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Travelling Water-Waves,

as a Paradigm for Bifurations in Reversible

Infinite Dimensional \Dynamial" Systems

Gérard Iooss

Abstract. We first show a typical bifurcation study for a finite di-
mensional reversible system, near a symmetric equilibrium taken at 0.
We state the results on known small bounded solutions: periodic, quasi-
periodic, homoclinic to 0, and homoclinics to periodic solutions. The
main tool for such a study is center manifold reduction and normal form
theory, in presence of reversibility. This allows to prove persistence of
large class of reversible (symmetric) solutions under higher order terms,
not considered in the normal form. We then present water-wave prob-
lems, where we look for 2D travelling waves in a potential flow. In case
of finite depth layers, the problem of finding small bounded solutions, is
shown to be reducible to a finite dimensional center manifold, on which
the system reduces to a reversible ODE. Bounded solutions of this ODE
lead to various kinds of travelling waves which are discussed.

If the bottom layer has infinite depth, which appears to be the most phys-
ically realistic case, concerning the validity of results in the parameter
set, the mathematical problem is more difficult. We don’t know how to
reduce it to a finite dimensional one, due to the occurence of a contin-
uous spectrum (of the linearized operator) crossing the imaginary axis.
We give some hints, on how to attack this difficulty, specially for periodic
and homoclinic solutions which have now a polynomial decay at infinity .

1991 Mathematics Subject Classification: 58F39, 58F14, 76B15, 34A47,
76B25

1 Bifurcations of reversible systems near a symmetric equilibrium

1.1 Basic tools

Let us first consider a finite dimensional vector field of the form

dU

dx
= F (U) (1)

where U(x) lies in R
n, we say that system (1) is reversible if there exists a linear

symmetry S, satisfying S2 = I, such that SF = −F ◦S. This implies, in particular,
that if x 7−→ U(x) is solution of (1), then x 7−→ SU(−x) is also solution. Assume
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in addition that F (0) = 0 and that F is Ck, k ≥ 2, and define the derivative at
the origin: L = DF (0). It is clear that SL = −LS, which implies that the set
of eigenvalues of L is symmetric with respect to both axis in C. In what follows,
we are specially interested in solutions of (1) which stay in a neighborhood of 0
for x ∈ R. The main tool for understanding such solutions is a center manifold
reduction theorem [19] (see [28] for a complete and pedagogic proof):

Theorem 1 (Center manifold theorem) Assume that the spectrum of L is
composed with a part σ0 on the imaginary axis and another part σh lying at a
positive distance from the imaginary axis. Let us denote respectively by E0 and Eh

the subspaces invariant under L, corresponding to this splitting of the set of eigen-
values of L. Then, there exists a function Ψ ∈ Ck(E0, Eh),Ψ(0) = 0, DΨ(0) = 0,
and a neighborhood U of 0 in R

n, such that the manifold

M0 = {X +Ψ(X)|X ∈ E0} ⊂ U

has the following properties

(i) M0 is locally invariant under (1);

(ii) M0 contains all solutions of (1) staying in U for all x ∈ R;

(iii) Ψ commutes with the symmetry S : SΨ = Ψ ◦ S0 (we denote by S0 the
restriction of S on the space E0).

The part (iii) of the above theorem is not in [19] but results easily from the
proof of the theorem, as it is also true for any linear unitary operator commuting
with F.

