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Numeri
al Study of Free Interfa
e Problems Using

Boundary Integral Methods

Thomas Yizhao Hou

Abstract. Numerical study of fluid interfaces is a difficult task due
to the presence of high frequency numerical instabilities. Small pertur-
bations even at the round-off error level may experience rapid growth.
This makes it very difficult to distinguish the numerical instability from
the physical one. Here, we perform a careful numerical stability anal-
ysis for both the spatial and time discretization. We found that there
is a compatibility condition between the numerical discretizations of the
singular integral operators and of the Lagrangian derivative operator. Vi-
olation of this compatibility condition will lead to numerical instability.
We completely eliminate the numerical instability by enforcing this dis-
crete compatibility condition. The resulting scheme is shown to be stable
and convergent in both two and three dimensions. The improved method
enables us to perform a careful numerical study of the stabilizing effect of
surface tension for fluid interfaces. Several interesting phenomena have
been observed. Numerical results will be presented.
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1 Introduction.

Many physically interesting problems involve propagation of free interfaces. Wa-
ter waves, boundaries between immiscible fluids, vortex sheets, Hele-Shaw cells,
thin-film growth, crystal growth and solidification are some of the better known ex-
amples. Numerical simulations for interfacial flows play an increasingly important
role in understanding the complex interfacial dynamics, pattern formations, and
interfacial instabilities. Many numerical methods have been developed to study
these interfacial problems, including phase field models, volume-of-fluid methods,
level set methods, front tracking methods, and boundary integral/element meth-
ods. Here we will focus on boundary integral methods.

Numerical study of fluid interfaces is a difficult task due to the presence
of high frequency numerical instabilities [6, 7]. Small perturbations even at the
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round-off error level may experience rapid growth. This makes it very difficult to
distinguish the numerical instability from the physical one. In our study, we first
establish the well-posedness of the linearized motion far from equilibrium. This
involves careful analysis of singular integral operators defined on free interfaces
[2, 11]. The continuous well-posedness analysis provides a critical guideline for our
numerical analysis of the discrete system. We found that there is a corresponding
compatibility condition between the discrete singular operators and the discrete
derivative operator. Violation of this compatibility condition will lead to numerical
instability. We completely eliminate the numerical instability by introducing an
effective filtering. The amount of filtering is determined by enforcing this discrete
compatibility condition. The resulting scheme is shown to be stable and convergent
[3]. The corresponding 3-D problem is considerably more difficult since the singular
operators have non-removable branch point singularities and there is no spectrally
accurate discretization. A new stabilizing technique is introduced to overcome this
difficulty [12, 13]. This technique is very general and effective. It also applies to
non-periodic problems with rigid boundaries.

The improved method enables us to perform a careful numerical study of
the stabilizing effect of surface tension for fluid interfaces. Water waves with small
surface tension are shown to form singular capillary waves dynamically. The mech-
anism for generating such capillary waves is revealed and the zero surface tension
limit is investigated [5]. In another study, surface tension is shown to regular-
ize the early curvature singularity induced by the Rayleigh-Taylor instability in
an unstably stratified two-fluid interface. However, a pinching singularity is ob-
served in the late stage of the roll-up. The interface forms a trapped bubble and
self-intersects in finite time [4, 9].

2 Stability of Boundary Integral Methods for 2-D Water Waves

In this section, we consider the stability of boundary integral methods for 2-D
water waves. The result can be generalized to two-fluid interfaces and Hele-Shaw
flows [4, 8]. Consider a 2-D incompressible, inviscid and irrotational fluid below a
free interface. We assume the interface is 2π-periodic in the horizontal direction
and parametrize the interface by a complex variable, z(α, t) = x(α, t) + iy(α, t),
where α is a Lagrangian parameter along the interface. We use the usual conven-
tion of choosing the tangential velocity to be that of the fluid. The first boundary
integral method for water waves was proposed by Longuet-Higgins and Cokelet
[15] who used a single layer representation. Here we will use a double layer rep-
resentation introduced by Baker-Meiron-Orszag [1]. Following [1], we obtain a
system of evolution equations as follows:

z̄t =
1

4πi

∫ π

−π

γ(α′)cot(
z(α)− z(α′)

2
)dα′ +

γ(α)

2zα(α)
≡ u− iv, (1)

φt =
1

2
(u2 + v2) − gy , (2)

φα =
γ

2
+ Re

(
zα
4πi

∫ π

−π

γ(α′)cot(
z(α)− z(α′)

2
)dα′

)
, (3)
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where φ is the potential, γ is the vortex sheet strength, z̄ is the complex conjugate
of z. Equations (1)-(3) completely determine the motion of the system. The
advantage of using the double layer representation is that the Fredholm integral
equation of second kind has a global convergent Neumann series [1]. Thus γ can
be solved by fixed point iteration.

