
Doc.Math. J.DMV 593

Canonial Models in Mathematial Neurosiene

Frank Hoppensteadt and Eugene Izhikevich

Abstract. Our approach to mathematical neuroscience is not to con-
sider a single model but to consider a large family of neural models. We
study the family by converting every member to a simpler model, which
is referred to as being canonical. There are many examples of canonical
models [7]. Most of them are derived for families of neural systems near
thresholds; that is, near transitions between the rest state and the state
of repetitive spiking. The canonical model approach enables us to study
frequency and timing aspects of networks of neurons using frequency do-
main methods [6]. We use canonical (phase) models to demonstrate our
theory of FM interactions in the brain: Populations of cortical oscillators
self-organize by frequencies [6]; same-frequency sub-population of oscil-
lators can interact in the sense that a change in phase deviation in one
will be felt by the others in the sub-population [7]; and oscillators oper-
ating at different frequencies do not interact in this way. In our theory,
sub-networks are identified by the firing frequency of their constituents.
Network elements can change their sub-population membership by chang-
ing their frequency, much like tuning to a new station on an FM radio.
Also discussed here are mechanisms for changing frequencies obtained in
our recent work using similar models to study spatial patterns of theta
and gamma rhythm phase locking in the hippocampus.
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A promising approach to mathematical neuroscience is to consider not a single
neural model but a large family of such models. A reasonable way to study such
a family is to convert every member to a simpler model by a continuous (possibly
non-invertible) change of variables. We refer to such a simple model as being
canonical for the family [7]. We present here a few examples of such families and
their canonical models.

1 Neural Excitability

Most neurons are at rest, but they can fire repeatedly when stimulated. If the
emerging firing pattern has very low frequency, then the neuron is said to exhibit
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Class 1 neural excitability [5]. If it starts with a high frequency, it is said to exhibit
Class 2 excitability.

The transition from rest to oscillatory firing as the stimulus is increased is
a bifurcation. A typical bifurcation corresponding to Class 1 excitability is the
saddle-node on limit cycle (SNLC) bifurcation. The family of all neural systems
having this bifurcation has the canonical model

θ′ = (1 + cos θ) + (1− cos θ)λ , θ ∈ S1 , (1)

where λ is the bifurcation parameter that characterizes the stimulus [4, 7].
A typical bifurcation corresponding to Class 2 excitability is the supercritical

Andronov-Hopf (AH) bifurcation. The family of all neural systems having this
bifurcation has the canonical model

z′ = (λ+ i)z − z|z|2 , z ∈ C , (2)

which is a topological normal form for the bifurcation. Notice that (2) is local in
the sense that a continuous change of variables that converts a dynamical system
into (2) is defined is some small neighborhood of equilibrium. The canonical
model (1) is not local in this sense. Many other canonical models for neuroscience
applications are derived in [7].

2 FM Interactions in Phase Models

Rhythmic behavior is ubiquitous in nature and especially in the brain. Since we
do not know (and probably will never know) the exact equations describing any
neural system we consider a family of brain models of the following general form

x′i = fi(xi) + εgi(x1, . . . , xn, ε) , xi ∈ Rm , (3)

where each xi describes activity of the ith neural element (neurons, cortical
columns, etc.), and the dimensionless parameter ε ≥ 0 measures the strength
of connections. Many neuro-physiological experiments suggest that ε is small; see
discussion in [7].

When each neural element exhibits oscillatory activity; that is, when each
subsystem x′i = fi(xi) in (3) has a limit cycle attractor, then the weakly connected
system (3) can be transformed into the canonical (phase) model

θ′i = Ωi + εhi(θ1, . . . , θn, ε) , θi ∈ S1 , (4)

by a continuous change of variables. Here Ωi > 0 is the frequency, and θi is the
phase of the ith oscillating element.

The phase model (4) can be simplified further depending on the presence of
resonances between the frequencies Ω1, . . . ,Ωn. For example, when the frequencies
are non-resonant and some other technical conditions are satisfied, each connection
function hi can be transformed into a constant. This implies that such oscillators
do not interact even though there are synaptic connections between them; i.e., even
though the functions gi are non-constant in (3). A detailed analysis [7, 8] shows
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that the interaction between oscillators is most effective when their frequencies are
nearly identical, less effective when the frequencies are nearly low-order resonant,
and practically non-effective otherwise.

Since this result was obtained for the canonical model (4), it can be applied
to an arbitrary neural system of the form (3) regardless of the details of the math-
ematical equations. This universality suggests a far-reaching biological principle:
The existence of synaptic connections between two neurons or two cortical columns
does not guarantee that the they interact. To interact they must establish a certain
low-order resonant relation between their frequencies. We say that interactions are
frequency modulated (FM) in this case.

We see that an entire network can be partitioned into relatively independent
ensembles of neurons processing information on different frequencies (channels).
Each neuron can change its membership simply be changing its frequency. Thus,
the entire brain can reconfigure itself by changing the frequency of oscillations of
its units without changing the efficacy of synaptic connections (the wiring).

Finally, we notice that when the frequencies are chosen appropriately, the neu-
ral elements interact through modulation of the timing of their spikes. Therefore,
the brain might employ FM radio principles: The frequency of neural rhythmic
activity does not encode any information other than identifying the channel of
communication; the information is carried by phases.

Figure 1: Temporal integration of a periodic input depends on the frequency
of the input. Upper part: Neurons have identical frequencies. If a brief strong
stimulus is applied to neuron 1 to change its phase, then neuron 2 can “feel” the
change by acquiring a phase shift. Lower part: Neurons have different frequencies
(close to the resonance 4 : 5.) The post-synaptic neuron is relatively insensitive to
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the phase of the pre-synaptic one. (These simulations are based on space-clamped
Hodgkin-Huxley equations.)

