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Exat Relations for Composites:

Towards a Complete Solution

Yury Grabovsky and Graeme W. Milton1

Abstract. Typically, the electrical and elastic properties of composite
materials are strongly microstructure dependent. So it comes as a nice
surprise to come across exact formulae for ( or linking) effective tensor
elements that are universally valid no matter what the microstructure.
Here we present a systematic theory of exact relations embracing the
known exact relations and establishing new ones. The search for exact
relations is reduced to a search for tensor subspaces satisfying certain
algebraic conditions. One new exact relation is for the effective shear
modulus of a class of three-dimensional polycrystalline materials.
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Introduction

Take a metal rod. We can bend it, twist it, stretch it, vibrate it or use it as a
conduit for the flow of electrons or heat. It looks just like a homogeneous material
with behavior governed by bulk and shear elastic moduli and electrical and thermal
conductivities. However if we break the metal rod there is a surprise! One can see
that the surface of the break is rough, comprised of individual crystalline grains
sparkling in the light. Similarly foam rubber behaves like a highly compressible
homogeneous elastic material, even though its pore structure is quite complicated.
Homogenization theory provides a rigorous mathematical basis for the observation
that materials with microstructure can effectively behave like homogeneous mate-
rials on a macroscopic scale. A typical result is the following. To ensure ellipticity
of the equations let us suppose we are given positive constants α and β > α and
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624 Grabovsky and Milton

a periodic conductivity tensor field σ(x) taking values in the set Mc comprising
of all d× d symmetric matrices σ satisfying

αv · v ≤ v · σv ≤ βv · v, (1)

for all vectors v. Then with σǫ(x) = σ(x/ǫ) the electrical potential φǫ(x) which
solves the Dirichlet problem

∇ · σǫ(x)∇φǫ(x) = f(x) within Ω, φǫ(x) = ψ(x) on ∂Ω, (2)

converges as ǫ → 0 (i.e. as the length scale of the periodicity of σǫ(x) shrinks to
zero) to the potential φ0 which solves

∇ · σ∗∇φ0(x) = f(x) within Ω, φ0(x) = ψ(x) on ∂Ω, (3)

where the effective conductivity tensor σ∗ is in Mc and only depends on σ(x)
and not upon the choice of Ω, the source term f(x), nor upon the potential ψ(x)
prescribed at the boundary. The effective conductivity tensor σ∗ is obtained by
solving the following cell-problem. One looks for periodic vector fields j(x) and
e(x), representing the current and electric fields, which satisfy

j(x) = σ(x)e(x), ∇ · j = 0, ∇× e = 0. (4)

The relation 〈j〉 = σ∗〈e〉 between the average current and electric fields serves to
define σ∗. Here, as elsewhere, the angular brackets will be used to denote volume
averages over the unit cell of periodicity. Homogenization results extend to fields
σǫ(x) taking values in Mc which are locally periodic, or random and stationary,
or simply arbitrary: see Bensoussan, et. al. (1978), Zhikov, et. al. (1994), and
Murat and Tartar (1997) and references therein.

Similar results hold for elasticity. Given positive constants α and β > α and
a periodic elasticity tensor field C(x) taking values in the set Me comprised of all
elasticity tensors C satisfying

αA ·A ≤ A · CA ≤ βA ·A, (5)

for all symmetric d×d matrices A, there is an associated effective elasticity tensor
C∗ in Me. It is obtained by looking for periodic symmetric matrix valued fields
τ (x) and ǫ(x), representing the stress and strain fields, which satisfy

τ (x) = C(x)ǫ(x), ∇ · τ = 0, ǫ = [∇u+ (∇u)T ]/2, (6)

in which u(x) represents the displacement field. The relation 〈τ 〉 = C∗〈ǫ〉 between
the average stress and strain fields serves to define C∗.