The boundary integral formulation of water waves is naturally suited for nu-
merical computation. There are many ways one can discretize the boundary in-
tegral equations, depending on how we choose to discretize the singular integrals
and the derivatives. These choices affect critically the accuracy and stability of the
numerical method. Straightforward numerical discretizations of (1)-(3) may lead
to rapid growth in the high wavenumbers. In order to avoid numerical instability,
a certain compatibility between the choice of quadrature rule for the singular in-
tegral and the discrete derivatives must be satisfied. This compatibility ensures
that a delicate balance of terms on the continuous level is preserved on the discrete
level. Violation of this compatibility will lead to numerical instability.

Let zj(t) be the numerical approximation of z(αj , t), where αj = jh, h =
2π/N . φj(t), γj(t) are defined similarly. To approximate the velocity integral, we
use the alternating trapezoidal rule:

∫ π

−π

γ(α′) cot (
z(αj) − z(α′)

2
)dα′ ≃

N/2∑

j=−N/2+1
(j − i) odd

γk cot(
zj − zk

2
)2h . (4)

The advantage of using this alternating trapezoidal quadrature is that the ap-
proximation is spectrally accurate. We denote by Dh the discrete derivative op-

erator. In general, we have ̂(Dh)k = ikρ(kh) for some nonnegative even function
ρ. The specific form of ρ(ξ) depends on the approximation. For example, we
have ρc(kh) = 3 sin(kh)/(kh(2+cos(kh))) for the cubic spline approximation, and
ρ(kh) = 1 for a pseudo-spectral derivative.

Now we can present our numerical algorithm for the water wave equations
(1)-(3) as follows:

dz̄j
dt

=
1

4πi

∑

(k−j)odd

γkcot(
z
(ρ)
j − z

(ρ)
k

2
)2h+

γj
2Dhzj

≡ uj − ivj , (5)

dφj

dt
=

1

2
(u2

j + v2j ) − gyj , (6)

Dhφj =
γj
2

+ Re


Dhzj

4πi

∑

(k−j)odd

γkcot(
z
(ρ)
j − z

(ρ)
k

2
)2h


 , (7)

where z(ρ) is a Fourier filtering defined as ̂(z(ρ))k = ẑkρ(kh). The Fourier filtering
z(ρ) in (5) and (7) is to balance the high frequency errors introduced by Dh. This
will become apparent in the discussion of stability below.

Theorem 1. Assume that the water wave problem is well-posed and has a
smooth solution in Cm+2 (m ≥ 3) up to time T . Then if Dh corresponds to a r-th
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order derivative approximation, we have for 0 < h ≤ h0(T )

‖z(t) − z(·, t)‖l2 ≤ C(T )hr . (8)

Similar convergent results hold for φj and γj. Here ‖z‖2l2 =
∑N

j=1 |zj |
2h .

2.1 Discussion of stability analysis

Here we discuss some of the main ingredients in the stability analysis of the scheme
given by (5)-(7). We will mainly focus on the linear stability. Once linear stability
is established, nonlinear stability can be obtained relatively easily by using the
smallness of the error and an induction argument. The reader is referred to [3] for
details.

To analyze linear stability, we first derive evolution equations for the errors
żj(t) ≡ zj(t)−z(αj , t), etc., and try to estimate their growth in time. If we take the
difference between the sum in (5) for the discrete velocity and the corresponding
sum for the exact solution, the linear terms in żj , γ̇j for the difference are

h

πi

∑

(k−j)odd

γ̇k
z(αj)(ρ) − z(αk)(ρ)

−
h

πi

∑

(k−j)odd

γ(αk)(ż
(ρ)
j − ż

(ρ)
k )

(z(αj)(ρ) − z(αk)(ρ))2
, (9)

where we have expanded the periodic sum, with k now unbounded. To identify
the most singular terms, we use the Taylor expansion to obtain the most singular
symbols