We are in fact interested in Bifurcations of solutions lying in a neighborhood
of 0, i.e. in a structural change of these solutions when some parameter varies. To
fix ideas, we now consider systems of the form

dU

dx
= F (µ,U), F (0, 0) = 0 (2)

where µ is a real parameter, F being smooth with respect to both arguments, and
F (0, ·) satisfies the same assumptions as F in (1). Then, it is nearly straightforward
that there is a neighborhood of 0 in R× R

n for (µ,U) for which a family of center
manifolds Mµ exist, of the form

U = X +Ψ(µ,U), X ∈ E0,Ψ(0, 0) = 0, DXΨ(0, 0) = 0. (3)

The interest of this result rests in particular in the ”uniform” validity for µ in a
neighborhood of 0. Indeed, in case 0 stays an equilibrium of (2) when µ varies, the
eigenvalues of DUF (µ, ·) may escape from the imaginary axis, and we might be
tempted to apply the classical invariant manifold theorem for hyperbolic situations.
This would lead to a domain of validity much smaller than the one given by
the present theorem. Of course we ”pay” this by the non uniqueness of such
center manifolds, and the fact that the more regularity we wish, the smaller is the
existence domain for Mµ.
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Water-Waves as a Dynamical System 613

The reduced system on Mµ is written

dX

dx
= f(µ,X) in E0 (4)

and is still reversible, provided that the representation S0 of S on E0 is not trivial.
Moreover, f(0, 0) = 0 and DXf(0, 0) = L0 = DUF (0, 0)|E0

has all its eigenvalues
of zero real part.

Now, a very powerfull tool for studying the reduced system (4) is normal form
theory. This technique consists in making near the origin, a change of variables
close to identity and polynomial in X, which modifies the form of (4) in simplifying
its Taylor expansion up to a fixed order (the degree of the polynomial). We then
expect to recognize more easily relevant solutions of our system on a ”simplified”
f. Normal form theory goes back to Poincaré and Birkhoff and was more recently
developed in particular by V.Arnold [2], Belitskii [4], Cushman & Sanders [6] and
Elphick et al [9]. In the context of a system like (4) where all eigenvalues of L0 lie
on the imaginary axis, we use the following global characterization result of [9],
(see also [12]):

Theorem 2 (Normal form theorem) For any p ≤ k, there is a neighborhood

Ũp of 0 in R×E0 and there are polynomials Φ(µ, ·) and N(µ, ·) E0 → E0, of degree
p, with coefficients smooth in µ, such that Φ(0, 0) = N(0, 0) = 0, DXΦ(0, 0) =

DXN(0, 0) = 0 and such that for (µ,X) ∈ Ũp the change of variable

X = X̃ +Φ(µ, X̃)

transforms (4) into the following system which has the same regularity in (µ, X̃):

dX̃

dx
= L0X̃ +N(µ, X̃) +R(µ, X̃) (5)

where N is characterized by

N(µ, eL
∗

0
xX) = eL

∗

0
xN(µ,X), ∀x ∈ R, ∀X ∈ E0, ∀µ near 0,

and R(µ, X̃) = o(||X||p). In addition, (5) inherits the symmetries of (2).

This theorem provides an additional symmetry to nonlinear ”simplified”
terms, this symmetry only resulting from the linearized operator! The proof which
includes the parameter dependance of the polynomial coefficients and the optimal
estimate on the rest R, is quite technical (see hint in [9], and [12]).

1.2 Study of some reversible normal forms

Let us restrict our attention to systems such that 0 stays solution of (2) for µ 6= 0.
This eliminates some cases which are not of interest here. Now, because of re-
versibility, we know that the eigenvalues of DUF (µ, 0) are symmetric with respect
to both axis, hence theorem 1 indicates that bifurcation situations may occur at

Documenta Mathematica · Extra Volume ICM 1998 · III · 611–622



614 Gérard Iooss

least when some eigenvalues meet (by pairs) the imaginary axis. The simplest case
is when L0 has only a double 0 eigenvalue on the imaginary axis. This leads to a
2 dimensional center manifold for the study of small bounded solutions of (4). We
give below some details only on the next most important cases, i.e. when

(i) L0 has only a double 0 and a pair of simple pure imaginary eigenvalues on
the imaginary axis;

(ii) L0 has only a pair of double pure imaginary eigenvalues on the imaginary
axis.