A key problem, of considerable technological importance, is to determine the
effective tensors σ∗ and C∗ governing the behaviour on the macroscopic scale.
For a long while it was the dream of many experimentalists and theorists alike
that there should be some universally applicable “mixing formula” giving the ef-
fective tensors as some sort of average of the tensors of the crystalline grains or
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constituent materials. However the reality is that the details of the microgeom-
etry can sometimes play an influential role in determining the overall properties,
particularly when the crystalline grains have highly anisotropic behavior or when
there is a large contrast in the properties of the constituent materials. Consider,
for example, a two-phase composite where one phase is rigid and the second phase
is compressible. The question of whether the composite as a whole is rigid or com-
pressible is not solely determined by the volume fractions occupied by the phases,
but depends on whether the rigid phase has a connected component spanning the
material or consists of isolated inclusions embedded in the compressible phase.

So we have to temper the dream. Instead of seeking a universally applicable
“mixing formula” one can ask whether certain combinations of effective tensor
elements can be microstructure independent. Indeed they can. Sometimes these
exact relations are easy to deduce and sometimes they are not at all obvious.
Such exact relations provide useful benchmarks for testing approximation schemes
and numerical calculations of effective tensors. Grabovsky (1998) recognized that
there should be some general theory of exact relations. Utilizing the fact that an
exact relation must hold for laminate materials he derived restrictive constraints
on the form that an exact relation can take. This reduced the search for candidate
exact relation to an algebraic question that was analysed by Grabovsky and Sage
(1998). Here we give sufficient conditions for an exact relation to hold for all
composite microgeometries, and not just laminates. At present the general theory
of exact relations is still not complete. There is a gap between the known necessary
conditions and the known sufficient conditions for an exact relation to hold. In
addition the associated algebraic questions have only begun to be investigated.
Before proceeding to the general theory let us first look at some examples: see
also the recent review of Milton (1997).

Examples of some elementary exact relations

An example of a relation which is easy to deduce is the following. Lurie, Cherkaev
and Fedorov (1984) noticed that if the elasticity tensor field C(x) is such that
there exist non-zero symmetric tensors V and W with C(x)V = W for all x
then the effective tensor C∗ must satisfy C∗V = W . The reason is simply that
the elastic equations are solved with a constant strain ǫ(x) = V and a constant
stress τ (x) = W and the effective tensor, by definition, relates the averages of
these two fields. In particular, consider a single phase polycrystalline material,
where the crystalline phase has cubic symmetry. Each individual crystal responds
isotropically to hydrostatic compression, and we can take V = I and W = dκ0I
where d is the spatial dimension (2 or 3) and κ0 is the bulk modulus of the pure
crystal. The result implies that the effective bulk modulus κ∗ of the polycrstal is
κ0 (Hill, 1952). Another way of expressing this exact relation is to introduce the
manifold

M = M(V ,W ) = {C ∈ Me | CV = W }, (7)

of elasticity tensors. The exact relation says that if C(x) ∈ M for all x then
C∗ ∈ M. In other words the manifold M is stable under homogenization. It
defines an exact relation because it has no interior. Many other important exact
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relations derive from uniform field arguments: see Dvorak and Benveniste (1997)
and references therein.

The classic example of a non-trivial exact relation is for two-dimensional con-
ductivity (or equivalently for three-dimensional conductivity with microstructure
independent of one coordinate). When d = 2 the equations (4) can be written in
the equivalent form

j′(x) = σ′(x)e′(x), ∇ · j′(x) = 0, ∇× e′(x) = 0, (8)

where

j′(x) ≡ cR⊥e(x), e′(x) ≡ R⊥j(x), σ′(x) ≡ cR⊥[σ(x)]
−1RT

⊥. (9)

in which c is a constant and R⊥ is the matrix for a 90◦ rotation. In other words
the fields j′(x) and e′(x) solve the conductivity equations in a medium with
conductivity σ′(x). Moreover by looking at the relations satisfied by the average
fields one sees that the effective conductivity tensor σ′