3 The Hippocampus

Similar methods are used to study the hippocampus and its role in information
processing [1, 2]. In this, the three dimensional structure of the CA1, CA3 and
DG regions of the hippocampus and their inputs from the medial septum and
the entorhinal cortex are modeled by lumping the continuum model into discrete
segments. These segments do not necessarily correspond to anatomical features of
the hippocampus; they result from standard mathematical analysis. The model is

ẋj = γ + cosxj + (1− cosxj)(cosφj(t) + cosψj(t) +

N∑

i=1

Ci,jV (xi))

where

• γ is the gamma-rhythm frequency (≈ 40Hz).

• xj is the phase of the jth segment.

• ψj is the phase deviation of the input to the jth segment from the entorhinal
cortex. This is taken to be a theta-rhythm (≈ 5Hz) having phase deviations
increasing along the array of sites from the right, so ψj(t) = ωt + j∆ + Φ
where ∆ is the propagation time of stimulation from one segment to the
next.

• φj is the phase deviation of the input from the medial septum to segment j:
φj(t) = ωt+ (N − j)∆

• Φ indicates the difference in timing between the two inputs.

This system is depicted in Figure 2.

✻ ✻

❄ ❄

S1 SN

V (ωt+ φN )V (ωt+ φ1)

V (ωt+ ψN )V (ωt+ ψ1)

Septum

Entorhinal Cortex

Figure 2: A segment model comprising N identical segments that have inputs
from the Septum and from the Entorhinal Cortex, that have a fixed wave form
(V ), a fixed frequency (ω) and a phase deviation (φj or ψj). The phase differences
along the line are φj − ψj for j = 1, · · · , N .

The value Φ is the key control variable, and we show in [1] that as Φ in-
creases through 2π various patterns of phase locking to the theta rhythm occur
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in the model; the other segments oscillate at near the gamma rhythm. Thus, Φ
is encoded in a spatial pattern of theta-rhythm activity. Figure 3 shows typical
power-spectrum densities resulting from a simulation of 64 segments. Note that
there is for the choice of Φ used here an interval of segments that are locked at
the theta rhythm while the remaining segments oscillate at or near the gamma
rhythm. Changing Φ changes the pattern of theta-rhythm oscillations. So, the
firing frequency of individual cells can be changed by external forcing (here Φ)
that is applied uniformly to the entire network.

Each of these phase variables has an asymptotic limit of the form xj →
ρjt + φj(t) where ρj is the asymptotic frequency (rotation number) and φj(t) is
the asymptotic phase deviation. This result is the basis of the rotation vector
method which is discussed later.

Figure 3: Power spectrum of 64 segments. There is an interval of segments
having frequency ≈ 5Hz, and the rest are near 40Hz.

A sequence of input phases Φk can be memorized by adaptive connections
within the structure. Lateral connections along the longitudinal axis of the
hippocampus are modeled as before (Equation (??)), but now the connection
strengths C change in response to correlation between pre- and post- synaptic
activities:

ΩĊi,j + Ci,j = K sinxi sinxj

where K is a mixer gain and Ω is a time constant for a synapse. The matrix C
accumulates memory traces, and it forms a slowly changing record of memorized
states and transitions between them. In particular, this matrix can learn a se-
quence of input control variables Φ1,Φ2, · · · ,ΦM , and the resulting matrix has a
left to right structure that can be used to recall this sequence. This is short term
memory in the circuit.
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In addition, this matrix C serves as the basis for studying recall of informa-
tion in the presence of random noise. Its structure reflects the connections that
correspond to memorized stimuli and to the transition from one memory to the
next. This form can be abstracted into a Markov chain, and it can be studied by
methods for Markov chains in random environments [1, 9].

4 Discussion

We will never know a complete model of any brain structure, no matter how small.
However, a powerful aspect of mathematics is that (usually) quite simple models
can accurately describe aspects of broad ranges of physical and biological systems.
In particular, the approach we have developed for mathematical neuroscience is
based on canonical models [7]. Care must be taken in interpreting and applying
results obtained using canonical models, but a principal goal of this work is to
suggest experiments and alternate ways of interpreting experimental data. Some
outcomes of this approach are the use of VCONs to process voltage recordings
from electrodes in behaving animals and the use of Markov chains to describe
navigation by behaving rats.

Patterns of phase locking in networks of VCONs can be determined using the
rotation vector method [6]: The vector ~x describes the phases in an entire network.

If this population is in synchrony, then the phases have the form ~x → ω1t+ ~φ(t)
where ω is the common frequency, 1 is the vector of all ones, and the phase
deviations ~φ are less significant in the sense that ~φ(t)/t → 0 as t → ∞. In FM

radio, ω identifies the sending station and ~φ carries the signal. We have shown
here how two cells that are in synchrony can interact by demonstrating that a
change in the timing of one will induce a change in the timing of the receiver.
We propose that this is a fundamental mechanism for propagating and processing
information in the brain. Using this approach, we can derive a system of equations
for the phase deviations ~φ, and results of Liapunov and Malkin can be combined
with singular perturbation methods to determine energy surfaces that govern the
dynamics of ~φ [6].

The illustrations from our hippocampus model suggest that there are many
possible mechanisms for cells to change their firing frequency; for example, as de-
scribed here through external oscillatory inputs or through chemical modification
by hormones, neurotransmitters, etc.

The systems approach described here is based on canonical models, and it
brings out possibilities for FM interactions and communications in brain structures
by describing how a network can process such complex data in parallel.
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