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Optimal Dynami Instability of Mirotubules

Charles S. Peskin1

Abstract. Microtubules are polymers that play many important struc-
tural and functional roles within biological cells, including the separation
of newly replicated chromosomes into the daughter cells during cell di-
vision. In order to catch the chromosomes that they must transport,
microtubules grow out of the centrosome in each of the daughter cells.
For any particular microtubule, epochs of steady growth are punctuated
by episodes of rapid decay; this is known as dynamic instability. It allows
for multiple attempts on the part of each microtubule to hit the small
target at the center of each chromosome known as the kinetochore, where
the microtubule can attach and apply traction to the chromosome. The
optimal design of dynamic instability is the subject of this paper.
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1 Introduction: How to Catch and Transport a Chromosome

During cell division, the newly replicated chromosomes are pulled into the daugh-
ter cells by microtubules. This activity is organized by the centrosomes, one in
each of the daughter cells, which form the two poles of the familiar mitotic spindle.
Microtubules are polymers, made of protein subunits known as tubulin, that grow
radially outward from the centrosomes. Dynamic instability, discovered by Mitchi-
son and Kirschner [1], is a phenomenon concerning the assembly and disassembly
of microtubules. Specifically, the individual steps of addition and removal of tubu-
lin subunits to and from the end of a given microtubule, although random, are
far from independent. Indeed, the microtubule acts like a two-state device, with
a steadily growing state and a rapidly decaying state. Transitions between these
states occur much more rarely than the individual steps of addition or removal of
subunits.

As has been emphasized by Hill and Chen [2], dynamic instability drastically
alters the statistical properties of microtubules, in comparison to the properties
that would be expected on the basis of independent addition and removal of sub-
units. In this paper, we shall continue the exploration of this theme, from a
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somewhat different perspective, that of optimal design. Specifically, we shall state
and solve an optimization problem that explains why dynamic instability is needed
and determines certain relationships between the rate constants that characterize
the assembly and disassembly of microtubules.

Mathematical theories and computer simulations of the dynamic instability
of microtubules may be divided into two broad categories. First, there are the
theories that simplify the microtubule by treating it as a one-dimensional polymer.
Among such works are [2, 3] and also the present paper adopts this simplified point
of view, which is amenable to analysis. Another possibility is to take into account
the two-dimensional tubular lattice in which the subunits of the microtubule are
actually arranged. This has been done in [4, 5, 6, 9]. The two-dimensional lattice
models have been studied by Monte-Carlo simulation.

For a detailed review of the role of microtubules in chromosome transport,
including but not limited to dynamic instability, see [7]. Dynamic instability
makes possible the trial-and-error process that leads to chromosome capture by
microtubules. Following capture, traction on the chromosome is generated by
depolymerization of the microtubules [8].

2 Polymerization and Depolymerization of Microtubules

A typical microtubule consists of 13 protofilaments, each of which runs in a straight
line, parallel to the axis of the microtubule. We shall simplify the description of
the microtubule by regarding it as a one-dimensional polymer; this polymer may
be thought of as representing any one of the 13 protofilaments, even though this
ignores significant interactions between neighboring protofilaments, interactions
which tend to coordinate their assembly and disassembly.

The subunits of a microtubule are tubulin dimers, here denoted by the symbol
T. Each such tubulin dimer has two possible states, denoted T.GDP or T.GTP
according to whether a guanosine diphosphate (GDP) or a guanosine triphosphate
(GTP) molecule is bound to the tubulin dimer. Following the lateral cap hypoth-
esis of Bayley et al. [5], in the simplified form appropriate to our one-dimensional
model, we assume that only T.GTP can be added to a microtubule, and only
T.GDP can exist in the interior of a protofilament (i.e., not at its end). Note that
these rules allow the terminal subunit to be either T.GDP or T.GTP. This one bit
of information will determine whether the model microtubule is in a polymerizing
mode (with T.GTP at the tip), or in a depolymerizing mode (with T.GDP at the
tip).

In case the terminal subunit is T.GTP, then the following polymerization re-
action, driven by GTP hydrolysis (GTP→ GDP + Pi, where Pi denotes inorganic
phosphate) can occur

(T.GDP)n−1(T.GTP) + (T.GTP)→ (T.GDP)n(T.GTP) + Pi (1)

Note that the protofilament has grown by the addition of one tubulin dimer and
that it still has a T.GTP subunit at its tip, so the process described by Eq.1 may
be repeated indefinitely.

Documenta Mathematica · Extra Volume ICM 1998 · III · 633–642



Optimal Dynamic Instability of Microtubules 635

If, on the other hand, the terminal subunit is T.GDP, then this subunit can
spontaneously dissociate:

(T.GDP)n → (T.GDP)n−1 + (T.GDP) (2)

and this depolymerization process, too, may be repeated indefinitely (until the
microtubule has shrunk to zero length).

Conversion in either direction between the polymerizing mode (Eq.1) and the
depolymerizing mode (Eq.2) may occur through the following reversible reaction,
which is supposed to be rare (i.e., slow) in comparison to the reactions described
by Eqs.1 and 2, above:

(T.GDP)n−1 + (T.GTP)↔ (T.GDP)n−1(T.GTP) (3)

The forward reaction in Eq.3 switches the protofilament from the depolymerizing
to the polymerizing mode, and the reverse reaction accomplishes the opposite.
There are other possible ways to switch modes (involving phosphorylation or de-
phosphorylation of the terminal T.GDP or T.GTP, respectively), but we shall
adhere to Eq.3 as the switching mechanism throughout this paper.