1

z(αj)− z(αk)
=

1

zα(αj)(αj − αk)
+ f(αj , αk) ,

where f is a smooth function. Thus, the most important contribution to the first
term in (9) is (2izα)

−1Hhγ̇j , where Hh is the discrete Hilbert transform

Hh(γ̇j) ≡
1

π

∑

(k − j)odd

γ̇k
αj − αk

2h . (10)

Similarly, the most important contribution to the second term in (9) is

−γ(2iz2α)
−1Λh(z

(ρ)
j ), where Λh is defined as follows:

Λh(ḟj) ≡
1

π

∑

(k − j)odd

ḟj − ḟk
(αj − αk)2

2h . (11)

LetH and Λ be the corresponding continuous operators forHh and Λh respectively,
i.e. replacing the discrete sums by the continuous integrals. In the continuous level,
it is easy to show by integration by parts that

Λ(f) = H(Dαf) , (12)
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where Dα is the continuous derivative operator. It turns out that in order to
maintain numerical stability of the boundary integral method, the quadrature
rule for the singular integral and the discrete derivative operator Dh must satisfy
a compatibility condition similar to (12). That is, given a quadrature rule, which
defines a corresponding discrete operators Hh and Λh, and a discrete derivative
Dh, they must satisfy the following compatibility condition:

Λh(żi) = HhDh(żi) , (13)

for ż satisfying ̂̇z0 = ̂̇zN/2 = 0. If (13) is violated, it would cause a mismatch of
a singular operator of the form (Λh −HhDh)(ż) in the error equations. This will
generate numerical instability.

By performing appropriate Fourier filtering in the approximations of the veloc-
ity integral, we can ensure a variant of the compatibility condition (13) is satisfied,

Λh(ż
(ρ)
j ) = HhDh(żj) . (14)

This can be verified from the spectrum properties of Hh and Λh and the definition
of the ρ filtering. This modified compatibility condition is sufficient to ensure
stability of our modified boundary integral method. This explains why we need
to filter z in (5) and (7) when we approximate the velocity integral. The modified
algorithm also allows use of non-spectral derivative operators.

By using properties of the discrete Hilbert transform: (i) H2
h = −I , (ii)

Λh(z
(ρ)) = HhDh(z), (iii) the commutator, [Hh, f ], is a smoothing operator, i.e.

[Hh, f ](ż
(ρ)) = A−1(ż) for smooth f , we can derive an error equation for żj which

is similar to the continuum counterpart in the linear well-posedness study [2, 3]

dżj
dt

= z−1
α (I − iHh)DhḞ +A0(ż) +A−1(φ̇) +O(hr),

where Ḟ = φ̇ − uẋ − vẏ, A0 is a bounded operator from lp to lp, and A−1 is a
smoothing operator of order one, i.e. DhA−1 = A0 and A−1Dh = A0. The leading
order error equation suggests that we project the error equation into the local
tangential and normal coordinate system. In this local coordinate, the stability
property of the error equations becomes apparent. Let żN , żT be the normal and
tangential components of ż, with respect to the underlying curve z(α), N being
the outward unit normal, and δ̇ = żT +Hhż

N . We obtain after some simplification

δ̇t = A−1(Ḟ ) +A0(ż), (15)

żNt =
1

|zα|
HhDhḞ +A−1(Ḟ ) +A0(ż), (16)

Ḟt = −c(α, t)żN +A−1(ż), c(α, t) = (ut, vt + g) ·N, (17)

where equation (17) is obtained by performing error analysis on Bernoulli’s equa-
tion and using the Euler equations. In this form it is clear that only the normal
component of ż is important. This is consistent with the physical property of
interfacial dynamics. Now it is a trivial matter to establish an energy estimate for
the error equations. Note that HhDh is a positive operator with a Fourier symbol
ρ(kh)|k|. The discretization is stable if the water wave problem is well-posed, i.e.
the sign condition, c(α, t) > 0, is satisfied. We refer to [3] for details.
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3 Generalization to 3-D Water Waves.