Notice that case (ii) was introduced by Y.Rocard (see chapter I.14 of [27])
when he presents the instability ”par confusion de fréquences propres”, which oc-
curs in the phenomenon of the fluttering of a wing (submitted to the aerodynamic
forcing of a big wind), particularly dangerous for planes and for long suspended
bridges.

1.2.1 Case (i)

Here the center manifold is four dimensional. Let us denote by ±iq the pair of
simple eigenvalues and decompose X = Aξ0 + Bξ1 + Cζ + Cζ, where (A,B) are
real amplitudes, C a complex one and L0ξ0 = 0, L0ξ1 = ξ0, L0ζ = iqζ.

Then we need to know how the reversiblity symmetry S0 acts on (A,B,C,C).
There are two theoretical possibilities, depending on whether Sξ0 = ξ0 or −ξ0. In
most physical problems we have the first case, so S0 : (A,B,C,C) → (A,−B,C,C)
and after parameter dependent rescaling, the normal form, truncated at quadratic
order, reads





dA

dx = B
dB

dx = µA+A2 + c|C|2,
dC

dx = iC(q + d1µ+ d2A),

(6)

where c = ±1 and (real) coefficients dj can be explicitely computed (see [14] for
a proof of (6) and the computation of principal part of coefficients on a specific
physical problem). This system is integrable, with the two first integrals

K = |C|2, H = B2 − (2/3)A3 − µA2 − 2cKA, (7)

and we show at figure 1 the various graphs of functions

fµ,K,H(A) = (2/3)A3 + µA2 + 2cKA+H

depending on (K,H), for µ > 0. In this case, we have, in addition to the trivial
equilibrium, another ”conjugate” equilibrium, and several types of periodic solu-
tions, quasi-periodic solutions (interior of the triangular region in (K,H) plane,
and homoclinic solutions, one homoclinic to 0, and all others homoclinic to one of
the periodic solutions.

We represent on figure 2, in the (A,B) plane all bounded solutions for cK <
µ2/4. Notice that the homoclinic solution to A+ corresponds here to a solution
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Figure 1: case (i). Graphs of fµ,K,H(A) for µ > 0.

homoclinic to a periodic solution since K 6= 0. Notice that A+ ∼ −cK/µ when
|K| ≪ |µ|, meaning that oscillations at ∞ are very small in this case. For K = 0
this corresponds to a solution homoclinic to 0, even though the stable and unstable
manifolds of 0 are only one dimensional (in the 4 dim space!). We shall see in next
section that this solution does not exist in general for the full system (5), even
though one may compute its expansion in powers of the bifurcation parameter µ
up to any order.

Figure 2: case (i). Bounded solutions of (6) for various values of H in the (A,B)

plane, for µ > 0, cK < µ2/4. A± = 1/2(−µ±
√

µ2 − 4cK).

An analogous study holds for µ < 0 using fµ,H,K(A) = −f−µ,−H,K(−A)).

1.2.2 Case (ii)

Here the center manifold is again four dimensional. Let us denote by ±iq the pair
of double eigenvalues at criticallity, and define by (A,B) the complex amplitudes
corresponding respectively to the eigenmode and to the generalized eigenmode.
This case is often denoted by ”1:1 reversible resonance”. We can always assume
that the reversibility symmetry S0 acts as: (A,B) 7−→ (A,−B). The normal form,
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at any order, reads (see a proof in [12]):

dA

dx
= iqA+B + iAP [µ, |A|2, i/2(AB −AB)], (8)

dB

dx
= iqB + iBP [µ, |A|2, i/2(AB −AB)] +AQ[µ, |A|2, i/2(AB −AB)],

where P (µ, ·, ·) and Q(µ, ·, ·) are real polynomials. Let us define more precisely
the coefficients of Q, for the cubic normal form [N of degree 3 in (5)]: Q(µ, u, v) =
µ+q2u+q3v, where q2 may be taken as ±1, after a parameter dependent rescaling.
This means that for µ > 0 the eigenvalues are at a distance

√
µ from the imaginary

axis, while, for µ < 0, they sit on the imaginary axis. The explicit computation of
the principal parts of coefficients of polynomials P and Q is made for instance in
[7] on a specific physical example. The vector field (8) is integrable, with the two
following first integrals:

K = i/2(AB −AB), H = |B|2 −
∫ |A|2

0

Q[µ, u,K]du.