∗ associated with σ′(x) and
the effective conductivity tensor σ′

∗ associated with σ(x) are linked by the relation

σ′
∗ = cR⊥(σ∗)

−1RT
⊥, (10)

[see Keller (1964), Dykhne (1970) and Mendelson (1975)]. Now suppose the
conductivity tensor field is such that its determinant is independent of x, i.e.
detσ(x) = ∆. With c = ∆ we have σ′(x) = σ(x) implying σ′

∗ = σ∗. From (10)
one concludes that detσ∗ = ∆. In other words the manifold

M = M(∆) = {σ ∈ Mc | detσ = ∆} (11)

is stable under homogenization (Lurie and Cherkaev, 1981). Again it defines an
exact relation because it has no interior. An important application of this result is
to a single phase polycrystalline material where the crystalline phase has a conduc-
tivity tensor with determinant ∆. If the polycrystal has an isotropic conductivity
tensor the exact relation implies the result of Dykhne (1970) that σ∗ =

√
∆I.

An equation satisfied by the polarization field

For simplicity, let us consider the conductivity problem and take as our reference
conductivity tensor a matrix σ0 inMc. Affiliated with σ0 is a non-local operator Γ
defined as follows. Given any periodic vector-valued field p(x) we say that e′ = Γp
if e′ is curl-free with 〈e′〉 = 0 and p − σ0e

′ is divergence-free. Equivalently, we
have

ê
′(k) = Γ(k)p̂(k) for k 6= 0,

= 0 when k = 0, (12)

where ê
′(k) and p̂(k) are the Fourier coefficients of e′(x) and p(x) and

Γ(k) =
k ⊗ k

k · σ0k
. (13)
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Now suppose we take a polarization field p(x) = (σ(x) − σ0)e(x) where
e(x) solves the conductivity equations. It is analogous to the polarization field
introduced in dielectric problems. From the definition (13) of the operator Γ we
see immediately that it solves the equation

[I + (σ − σ0)Γ]p = (σ − σ0)〈e〉 and 〈p〉 = (σ∗ − σ0)〈e〉. (14)

For investigating exact relations it proves convenient to use another form of these
equations. We choose a fixed matrixM , define the fractional linear transformation

WM (σ) = [I + (σ − σ0)M ]−1(σ − σ0), (15)

(in which we allow for σ − σ0 to be singular) and rewrite (14) as

[I −KA]p = Kv, 〈p〉 = K∗v, (16)

where
K(x) =WM (σ(x)), K∗ =WM (σ∗), v = 〈e〉+M〈p〉, (17)

and A is the non-local operator defined by its action, Ap = M(p − 〈p〉) − Γp.
The formula (16) involves the operator KA. If q = KAp we have

q(x) =
∑

k 6=0

eik·xK(x)A(k)p̂(k), where A(k) = M − Γ(k), (18)

and p̂(k) is the Fourier component of p(x).

Necessary conditions for an exact relation

Since exact relations hold for all microstructures they must in particular hold
for laminate microstructures for which the tensors and hence the fields only have
variations in one direction, n. This simple consideration turns out to impose very
stringent constraints. Consider the conductivity problem. Let us take M = Γ(n)
and let Wn(σ) denote the transformation WM (σ). When K(x) = K(n · x)
(16) is easily seen to have the solution p(x) = K(x)v and K∗ = 〈K〉 because
A annihilates any field which only has oscillations in the direction n. [Milton
(1990) and Zhikov (1991) give related derivations of the formula K∗ = 〈K〉:
see also Backus (1962) and Tartar (1976) for other linear lamination formulae.]
Since K∗ is just a linear average of K(x) any set of conductivity tensors which
is stable under homogenization, and hence lamination, must have a convex image
under the transformation Wn. In particular if a manifold M defines an exact
relation, and σ0 ∈ M then Wn(M) must be convex and contain the origin. But
M and hence Wn(M) have no interior, and a convex set with no interior must
lie in a hyperplane. It follows that Wn(M) must lie in a hyperplane passing
through the origin, i.e. in a subspace K = Kn. Moreover, since M must be stable
under lamination in all directions the set Wm(W−1

