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Strategies for Seeing

Ulf Grenander

Abstract. We shall study the mathematical basis for computer vision
using ideas from pattern theory. Starting from some general principles
for vision several strategies for seeing will be derived and implemented by
computer code. Using the code computer experiments have been carried
out in order to examine the performance of the resulting inference engines
for vision.
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The mathematics of vision is not well understood. The human visual system is
an awesome inference engine of unparalleled power, but its working remains a
mystery in spite of great advances in the study of vision in recent years: much
is known about its detailed functioning on the physiological level but theories
proposed about its overall logical architecture are still tentative.

After the appearence of David Marr’s seminal work, Marr (1982), many re-
searchers in vision have adopted his view that seeing should be treated as a com-
putational activity, where ’computational’ is understood in a wide sense, more
general than von Neumann architecture or Turing machines. We adhere to this
view although we do not insist on his feed-forward paradigm. Therefore we be-
lieve that there should be a mathematical theory of vision underlying the visual
computing and that machine vision would be aided by such a theory.

Another difference to Marr’s approach is that we shall emphasize the pri-
macy of analysis of the environment: this is needed for the understanding of the
’why’ and ’how’ of the algorithms that are realized through the sensory process-
ing. An early proponent of this research strategy was Gibson with his ’ecological
psychology’, Gibson (1979).

To analyze the environment, the scene ensemble to be encountered by the
visual system, we shall apply ideas from pattern theory and will use methods from
this discipline as presented in Grenander (1993). A similar approach to vision, but
oriented toward human rather than machine vision, has been outlined in Mumford
(1994), (1996).

The vision strategies will be reductionist in the sense that they will be derived
from general and mathematically articulated prinicples in contrast to being based
on ad hoc devices. To achieve this the starting point will be the mathematical
representation of the image algebra of the likely scenes. Different representations
will lead to different strategies for seeing. Several strategies have been derived and
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implemented computationally. We do not attribute much significance to the algo-
rithms themselves, since they are based on quite simple minded representations,
but more to the way they are derived from first principles.

1. Principles for vision.

1. To be able to see it is necessary to know what one is looking for. In other words,
the system must be equipped with knowledge about scenes that are likely to be
encountered and be based on an explicitly formulated purpose. It is therefore
the first task for the system designer to express such knowledge in a form that
is sufficiently precise for the software development. In a biological system such
knowledge may have been created and stored during evolution, but we shall only
be concerned with computer vision in the following. The system must also possess
the ability to handle scenes it is not expecting, send warning signals and be honest
enough to admit ignorance in doubtful situations.

2. Different scene types and different sensors will require different strategies of
vision. To ask for a universal vision system, a system that is able to see and
interpret anything, any electro-magnetic radiation emanating from completely ar-
bitrary scenes, is a hopeless task. Instead of searching for such a chimera we shall
narrow down and specify the ensemble of scenes that the system is intended for.
We do not believe there is any universal representation valid for all scene/sensor
combinations. Therefore the representations must be tailored to the particular
scene types.

3.Knowledge about the image esemble should be represented by logical structures
formulated so precisely that they can serve as a basis for computing. The repre-
sentations shall be compositional in the sense that scenes are built from geometric
objects, generators, that are combined together according to rules that may be
deterministic or stochastic. They shall be transformational in that generators are
themselves obtained from prototypes,templates, that are modified by transforma-
tions that play the role of generalizations.

It is clearly impossible to store all expected scenes in memory: this is avoided
by the compositional/transformational scheme. Compare Chomskyan linguistics.

