box C in which it lies. The source boxes B and the target boxes C may, of course,
be the same.

Step 2. Given ǫ, use Lemma 2.1 to create an Hermite expansion for each source
box B with pd terms satisfying:

G(x) =
∑

B

∑

sj∈B

qje
−|x−sj |2/δ

=
∑

B

∑

α≤p

Aα(B)hα

(

x− sB√
δ

)

+O(ǫ)
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where

Aα(B) =
1

α!

∑

sj∈B

qj

(

sj − sB√
δ

)α

. (13)

The amount of work required for this step is of the order pdN .

Consider now a fixed target box C. For each xj ∈ C, we need to evaluate
the total field due to sources in all boxes of type B. Because of the exponential
decay of the Gaussian field, however, it is easy to verify that, if we include only
the sources in the nearest (2r + 1)d boxes, we incur an error bounded by Qe−r2 ,

where Q =
∑N

j=1 |qj |. Given a desired precision ǫ, we can always choose r so that
this truncation error is bounded by Qǫ. With r = 4, for example, we get single
precision accuracy (ǫ = 10−7) and with r = 6, we get double precision (ǫ = 10−14).
We denote the nearest (2r+1)d boxes as the interaction region for box C, denoted
by IR(C).

Step 3. For each target box C, use Lemma 2.2 to transform all Hermite ex-
pansions in source boxes within the interaction region into a single Taylor expansion.
Thus, we approximate G(x) in C by

G(x) =
∑

B

∑

sj∈B

qje
−|x−sj |2/δ

=
∑

β≤p

Cβ

(

x− xC√
δ

)β

+O(ǫ)

where

Cβ =
(−1)|β|

β!

∑

B∈IR(C)

∑

α≤p

Aα(B)hα+β

(

sB − xC√
δ

)

, (14)

and the coefficients Aα(B) are given by (13). Because of the product form (5) of
hα+β , the computation of the pd coefficients Cβ involves only O( d pd+1) operations
for each box B. Therefore, a total of O((2r + 1)d d pd+1) work per target box C is
required. Finally, evaluating the appropriate Taylor series for each target xi requires
O(pdM) work. Hence this algorithm has net CPU requirements of the order

O((2r + 1)d d pd+1Nbox) +O(pdN) +O(pdM) ,

where the number of boxes Nbox is bounded by min(δ−d/2, N + M). The work is
cleanly decoupled into three parts; O(pdN) to form Hermite expansions, O(pdM)
to evaluate Taylor series, and a constant term depending on the number of box-box
interactions and the cost of transforming Hermite expansions into Taylor series.

Remark: A proper implementation of the fast Gauss transform is a bit more
complex. For example, if a box contains only a few sources, it is more efficient to
compute their influence directly than to use expansions.
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Suppose now that the source boxes are denoted by B1, B2, . . . , BS , that the
target boxes are denoted by C1, C2, . . . , CT , that Nj sources lie in box Bj , that
Mj targets lie in box Cj , and that the points are ordered so that

{s1, . . . , sN1
} ⊂ B1

{sN1+1, . . . , sN1+N2
} ⊂ B2

. . .

{sN−NS+1, . . . , sN} ⊂ BS ,

{x1, . . . , xM1
} ⊂ C1

{xM1+1, . . . , xM1+M2
} ⊂ C2

. . .

{xM−MT+1, . . . , xM} ⊂ CT .

Then the approximation Gǫ to the discrete Gauss transform matrix (3) can be
written in the factored form

Gǫ = D ·E · F. (15)

Here, F is a block diagonal matrix of dimension S × S. The jth diagonal block

F(j) ∈ R
pd×Nj satisfies

F(j)n,m =
1

αn!

(

sm − sBj√
δ

)αn

,

where sBj
is the center of box Bj and the pd Hermite expansion coefficients are

ordered in some fashion from n = 0, . . . , pd. D is very similar. It is a block

diagonal matrix of dimension T × T , with the jth diagonal block D(j) ∈ R
Mj×pd

satisfying

D(j)n,m =
(−1)βm

βm!

(

xn − xCj√
δ

)βm

where xCj
is the center of box Cj , and the pd Taylor expansion coefficients are

ordered from n = 0, . . . , pd in the same fashion as the Hermite series. Note that,
if the sources and targets coincide, then D is the transpose of F.

The mapping E is a sparse block matrix of dimension T × S, with up to
(2r + 1)d nonzero entries per row. The nonzero entries E(ij) are matrices of
dimension pd × pd, corresponding to a conversion of the Hermite series for box Sj

into a Taylor series for box Ti, assuming Sj is in the interaction region IR(Ti).
The matrix entries are dense.

E(ij)nm = hαn+βm

(

sBj
− xCi√
δ

)

.

Given this notation, Step 2 of the fast Gauss transform described above corre-
sponds to multiplying the vector {q1, q2, . . . , qN} by F. Step 3 of the fast Gauss
transform corresponds to multiplying the output of Step 2 by E to create all the
Taylor expansions. The result is then multiplied by D to evaluate the Taylor series
at all target locations.
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Remark: The factorization (15) reveals the structure of Gǫ. When δ is large
enough, only one box is created and the rank of Gǫ is bounded by pd (the order
of the factor E). When δ is very small, the dimensions of E grow, but it becomes
sparse and structured.