Numerical stability of 3-D boundary integral methods is much more difficult. Let
z(α1, α2) be a parametrization of a 3-D surface. Recall that the 3-D free space
Green function for the Laplace equation is given by G(z) = −1/(4π|z|). The
corresponding velocity integral is given by

dz

dt
=

∫
Ω(α′)×∇z

′G(z(α)− z(α′))dα′ + wloc(α) ,

where Ω = µα1
zα2

− µα2
zα1

, wloc = Ω(α) × (zα1
× zα2

) /|zα1
× zα2

|2 is the local
velocity, and µ is the dipole strength.

One of the main difficulties for 3-D boundary integral methods is that the
velocity integral has a branch point singularity which is not removable by desin-
gularization. Also, unlike the 2-D case, we cannot express the leading order con-
tribution of the singular operator as an integral operator defined on a flat surface.
Now, the leading order singular operators depend on the free surface and have
variable coefficients (assuming the tangent vectors are orthogonal for simplicity):

Hl(f) =
1

2π

∫
(αl − α′

l)f(α
′)dα′

(|zα1
(α)|2(α1 − α′

1)
2 + |zα2

(α)|2(α2 − α′
2)

2)
3/2

, l = 1, 2,

Λ(f) =
1

2π

∫
(f(α)− f(α′))dα′

(|zα1
(α)|2(α1 − α′

1)
2 + |zα2

(α)|2(α2 − α′
2)

2)
3/2

.

As in 2-D, there are certain compatibility conditions among singular operators
and the derivative operator. For example, we have Λ = H1D1+H2D2. Stability of
the boundary integral method requires a similar compatibility condition to hold:

Λh(z) = (Hh
1D

h
1 +Hh

2D
h
2 )z,

which, unfortunately, is generically violated by almost all discretizations. Although
this compatibility condition can be imposed by applying a Fourier filtering as in
the 2-D case, such filtering can no longer be evaluated efficiently by Fast Fourier
Transform (FFT) since the singular operator, Hh

l or Λh, is not a convolution
operator. The kernel depends on a variable coefficient.

In additional to the above compatibility condition, there are several other
compatibility conditions that need to be satisfied for 3-D surfaces. Since there
are no spectrally accurate approximations to the singular integrals in 3-D, it is
almost impossible to enforce all the other compatibility conditions by using Fourier
filtering alone.

To overcome this difficulty, we introduce a new stabilizing method without
using the Fourier filtering. This new technique can be illustrated more clearly for
the 2-D point vortex method [12]. Let us illustrate how we enforce the compati-
bility condition Λh = HhDh indirectly by adding a stabilizing term. The modified
point vortex method approximation for 2-D water waves is given by

dz̄j
dt

=
1

2πi

∑

k 6=j

γkh

zj − zk
+

γj
2Dhzj

+ CI
j ,
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where

CI
j =

γj
2i(Dhzj)2

(Λh −HhDh)zj .

This method is clearly consistent since the point vortex method gives a first order
approximation to the singular integral: (HhDh − Λh)z(αj) = O(h). Let żj =
zj − z(αj), γ̇j = γj − γ(αj) be the errors in zj and γj . Let Ei =

1
2πi

∑
j 6=i

γj

zi−zj
h,

and define Ėi = Ei − E(αi), Ċ
I
i = CI

i − CI(αi). Using the same argument as
before, we can show that the linear variation in Ei is given by

Ėi =
1

2izα(αi)
Hh(γ̇i)−

γ(αi)

2izα(αi)2
Λhżi +A0(żi) +A−1(γ̇i) .

Similarly, we have

ĊI
i =

γ(αi)

2izα(αi)2
(Λh −HhDh)żi +A0(żi) +A−1(γ̇i),

where we have used the fact that (Λh −HhDh)z(αi) = O(h). Now combining Ėi

with ĊI
i , we obtain

Ėi + ĊI
i =

1

2izα(αi)
Hh(γ̇i)−

γ(αi)

2izα(αi)2
Λhżi

+
γ(αi)

2izα(αi)2
(Λh −HhDh)żi +A0(żi) +A−1(γ̇i)

=
1

2izα(αi)
Hh(γ̇i)−

γ(αi)

2izα(αi)2
HhDhżi +A0(żi) +A−1(γ̇i).