4.The transformations shall form groups, arranged in a cascade that starts with
solid, often low-dimensional, transformations and ends with diffeomorphisms. The
cascade will typically begin with translation, rotation, and perhaps scaling groups,
whose semi-direct product forms a low dimensional group Ssolid, but greater flexi-
bility is needed to get enough generative power to deal with complex image ensem-
bles of high variability and that will be supplied by the full diffeomorphic group
Sdiff or one of its high-dimensional sub-groups. The idea of group cascades has
been examined in Matejic (1996). To represent abnormal variability it may be
necessary to extend the transformations by giving up the group property, but this

will not be explored here.
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5.The occurence of templates in the scene is controlled by probabilities, and de-
formations of the templates will be controlled by other probability measures on the
groups; these measures evaluate how likely are the occurrences of various transfor-
mation of the templates. Consider the set C = Sdiff/Ssolid of right (or left )
cosets of the sub-group Ssolid in the full group Sdiff .

The elements in C represent shape changes while Srigid describes the less
drastic transformations that moves sets around etc. The cosets can carry vital
information while the elements of Ssolid often play the role of nuisance parameters
in the statistical sense of this term.

6.The mechanism T that maps a scene into sensory entities shall be explicitly
defined. In general we shall let T , the range of the T ’s, consist of arrays, not
necessarily rectangular, with scalar entries and of fixed shape.

7.The T transformation can be controlled by the system. This allows the system
to concentrate its attention on a detail of the scene, to direct its sensor(s) to point
in a new direction or vary the focal length. In animal vision this corresponds to
focussing the fovea and it also enables the vision system to function at different
scales.

8.The control of T is governed by an attention function A that attributes different
weights to different parts of the observed image ID. We should think of A as a

real valued function of sub-images of ID that takes real values, A : 2I
D → R. The

attention function formalizes the purpose(s) of the vision engine.

9. The saccadic search will be controlled by covariants w.r.t. the solid groups.
This will suggest plausible candidates for the generators that make up the true
scene.

10. For fixed T visual understanding will be attempted by an inference engine
that selects plausible generators and elements from the groups that deform these
generators. In this way local decisions are made sequentially, forming, accepting
or rejecting hypotheses. The selection may be deterministic, say maximizing some
estimation criterion, or have random elements, as in simulating a posterior distri-
bution. The visual understanding shall result in a structured description of the
scene that can be used for decision making.

11. The saccadic search is intended to reduce global inference problems to local
ones. The saccads should give rough estimates of the true group elements; the
estimates will then be refined by applying the local group operations applying the
diffeomorpic deformations.

12. Once a ROI (Region Of Interest) has been analyzed the attention function is
examined again to find other possible ROIs. If the saccads result in more than
one ROI they are all analyzed in the same way until the attention function points
to no more ROI.

13. The noise in the system is represented by a stochastic process N operating on
the array outputted by the sensor transformation T . Note that this randomness
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is essentially different from the one governing the variability of the scenes. The
latter is inherent in the vision setup, while the first can differ from sensor to sensor.

2. Mathematical Formalization.

2.1. Let us now express the principles mathematically and concretize to specific
choices of assumptions that have been used in a series of computer experiments.
But first let us explain what we mean by a solid group, or rather solid group
action, in a general context, Consider a configuration of generators gi coupled by
the connector σ

c = σ(g1, g2, . . . gn) = ∪kc
k

where the sub-configurations ck are the connected (w.r.t. the neighborhood system
induced by the graph σ ) components of c. Then we shall define a general solid
transformation to be of the form

c 7→ ∪ks
kck; sk ∈ Ssolid

so that each connected component is transformed separately and with the same
group element for all the generators in the component and with the semi-direct
product Ssolid = SL(d) ∝ R(d) of the special linear group with the translation
group in d dimensions.

To formalize principles 1 - 3 let the generators form a space partitioned into
the subsets Gα

G = ∪αG
α

where α denotes the object type.
Principle 4 will be realized by choosing some of the sub-groups of Ssolid and

Sdiffeo.
The purpose of the cascade is to allow large deformations, which is not possible

with the single group elastic model, but without the large computing effort needed
for the fluids model, see Christensen, Rabbit, Miller (1993).