It is then possible to describe all small bounded solutions of (8), and to discuss
the various types of solutions in the (K,H) plane, for µ > 0, or µ < 0 (see [17]).
We obtain families of periodic and quasi-periodic solutions and, for µ > 0, q2 < 0 a
”circle” of solutions homoclinic to 0, for H = K = 0, due to the SO(2) invariance
of the normal form, while for µ < 0, q2 > 0 we have a family (curve in the (H,K)
plane) of ”circles” of solutions homoclinic to periodic solutions (as in case (i)) (the
amplitude is here minimum at x = 0).

1.3 Typical persistence results

In section 1.2, we investigated the normal forms, i.e. equation (5) with no re-
maining term R, and we obtained various type of solutions that we would like to
be persistent for the complete problem (5). The problem consists now in proving
persistence results. In summary, the persistence of periodic solutions of the normal
form can in general be performed, through an adaptation of the Lyapunov-Schmidt
technique (see [14],[22]). The persistence of quasi-periodic solutions is much more
delicate, and can only be performed in a subset of the (H,K) plane, where these
solutions exist for the normal form. Typically, it is proved for case (i), that for any
fixed µ, quasi-periodic solutions exist on a subset of the interior of the triangular
region of figure 1, which is locally the cartesian product of a curve with a Cantor
set (see a complete proof in [16] for case (ii), and see [14] for case (i), both applied
to specific examples in fluid mechanics). The persistence of solutions homoclinic
to periodic solutions, provided that they are not too small, needs some technical-
ity, see for instance [14] for case (i) and [17] for case (ii). The same results holds
for solutions homoclinic to 0 in case (ii). In fact one can prove the persistence
of two symmetric (reversible) solutions (instead of a a full circle of solutions),
using a transversality argument (intersection of the stable manifold of a periodic
orbit (or of the fixed point in case (ii) for µ < 0) with the subspace of symmetric
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points), after controlling the size of the perturbation due to R, which applies for
x ∈ [0,+∞).

Now, for the normal form of case (i), there is a family of orbits homoclinic
to periodic solutions whose amplitudes can be chosen arbitrarily small. It can
be proved (see Lombardi [22] for a complete proof) that there are two families of
reversible solutions homoclinic to a periodic solution whose size may be chosen
arbitrary, until a (non zero) exponentially small size µ−1e−c/

√
µ (smaller than any

power of the bifurcation parameter µ). The method used by Lombardi consists in a
complete justification of a matching asymptotic expansion method of the solution
which is extended in a strip of the complex plane, where the singularity in the
complex plane originates from one of the homoclinic solution of the truncated
normal form (6). Moreover, despite of the fact that a solution homoclinic to 0
exists for the normal form (6), this is not true in general for the full system (5)
(see [23]), even though one can compute an asymptotic expansion up to any order
of such an homoclinic (non existing) ”solution”! This non obvious result says in
particular that we cannot avoid small oscillations at infinity in this case.

2 Application to the water wave problem

Let us consider the case of one layer (thickness h) of an inviscid fluid, the flow is
assumed potential, under the influence of gravity g and surface tension T acting
at the free surface (see left of figure 3). We are interested in steady waves of
permanent form, i.e. travelling waves with constant velocity c. Formulating the
problem in a moving reference frame, our solutions are steady in time, and we
intend to consider the unbounded horizontal coordinate ξ as a ”time”. Let us
denote by ρ the fluid density, then we choose c as the velocity scale and l = T/ρc2

as the length scale. The important dimensionless parameters occuring in the
equations are λ = ghc−2 , b = T (ρhc2)−1 = l/h.