Note that the two Λhżi terms cancel each other in the above equation, and only
the HhDhżi term survives in place of Λhżi. This in effect enforces the compat-
ibility condition Λh = HhDh. This stabilizing technique is very general, and it
applies to 3-D water waves. For 3-D water waves, we have four more compati-
bility conditions that need to be satisfied. We need to handle each one of them
by adding a corresponding stabilizing term just as we outlined above. This will
give a stable discretization for 3-D water waves. Moreover, by using a generalized
arclength frame which enforces |zα1

|2 = λ1(t)|zα2
|2 and (zα1

, zα2
) = λ2(t)|zα2

|2,
these correction terms can be evaluated efficiently by FFT, see [13].

4 Stabilizing Effect of Surface Tension

Surface tension plays an important role in understanding fluid phenomena such
as pattern formation in Hele-Shaw cells, the motion of capillary waves on free
surfaces, and the formation of fluid droplets. On the other hand, surface tension
also introduces high order spatial derivatives into the interface motion through
local curvature which couples to the interface equation in a nonlinear and nonlocal
manner. These terms induce strong stability constraints on the time step if an
explicit time integration method is used. These stability constraints are generally
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time dependent, and become more severe by the differential clustering of points
along the interface.

Hou, Lowengrub, and Shelley [8] proposed to remove the stiffness of surface
tension for 2-D fluid interfaces by using the Small Scale Decomposition technique
and reformulating the problem in the tangent angle θ and arclength metric sα.
Curvature has a very simple expression in these variables, κ = θα/sα. One im-
portant observation is that the stiffness only enters at small scales. The leading
order contribution of these singular operators at small scales can be expressed in
terms of the Hilbert transform, which is diagonalizable using Fourier Transform.
By treating the leading order terms implicitly, but treating the lower order terms
explicitly, we obtain a semi-implicit discretization which can be inverted efficiently
using FFT. This reformulation greatly improves the time step stability constraint.
Many interfacial problems that were previously not amenable are now solvable
using this method. This idea has been subsequently generalized to 3-D filaments
by Hou, Klapper, and Si who use curvature and arclength metric as the new dy-
namic variables [10]. Applications to Hele-Shaw flows, 3-D vortex filaments, and
the Kirchhoff rod model for protein folding all give very impressive results.

In the following, we would like to present two numerical calculations using our
numerical methods. In Fig. 1, we show that water waves with small surface tension
generate singular capillary waves dynamically. Our study shows that the dynamic
generation of capillary waves is a result of the competition between convection
and dispersion. The capillary waves originate near the crest in a neighborhood
where both the curvature and its derivative are maximum. For fixed but small
surface tension, the maximum of curvature increases in time and the interface
develops oscillatory capillary waves in the forward front of the crest. The minimum
distance between adjacent capillary crests appears to approach zero, suggesting the
formation of trapped bubbles as observed in Koga’s experiments of breaking waves
[14]. On the other hand, for a fixed time, as the surface tension coefficient τ is
reduced, both the capillary wavelength and its amplitude decreases nonlinearly.
The interface converges strongly to the zero surface tension profile [5].

We study the stabilizing effect of surface tension for an unstably stratified
two-fluid interface in Fig. 2. This problem was first investigated by Pullin in
[16]. Due to the numerical instability, Pullin’s calculations were not conclusive.
Using our improved method, we do not observe any numerical instability and we
are able to perform well-resolved calculations to study the stabilizing effect of
surface tension. Our study shows that surface tension indeed regularizes the early
curvature singularity induced by the Rayleigh-Taylor instability. The interface
rolls up into two spirals as time evolves. Note that the tips of the fingers broaden
as they continue to roll, and that the interface bends towards the tip of the fingers.
At around t = 1.785, the interface forms a trapped bubble and self-intersects. The
minimum distance between the neck of the bubble is approximately 5× 10−4 [4].
This process of bubble formation through self-intersection of a fluid interface has
been observed in [8, 9] for a vortex sheet. In both cases, we found a convincing
evidence that the minimum distance between the neck of the bubble scales like
(tc − t)2/3, providing a partial agreement with the self-similar scaling.
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Figure 1: Comparison of the zero surface tension interface profile with the
corresponding ones for decreasing surface tension τ at t = 0.45, N = 2048.
(a)τ = 2.5× 10−4. (b)τ = 1.25× 10−4. (c)τ = 6.25× 10−5. (d)τ = 3.125× 10−5.

Figure 2: Rayleigh-Taylor instability: Atwood ratio A = −0.1, surface tension
τ = 0.005, N = 2048 and ∆t = 1.25× 10−4.
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