n (K)) must be a subspace for
each choice of unit vector m. Now given some tensor K ∈ K and expanding
Wm(W−1

n (ǫK)) in powers of ǫ gives

Wm(W−1

n (ǫK)) = ǫK{I − [Γ(n)− Γ(m)]ǫK}−1

= ǫK + ǫ2KA(m)K + ǫ3KA(m)KA(m)K + . . . , (19)
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where A(m) is given by (18) with M = Γ(n). Since the linear term is ǫK the
hyperplane Wm(W−1

n (K)) must in fact be K itself, i.e. K does not depend on n.
From an examination of the quadratic term we then see that

KA(m)K ∈ K for all m and for all K ∈ K. (20)

Higher order terms in the expansion do not yield any additional constraints. Indeed
substitution of K = K1+K2 in (20), where K1 and K2 both lie in K, yields the
corollary,

K1A(m)K2 +K2A(m)K1 ∈ K for all K1,K2 ∈ K. (21)

Applying this with K1 = K and K2 = KA(m)K shows that the cubic term lies
in the space K. Similarly all the remaining higher order terms must also lie in K
once (20) is satisfied. Therefore the condition (20) is both necessary and sufficient
to ensure the stability under lamination of the set of all conductivity tensors in
Mc ∩W−1

n (K).
For example, consider two-dimensional conductivity and take σ0 = σ0I. Then

A(m) = (n⊗ n−m⊗m)/σ0 is a trace-free 2× 2 symmetric matrix. Now trace
free 2 × 2 symmetric matrices have the property that the product of any three
such matrices is also trace free and symmetric. So (20) will be satisfied when K
is the space of trace free 2 × 2 symmetric matrices. Then W−1

n (K) consists of
2× 2 symmetric matrices σ∗ such that Tr[(σ0I − σ∗)

−1] = 1/σ0. Equivalently, it
consists of matrices σ∗ such that detσ∗ = σ2

0 . This confirms that the manifold
(11) is stable under lamination.

The preceeding analysis extends easily to the elasticity problem (and also
to piezoelectric, thermoelectric, thermoelastic, pyroelectric and related coupled
problems). Candidate exact relations are found by searching for subspaces K of
fourth-order tensors K satisfying (20) where A(m) = Γ(n)−Γ(m) and Γ(k) is a
fourth-order tensor dependent upon the choice of a reference elasticity tensor C0 ∈
Me. In particular, for three-dimensional elasticity, if C0 is elastically isotropic
with bulk modulus κ0 and shear modulus µ0, Γ(k) has cartesian elements

{Γ(k)}ijℓm =
1

4µ0

(
kiδjℓkm + kiδjmkℓ + kjδiℓkm + kjδimkℓ − 4kikjkℓkm

)

+
3kikjkℓkm
3κ0 + 4µ0

. (22)

Once such a subspace K is found the canditate exact relation is the set

M = Me ∩W−1

n (K), (23)

where W−1

n is the inverse of the transformation

Wn(C) = [I + (C − C0)Γ(n)]
−1(C − C0). (24)

Using a related procedure Grabovsky and Sage (1998) found as a canditate exact
relation, stable under lamination, the manifold M = M(µ0) consisting of all
elasticity tensors in Me expressible in the form

C = 2µ0(I − I ⊗ I) +D ⊗D, (25)
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for some choice of symmetric second-order tensor D, in which I is the fourth-order
identity tensor. We will establish that this manifold M does in fact define an exact
relation valid for all composites and not just laminates. For planar elasticity the
analogous exact relation was proved by Grabovsky and Milton (1998).