Principle 5 will be implemented by introducing probability measure on the
groups which is straightforward for the solid ones since they are low-dimensional.
For Sdiffeo (discretized approximation) on the other hand we induce a probability
measure via the stochastic difference equation

(Ls)(x) = e(x);x ∈ X

for the displacement field s(x) = (s1(x), s2(x)) and e(x) is a stochastic field; the
group action is x 7→ x+s(x). Let us choose basis functions for Sdiffeo (discretized
to a lattice Zl1×l2) as the eigen functions of L as in Grenander (1993), p. 523,

φµν(x) = sin(
πx1µ

l1
)sin(

πx2ν

l2
);x = (x1, x2) ∈ [1, l1]× [1, l2]

Documenta Mathematica · Extra Volume ICM 1998 · III · 585–592



Strategies for Seeing 589

with µ, ν = 1, 2, . . . r, where the choice of r depends on the resolution of the sensor.
Then we can expand the displacement fields

s1(x) =
r∑

µ=1

r∑
ν=1

t1µνφµν(x)

s2(x) =
r∑

µ=1

r∑
ν=1

t2µνφµν(x)

and we combine the Fourier coefficients into two matrices

t1 = (t1µν ;µ, ν = 1, 2, . . . r)

t2 = (t2µν ;µ, ν = 1, 2, . . . r)

We shall assume that for each generator index α the set Gα can be generated
by applying Sdiffeo to a single template gαtemp so that

Gα = Sdiffeog
α
temp

In pattern theoretic terminology Gα then forms a pattern, actually a finest pattern,
see Grenander (1993) p. 55-56. Then (Gα, Sdiffeo) forms a homogeneous space.

For principle 6 we shall allow the range T of the T -transformation to be quite
different from the scene that is being captured. For example, the output of a radar
with a cross array of antennas will consist of two vectors with complex entries,
superficially completely different from the target/background configuration. Or,
the sinogram in a CAT scan which is quite different from the organ scanned.

Principles 7,8 will be realized by attention functions that will formalize the
purpose of the system. For example, it could give great weight to regions close to
the sensor, or to regions with high optical activity, or to objects of particular shape
or texture. The function will generate saccadic movement of the fovea and/or the
sensor(s).

For principle 9 we shall use classical covariants. Say that the intensity func-
tions I(·) are continuous with compact support. For example, dealing with the
translation group in the plane we use the 2-vector valued covariant

φ1(I) = m = 1/J

∫ ∫
(x1, x2)I(x1, x2)dx1dx2

with

J =

∫ ∫
I(x1, x2)dx1dx2

For SO(2) we calculate the moment matrix

R = 1/J

∫ ∫
(x−m)(x−m)T I(x)dx1dx2
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and diagonalize it R = OTDO and put

φ2(I) = O

Note however that this definition needs a further qualification in order to be unique.
First, we should choose the orthogonal matrix O so that det(O) > 0 since we are
dealing with the special orthogonal group SO(2). Second, we should select O so
that its first column equals the eigen vector of R corresponding to the largest eigen
vallue. The sign of the eigen vector is arbitrary so that this leads to an ambiguity
that must be kept in mind when developing the code. Third, if the two eigen values
coincide, typical for symmetric objects, we get more ambiguity and the covariant
must be augmented with further information.

For the uniform scaling group in the plane we can use the scalar covariant

φ3(I) = 1/J

∫ ∫
‖x‖I(x)dx1dx2

The use of saccadic search has split the global inference problem into several
local ones in which we can let the inference engine look just for a local optimum,
principles 10, 11.

Of course the whole group can push templates outside the total (bounded)
region Z(l1,l2), so that search should be limited to the latter region unless the
sensor is re-directed to some other region. The saccadic search will lead to one
ROI after another, point 12, until the remaining attention values are suffiently
small; then the inference engine stops and outputs a structured description of the
scene.