Figure 3: Left: geometric configuration of the water-wave problem. Right: posi-
tions of the 4 critical eigenvalues of Lµ in function of µ = (b, λ).
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A nice formulation of this problem uses a change of coordinates introduced by
Levi-Civita [21]. He uses the coordinates (x, y) defined by the complex potential
w(ξ + iη) = x + iy and unknown are α and β defined by w′(ξ + iη) = e−i(α+iβ)

(complex velocity). The free surface is given by y = 0 , the rigid bottom by y =

−1/b. The physical free surface is given by η = Z(ξ) = Z̃(x) =
∫ 0

−1/b
(e−β cosα−

1)dy. In our formulation, the unknown is [U(x)] (y) = (α0(x), α(x, y), β(x, y))
t

and the system has the form

dU

dx
= F (µ,U) =





sinhβ0 + λbe−β0

∫ 0

−1/b
(e−β cosα− 1)dy

∂β
∂y ,

−∂α
∂y

}
− 1/b < y < 0.

(9)

where µ = (b, λ) , and equation (9) has to be understood in the space H =
R × {L1(−1/b, 0)}2, and U(x) lies in D = R × {W 1,1(−1/b, 0)}2 ∩ {α0 = α|y=0,
α|y=−1/b = 0}, where we denote by β0 the trace β|y=0 and by W 1,1(−1/b, 0) the
space of integrable functions with an integrable first derivative on the interval
(−1/b, 0). A solution of our water-wave problem is any U ∈ C0(D) ∩ C1(H) which
is solution of (9), where (e.g.) C0 means continuous and bounded for x ∈ R.

It is clear that U = 0 is a particular solution of (9), which corresponds to the
flat free surface state. A very important property of (9) is its reversibility : indeed
let us define the symmetry S: SU = (−α0,−α, β)t, then it is easy to see that
the linear operator S anticomutes with F (µ, ·). This reflects the invariance under
reflexion symmetry ξ → −ξ of our original problem.

Remark 3 There is a large class of water-wave problems which can be treated in
a similar way: one may consider several layers of non miscible perfect fluids, and
consider cases with or without surface (or interface) tension (see [11] for these
formulations).

Since we are interested in solutions near 0, it is natural to study the problem
obtained after linearization near 0. We then define the linear operator Lµ =
DUF (µ, 0), unbounded and closed in H. In all problems, for layers with finite
depth , it can be shown that the spectrum of Lµ which is symmetric with respect
to both axis of the complex plane because of reversibility, is only composed of
isolated eigenvalues of finite multiplicities, accumulating only at infinity. More
precisely, denoting by ik these eigenvalues (not necessary pure imaginary), then
one has the classical ”dispersion relation” for solving the eigenvalues, under the
form of a complex equation f(µ, k) = 0. For problem (9), we obtain the following
dispersion relation:

(λb+ k2)k−1 sinh k/b− cosh k/b = 0, for k 6= 0. (10)

There is no more than 4 eigenvalues on (or close to) the imaginary axis, the rest
of them being located in a sector (ik ∈ C; |kr| < p|ki| + r) of the complex plane
(see right side of figure 3). There is a codimension 2 case when (b, λ) = (1/3, 1),
where 0 is a quadruple eigenvalue. The roots of the dispersion equation give the
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poles of the resolvent operator (ikI−Lµ)
−1. In addition, we obtain an estimate of

the form

||(ikI− Lµ)
−1||L(H) ≤ c/|k|, (11)

where c > 0 is fixed and for large enough |k|, and where L(H) is the space of
bounded linear operators in H. The choice of the basic space H should be appro-
priate for finding the good estimate (11) of the resolvent, this is a little delicate
for problems with several layers and no surface tension (see [11]). This estimate
is essential in our method of reduction to a center manifold.