Sufficient conditions for an exact relation

We would like to show that the manifold M of elasticity tensors defined by (23)
is stable under homogenization and not just lamination, i.e. to ensure that any
composite with elasticity tensor C(x) ∈ M always has an effective elasticity tensor
C∗ ∈ M. Here we will prove it is sufficient that there exist a larger space of fourth-
order tensors K (not necessarily self-adjoint) such that

K1A(m)K2 ∈ K for all m and for all K1,K2 ∈ K, (26)

and such that K equals the subspace of all self-adjoint tensors in K.
To avoid confusion let us first return to the setting of the conductivity prob-

lem. To find K∗ and hence σ∗ we need to solve (16) for a set of d different values
v1, v2, . . . vd of v. Associated with each value vi of v is a corresponding polariza-
tion field pi(x). Let V and P (x) be the d × d matrices with the vectors vi and
pi(x), i = 1, 2, . . . , d, as columns. [Similar matrix valued fields were introduced
by Murat and Tartar (1985).] Taking V = I the set of equations (16) for K∗ and
the d polarization fields can be rewritten as

[I −KA]P = K, 〈P 〉 = K∗, (27)

where now the field Q = KAP is given by

Q(x) =
∑

k 6=0

eik·xK(x)A(k)P̂ (k), (28)

in which P̂ (k) is the Fourier component of P (x), and K(x)A(k) acts on P̂ (k) by
matrix multiplication. The extension of this analysis to elasticity is mathematically
straight-forward, but physically intriguing since in the elasticity setting P (x) is
taken as a fourth-order tensor field.

Provided K(x) is sufficiently small for all x, i.e. σ(x) is close to σ0, the
solution to (27) is given by the perturbation expansion

P (x) =
∞∑

j=0

P j(x) where P j = (KA)jK. (29)

Now let us suppose K(x) takes values in a tensor subspace K satisfying (26).
Our objective is to prove that each field P j(x) in the perturbation expansion also
takes values in K. Certainly the first term P 0(x) = K(x) does. Also if for some
j ≥ 0 the field P j takes values in K then its Fourier coefficients also take values
in K and (28) together with (26) implies that P j+1 = KAP j also lies in K. By
induction it follows that every term in the expansion takes values in K. Provided
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the perturbation expansion converges this implies that 〈P 〉 = K∗ lies in K. Even
if the perturbation expansion does not converge, analytic continuation arguments
imply the exact relation still holds provided σ(x) ∈ Mc for all x, as will be shown
in a forthcoming paper.

The effective shear modulus of a family of polycrystals

To illustrate the power of this method of generating exact relations, let us consider
three-dimensional elasticity and prove that the manifold M consisting of all elas-
ticity tensors in Me expressible in the form (25) for some choice of D defines an
exact relation. We take C0 to be an arbitrary isotropic elastcity tensor with bulk
modulus κ0 and shear modulus µ0. The associated tensor Γ(n), given by (22) has
the property that Tr[Γ(m)I] is independent of m implying that with

M = I ⊗ I/3(3κ0 + 4µ0), (30)

we have
Tr{[M − Γ(m)]I} = 0 for all m. (31)

Now consider the subspace K consisting of all fourth order tensors K expressible
in the form K = I ⊗ B + B′ ⊗ I for some choice of symmetric matrices B and
B′. Now given symmetric matrices B1, B

′
1, B2 and B′

2 (31) implies there exist
symmetric matrices B3 and B′

3 such that

[I ⊗B1 +B′
1 ⊗ I]A(m)[I ⊗B2 +B′

2 ⊗ I] = I ⊗B3 +B′
3 ⊗ I. (32)

Therefore the subspace K satisfies the desired property (26). The subspace K
of self-adjoint fourth-order tensors within K is six-dimensional consisting of all
tensors of the form K = I ⊗B +B ⊗ I, where B is a symmetric matrix. When
K = I⊗B+B⊗I and 3κ0+4µ0− 2TrB > 0 algebraic manipulation shows that