For principle 13 let us assume that the noise process of the system forms a
stationary process in the plane, for example the Gaussian one with the non-singular
covariance operator Cov. Then the likelihood function will be proportional to

L = exp− 1

2σ2
‖ID − TsItemp‖2Cov−1

with the norm associated with the kernel Cov−1. Introducing the positive definite
square root M

M = +
√
Cov−1

we can write the likelihood function in terms of the standard l2-norm

L = exp− 1

2σ2
‖MID − MTsItemp‖2 =

= exp− Elikelihood

where Elikelihood is the likelihood energy.
In a similar fashion we are led to prior probability measures on each group in

the cascade. For the Sdiffeo, for example, we have used the expression

Eprior(s) = 1/2σ2
l1∑

µ=1

l2∑
ν=1

[l1µ
2t21µν + l2ν

2t22µν ]
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involving the t-matrices introduced earlier and with some scaling constant σ2. We
can then apply Markov Chain Monte Carlo to simulate the probability measure
on one of the groups in the cascade and solve the SDE

ds(t) = −grad[Eprior(s) + Elikelihood(s)]dt + d(W (t)

in terms of the d-dimensional Wiener process W (t) and continue iterating until the
algorithmic time parameter t is so large that approximate statistical equilibrium
has been reached. The previous propagated template, say Iαtemp(k, x), is then
further propagated

Iαtemp(k, x) → Iαtemp(k + 1, x) = Iαtemp(k, s
∗

kx)

where s∗k is the resulting group element from the SDE.
We now do this for each group in the cascade, successively propagating the

template, see Matejic (1997). The resulting propagated template then induces the
output of the vision engine under the adopted strategy for seeing.

3. Experiments.

Based on the above principles three strategies for seeing have been developed. Due
to space limitations it is not possible to describe them in detail here; the reader
is referred to Grenander (1998) where the strategies are fully described and their
code is attached. The algorithms are so complex that it is difficult to predict their
behavior. For this reason extensive experimentation has been carried out in order
to find their strengths and weaknesses.

Here a few remarks will have to suffice. The first strategy was considering
objects as sets in the plane and the attention funcion was then just measuring the
optical activity in sub-sets. The observations were degraded by deformations of
the generators, additive noise as well as clutter. Additive noise was easily handled
by this algorithm, while clutter confused the algorithm and occassionally led it
to make the wrong decision; this occurred even for moderate amounts of clutter.
Obscuration was well handled if the overlap of generators was not too large but
otherwise mistakes were made sometimes.

To handle obscuration better a second strategy was developed where the gen-
erators were closed simple curves in the plane, the boundaries of the sets. The
attention function was designed to measure the (estimated) lengths of boundaries
in subsets. Again additive noise caused no problem for the recognition algorithm.
This strategy was less confused by obscuration than the first one, but it was quite
sensitive to clutter, apparently because of the differential-geometric nature of the
attention function.

A third strategy was constructed for a dynamic situation with moving gen-
erators. The attention function measured the amount of change in sub-sets from
one frame to the next. This strategy was not very sensitive to clutter although it
sometimes made the algorithm answer ”do not understand the scene”.
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We draw the following conclusions from the experiments. The experiments
have been carried out under controlled laboratory conditions, and since the infer-
ence algorithms are optimal modulo given assumptions, the observed weaknesses of
the engines cannot be blamed on the construction of the algorithms. Instead they
are essential to the visual set up and point to the need for a careful formulation
of the purpose to be realized.
(i) Additive noise in not much of a problem but clutter is. In order to build
effective strategies in the future one should develop a better understanding of how
clutter can represented mathematically.
(ii) The purpose of a vision engine must be clearly articulated with attention
functions that combine several properties of the image, not just a single one as in
the three experiments.
(iii) Related to (ii) is the need for incorporating cues in the observed ”image” ID:
in addition to the image itself relevant facts known to the operator of the inference
engine should also be included.
(iv) The vision engines should be integrated systems for multi-sensor, multi-target,
multi-purpose situations with parallel implementations.

Work is under way to implement (i) - (iv).
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