3 Diagonal form for translation operators

Our new version of the fast Gauss transform is based on replacing Hermite and
Taylor expansions with an expansion in terms of exponentials (plane waves). The
starting point is the Fourier relation

e−|x−s|2/δ =

(

1

2
√
π

)d ∫

Rd

e−|k|2/4eik·(x−s)/
√
δ dk (16)

which is easily seen to satisfy the estimate

∣

∣

∣

∣

∣

e−
|x−s|2

δ −
(

1

2
√
π

)d ∫

|k|≤K

e−
|k|2
4 e

i
k·(x−s)√

δ dk

∣

∣

∣

∣

∣

≤
{

e−
K2

4 for d = 1, 2

Ke−
K2

4 for d = 3.

Setting K = 7.5, the truncation error from ignoring high frequency contri-
butions is approximately 10−7. Ssetting K = 12, the truncation error is approxi-
mately 10−14. It still remains to discretize the Fourier integral in (16) within the
range determined by K. The trapezoidal rule is particularly appropriate here since
it is rapidly convergent for functions which have decayed at the boundary. Note,
however, that the integrand is more and more oscillatory as x − s grows. Fortu-
nately, we only need accurate quadrature when s is within the interaction region of
x, so that |x− s|/

√
δ ≤ 5 for seven digit precision and |x− s|/

√
δ ≤ 7 for fourteen

digit precision. It is easy to verify that p = 12 equispaced modes in the interval
[0, 7.5] are sufficient to reduce the quadrature error to 10−7 when |x− s|/

√
δ ≤ 5

and that p = 24 equispaced modes in the interval [0, 12] are sufficient to reduce
the quadrature error to 10−14 when |x− s|/

√
δ ≤ 7.

Thus, for a source box B with center sB , we replace the Hermite series of
Lemma 2.1 with

G(x) =
∑

sj∈B

qje
−|x−sj |2/δ

=
∑

β≤p

Cβe
i
Kβ·(x−sB)

p
√

δ +O(ǫ),

where

Cβ =

(

K

2p
√
π

)d

e−|β|2K2/(4p2)
NB
∑

j=1

qj e
−i

Kβ·(sj−sB)

p
√

δ .

There are two reasons to prefer this form. First, the translation operator
described in Lemma 2.2 becomes diagonal.
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Corollary 3.1 Let NB sources sj lie in a box B with center sB and side length√
δ and let x be a target point in a box C with center xC . Then the plane wave

expansion

G(x) =
∑

β≤p

Cβe
i
Kβ·(xi−sB)

p
√

δ +O(ǫ),

can be expanded about xC as

G(x) =
∑

β≤p

Dβe
i
Kβ·(xi−xC )

p
√

δ +O(ǫ).

The coefficients Dβ are given by

Dβ = Cβ e
i
Kβ·(xC−sB)

p
√

δ . (17)

In terms of matrix factorization, we have

Gǫ = D
′ ·E′ · F′. (18)

In this formulation, the diagonal blocks of F′ and D
′ are given by

F
′(j)n,m =

(

K

2p
√
π

)d/2

e
−|βn|K

2p e
−i

Kβn·(sm−sBj
)

p
√

δ .

D
′(j)n,m =

(

K

2p
√
π

)d/2

e
−|βn|K

2p e
i
Kβm·(xn−xCj

)

p
√

δ .

As in the original algorithm, note that if the sources and targets coincide, then
D

′ is the adjoint of F′. The nonzero entries E
′(ij) are now diagonal matrices of

dimension pd × pd, with entries defined in (17). The net cost of all translations
per target box is reduced from O((2r + 1)d d pd+1) work to O((2r + 1)d pd) work.

The second (and more important) reason to prefer the new form is that the
number of translations can be dramatically reduced. We describe the modifica-
tion to the algorithm in the one-dimensional case. For this, imagine that we are
sweeping across all boxes from left to right and that, at present, a target box Cj

has accumulated all plane wave expansions from source boxes within its interac-
tion region (Fig. 1(a)). The net expansion can be shifted to the center of Cj+1

using Corollary 3.1. By adding in the contribution from the box marked by +
and subtracting the contribution from the box marked by −, we have the correct
plane wave expansion for box Cj+1 (Fig. 1(b)). Thus, (2r + 1) translations are
replaced by three. In d-dimensions, the cost O((2r + 1)d pd) work can be reduced
to O(3d pd), by sweeping across each dimension separately.

4 Conclusions

We have presented a new version of the fast Gauss transform, which uses plane
wave expansions to diagonalize the translation of information between boxes. The
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Cj

Cj+1

Figure 1: After shifting the expansion from box Cj to box Cj+1, one needs only to
subtract the contribution from the box marked − and add the contribution from
the box marked +. (The interaction regions are indicated by the square brackets).

approach is similar to the new diagonal forms used in fast multipole methods for
the Laplace and Helmholtz equations [8, 6, 13]. When the present improvements
have been incorporated into existing fast Gauss transform codes, the resulting
scheme should provide a powerful kernel for one, two and three-dimensional cal-
culations.
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