C =W−1

M
(K) = 2µ0(I − I ⊗ I) +D ⊗D, (33)

with
D = [3κ0 + 4µ0 − TrB)I + 3B]/

√
3(3κ0 + 4µ0 − 2TrB). (34)

The manifold M associated with K therefore consists of all tensors C ∈ Me

expressible in the form (25), and is stable under homogenization.
As an example, consider a three-dimensional elastic polycrystal where the

elasticity tensor takes the form

C(x) = R(x)R(x)C0R
T (x)RT (x), (35)

where R(x) is a rotation matrix, giving the orientation of the crystal at each point
x and C0 is the elasticity tensor of a single crystal which we assume has the form

C0 = 2µ0(I − I ⊗ I) +D0 ⊗D0, where [Tr(D0)]
2 − 2Tr(D2

0) > 4µ0 > 0, (36)

in which the latter condition ensures that C0 is positive definite. The elasticity
tensor field C(x) is of the required form (25) with D(x) = R(x)D0R

T (x) and
therefore the effective tensor C∗ of the polycrystal must lie on the manifold M
for some β > α > 0. In particular if C∗ is isotropic then its shear modulus is µ0,
independent of the polycrystal microgeometry. For planar elasticity the analogous
result was proved by Avellaneda et. al. (1996).
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Some interesting exact relations for coupled field problems

We are left with the algebraic problem of characterizing which tensor subspaces
satisfy the conditions (20) or (26). One might wonder if there is perhaps some
easy characterization. For elasticity and conductivity in two or three dimensions all
possible rotationally invariant exact relations have now been found [see Grabovsky
(1998), Grabovsky and Sage (1988) and references therein] but in a more general
context the following example shows that the task is not so simple.

Consider a coupled field problem where there are there are m divergence free
fields j1(x), j2(x), ..., jm(x) and m curl free fields e1(x), e2(x), ..., em(x) which
are linked through the constitutive relation

jiα(x) =

d∑

j=1

m∑

β=1

Liαjβ(x)ejβ(x), (37)

where α and β are field indices while i and j are space indices. Milgrom and
Shtrikman (1989) have obtained some very useful exact relations for coupled field
problems. Rather than rederiving these let us look for exact relations with M = 0
and a reference tensor L0 which is the identity tensor I. The associated tensor
A(m) = M − Γ(m) has elements Aiαjβ = −δαβmimj . Now take R to be a
r-dimensional subspace of m × m matrices and let S denote the d2-dimensional
space of d × d matrices, and consider the rd2-dimensional subspace K spanned
by all tensors K which are tensor products of matrices R ∈ R and matrices
S ∈ S, i.e. which have elements Kiαjβ = RαβSij . Given a tensor K1 which
is the tensor product of R1 ∈ R and S1 ∈ S and a tensor K2 which is the
tensor product of R2 ∈ R and S2 ∈ S, the product K1A(m)K2 will certainly
be in K provided R1R2 ∈ R. Moreover if this holds for all R1,R2 ∈ R then K
defines an exact relation because it is spanned by matrices of the same form as
K1 and K2. This observation allows us to generate countless exact relations. The
condition on R just says that it is closed under multiplication, i.e. that it forms an
algebra. Unfortunately there is no known way of characterizing which subspaces
of matrices form an algebra for general m, and this hints of the difficulties involved
in trying to obtain a complete characterization of exact relations. Since M = 0
the manifold M consists of an appropriately bounded coercive subset of tensors
of the form L = I + K where K ∈ K. The case where m = 2 and R is the set
of all 2 × 2 matrices of the form R = aI + bR⊥ (which is clearly closed under
multiplication) corresponds to tensor fields L(x) for which the consitutive relation
can be rewritten in the equivalent form of a complex equation

j1(x) + ij2(x) = (A(x) + iB(x))(e1(x) + ie2(x)). (38)

The effective tensor L∗ will have an associated complex form A∗ + iB∗.
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