For the study of the nonlinear problem (9) the idea is now to use a center
manifold reduction like in section 1, which leads to an ordinary differential equation
of dimension at most 4 in the present problem. Let us assume that, for µ near µ0,
the eigenvalues of Lµ are contained either in a small vertical strip of width tending
towards 0 for µ → µ0, or at a distance of order 1 from the imaginary axis, then the
estimate (11) allows us to find such a center manifold as in finite dimensional case
(see [20], [24], [29]). Roughly speaking, all ”small” bounded continuous solutions
taking values in D, of the system (9) for values of µ near µ0, lie on an invariant
manifoldMµ which is smooth (however loosing the C∞ regularity) and which exists
in a neighborhood of 0 independent of µ (depending on the required smoothness).
The dimension of Mµ is equal to the sum of dimensions of invariants subspaces
belonging to pure imaginary eigenvalues occuring for the critical value µ0 of the
parameter. In addition, the trace of system (9) on Mµ is also reversible under
the restriction S0 of the symmetry S. It results, in particular that the study we
made at sections 1.2 and 1.3 applies here (after a suitable choice of the bifurcation
parameter). The situation near the set λ = 1, b < 1/3 was studied first in [1] and
[25] in an uncomplete way. Here case (i) applies (not too close to the codimension
2 point, since we would need to use another normal form there (see [10] for such
a study). Denoting by µ = λ − 1, it is shown in [14] that we are in situation
of figure 1, with c > 0. The study of unavoidable exponentially small oscillations
at infinity was first studied directly on the water wave problem in [3] and [26],
and as a general property for a large class of problems in [22]. The generic non
existence of solitary waves in this case follows from [23]. Now, the study made
for case (ii) applies near the curve Γ of figure 3 (right). For problem (9) it is
shown that coefficient q2 is negative. For other water wave problems with more
than one layer, this coefficient may change of sign, which leads to new types of
solutions near this singular case. In the present problem, we then have for (b, λ)
slightly above the curve Γ, the bifurcation of two reversible solitary waves, with
exponentially damping oscillations at infinity [13].

Remark 4 Such reversible bifurcations in function of 2 parameters also appear
in various physical problems. A very nice example is in the study of localized
stuctures for long (assumed infinitely long) rubber rods subject to end tension and
moment! The basic state is the straight rod. The study of eigenvalues of the
linearized operator lead to a picture analogue to figure 3 (right). In particular,
the two homoclinic orbits above, become four because of an extra symmetry of the
problem, and are physically important in the study of buckling of such rods (see [5]).
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3 Physical relevance - infinite depth problem

A common point for the various water wave problems, is that when the bottom
layer thickness grows (b → 0 in (10)), there is an accumulation of eigenvalues on
the whole real axis, and at the limit, as we choose a space D where we replace
1/b by ∞ and suppress the boundary condition at y = −1/b, all real eigenvalues
disappears, leaving the place to the entire real axis forming the essential spectrum:
for σ real 6= 0 the operator (σI−Lµ) is not Fredholm [18]: it is one-to-one, but its
range is not closed and its closure has a non zero finite codimension (see [15],[11]).

At this point we should emphasize that the physical relevance of the center
manifold reduction for the finite depth problem is linked with the distance of the
rest of (non critical) eigenvalues from the imaginary axis. So, the validity of the
bifurcation analysis is becoming empty when the thickness of the layer increases.
To fix ideas, let us give some physical numerical values for air-water free surface
waves. The point (b, λ) = (1/3, 1) then corresponds to a thickness h = 0.48 cm,
and a velocity of waves c = 21.6 cm/s. This means that a layer with thickness
more than few centimeters leads to a spectrum with real eigenvalues very close
to 0, so the analysis which might be done (as in previous section) near the curve
Γ (right of figure 3) for λb near 1/4 on the upper branch) would be valid only in
a very tiny neighborhood of this curve, and this analysis would have no physical
interest. We need to study the worse limiting case, which is here the infinite
depth case, and physical cases are in fact considered as regular perturbations of
this limiting case. We shall see below that this has dramatic consequences on the
mathematical analysis!

For the limiting problem the dispersion relation (10) has at most 4 roots.
There is a pair of two pure imaginary double eigenvalues for λb = 1/4. The re-
maining of the spectrum of Lµ is formed by the full real line, hence it crosses the
imaginary axis at 0, and we cannot use the center manifold reduction. However,
we still have the resolvent estimate (11), due to a good choice of space H. In par-
ticular this type of results is also valid for problems with several layers, one being
of infinite depth, with an additional eigenvalue in 0 (embedded in the essential
spectrum), when there is no surface tension at one of the free surfaces [11].

3.1 Normal forms in infinite dimensions

Since we cannot reduce our problems to finite dimensional ODE’s, and since we
still would like to believe that eigenvalues near the imaginary axis are ruling the
bounded solutions, this is a motivation for developing a theory of normal forms
in separating the finite dimensional critical space, from the rest (the ”hyperbolic”
part of the spectrum, including 0). This leads to ”partial normal forms”, where
there are coupling terms, specially in the infinite dimensional part of the system
(see [15],[8]). For developing this theory, there are some technical difficulties,
specially for problems with more than one layer and no surface tension at some free
surface. A first difficulty is due to cases where 0 is an eigenvalue embedded in the
essential spectrum: for extracting it from the spectrum, we use the explicit form
of the resolvent operator near the real axis, to explicitely obtain the continuous
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linear form which can be used for the projection on the eigenspace belonging to 0.
A second difficulty is that in space H the linear operator has not an ”easy” (even
formal) adjoint. This adjoint and some of its eigenvectors are usually necessary
for expressing projections on the critical finite dim space. Fortunately, in our
problems, we use the explicit form of the resolvent operator near the (for example
double) eigenvalues, to make explicit the projection commuting with the linear
operator (see [18]).

3.2 Typical results

Since we have not yet a center manifold reduction process to a finite ODE, the
method we use now, needs to give a priori the type of solution, we are looking for.
This is a major difference with the cases we had before, for finite depth layers. For
periodic solutions, we use an adaptation of Lyapunov-Schmidt method, except that
the presence of 0 in the spectrum gives some trouble (resonant terms). It appears
that we can formulate all these problems, such that there is no such resonant
term for reversible solutions (symmetric under S). As a result, there are as many
periodic solutions as in the finite depth problem [11]. For solutions homoclinic to 0
(solitary waves), for example in our one layer problem, we first derive the infinite
dimensional normal form, then we inverse the infinite dimensional part of the
system, using Fourier transform. Indeed, the linearized Fourier transform uses the
above resolvent operator, where we eliminated, via a suitable projection, the poles
given by eigenvalues sitting on the imaginary axis. The fact that the resolvent
operator is not analytic near 0 (there is a jump of the resolvent in crossing the
real axis [15]), leads to the fact that this ”hyperbolic part” of the solution decays
polynomially at infinity. Putting this solution into the four dimensional part of the
system, we can solve as before except that the decay of solutions is now polynomial
(as 1/x2), instead of exponential. The principal part of the solution (of order
(λb − 1/4)1/2) at finite distance still comes from the four dimensional truncated
normal form, but its decays faster at infinity than the other part of the solution,
which makes this queue part predominant at infinity. This is the main difference
with the finite depth case, where the principal part coming from the normal form
is valid for all values of x (see [15] for the proofs related with problem (9)).

As a conclusion, let us just say that I present here a specific type of physical
problems which motivate some developments of existing mathematical theories. It
also gives motivation for finding a new tool, probably very difficult to produce,
like a center manifold reduction in cases when a continuous part of the spectrum
crosses the imaginary axis. This is another illustration of the fact that progresses
in mathematics may come from non academic questions raised naturally from
discussions and collaboration with other disciplines.
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