The following diagram summarizes the kinetic scheme for the assembly and
disassembly of microtubules that is used in this paper:

α α α α α
A1 → A2 → · · · → An → An+1 → · · ·

α′ ↑↓ β′ α′ ↑↓ β′ α′ ↑↓ β′ α′ ↑↓ β′

B0 ← B1 ← · · · ← Bn−1 ← Bn ← · · ·
β β β β β

(4)

In this diagram, the symbol A denotes the polymerizing mode and B denotes
the depolymerizing mode. The subscript on A or B denotes the total number of
subunits in the polymer. Thus, An = (T.GDP)n−1(T.GTP), n ≥ 1; and Bn =
(T.GDP)n, n ≥ 0. Note that B0 is the fixed anchor, or seed, located within the
centrosome, from which the microtubule grows. Implicit in the kinetic scheme Eq.4
is the assumption that this seed has the same properties as a T.GDP molecule.

The rate constants, with dimensions of inverse time, that appear in the fore-
going scheme, are defined as follows: α = rate constant for fast (Eq.1) polymer-
ization; β = rate constant for fast (Eq.2) depolymerization; α′ = rate constant for
slow (Eq.3) polymerization; β′ = rate constant for slow (Eq.3) depolymerization.
Note that the polymerizing rate constants are proportional to the concentration of
T.GTP in solution: α = a [T.GTP]; α′ = a′ [T.GTP], but that the depolymerizing
rate constants are independent of concentration.

Implicit in our whole discussion of the microtubule as a two-state device, with
a polymerizing state and a depolymerizing state, are the inequalities β′ < α and
α′ < β, so that the microtubule takes many steps of polymerization with rate
constant α before losing its T.GTP cap, and many steps of depolymerization with
rate constant β before regaining that cap.

For the sake of comparison, however, it is also of interest to consider the special
case α = α′, β = β′. This corresponds to the situation in which polymerization
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and depolymerization proceed without regard to the distinction between T.GTP
and T.GDP, and there is no phenomenon of dynamic instability. We shall try to
understand why nature does not proceed in this simple manner.

The differential equations describing an ensemble of protofilaments can now
be written down by inspection of the kinetic scheme (Eq.4). Let pn(t) be the
probability of finding the system in state An at time t, and let qn(t) be the corre-
sponding probability for the state Bn. Then

dq0
dt

= β′p1 + βq1 − α′q0 (5)

dp1
dt

= α′q0 − (α+ β′)p1 (6)

and for n ≥ 1
dqn
dt

= β′pn+1 + βqn+1 − (α′ + β)qn (7)

dpn+1

dt
= αpn + α′qn − (α+ β′)pn+1 (8)

Finally, the qn and pn are normalized according to

∞
∑

n=0

qn +

∞
∑

n=1

pn = 1 (9)

It follows from Eqs.5-8 that

n−1
∑

k=0

(
dqk
dt

+
dpk+1

dt
) = −(αpn − βqn) (10)

for n ≥ 1. This will be useful in constructing a steady-state solution of Eqs.5-9.

3 Steady-State Solution [3]

In the steady state (dpn/dt = dqn/dt = 0 for all n), Eq.10 becomes αpn = βqn.
Thus, we may set un = αpn = βqn, n ≥ 1. It then follows from the steady-state
form of Eq.7 or 8 that un+1 = run, n ≥ 1, where r = (1+α′/β)/(1+β′/α). Thus,
we have a normalizable solution if and only if r < 1, which (since all of the rate
constants are positive) is equivalent to

0 < (ββ′ − αα′) (11)

This means that depolymerization is dominant over polymerization. If the in-
equality Eq.11 is not satisfied, then the microtubule just grows forever and there
is no steady state. From now on we shall assume that this important inequality is
indeed satisfied.

According to the foregoing, the un form a geometric sequence for n ≥ 1. It
is then straightforward to express all of the pn and qn in terms of u1, and to
determine u1 with the help of the normalization condition, Eq.9, thus completing
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the steady-state solution. We omit the details, but just give the following useful
result:

Let N be the random variable which is the number of subunits in a protofil-
ament, and let E[ ] denote the expected value (ensemble average) of the enclosed
quantity. Then

np = E[N |N > 0] =

∑

∞

n=1
(pn + qn)n

∑

∞

n=1
(pn + qn)

=
E[N ]

1− q0
=

β(α+ β′)

ββ′ − αα′
(12)

Note that np measures the average length (in subunits) of microtubules by av-
eraging only over actual microtubules, i.e., by not including microtubules of zero
length in the average.

We now compare two special cases. First suppose α = α′ and β = β′. This
is the above-mentioned case in which the kinetics are indifferent to the distinction
between T.GDP and T.GTP. In this case, we find np = 1/(1 − α/β) Clearly, to
achieve a microtubule of any significant length (e.g., np = 100) in this situation,
(α/β) must be very close to 1. On the other hand, it is also required that (α/β) <
1, or the steady-state solution does not exist. This implies that the parameters
must be poised on the edge of disaster in order for the system to function!

Now consider instead the limiting case β → ∞, with α, α′, and β′ all finite.
In this limit, np → (α/β′) + 1, the steady-state solution always exists, and we can
make the microtubules as long as we like by choosing (α/β′) large. This is much
better! The limiting case β → ∞ has other virtues as well. These will appear
below.

4 Mean and Variance of the Cycle Time

In order to participate in chromosome transport, a microtubule must first grow
until it hits the kinetochore of a chromosome. This being an unlikely event, re-
peated trials are needed. To the extent that microtubules grow in straight lines, a
new trial cannot be said to begin until the microtubule shrinks all the way down
to zero length and then starts to grow again, at a possibly different angle. Thus,
an important random variable is the cycle time, Sc, which we define as the elapsed
time between successive departures from the state B0, in which the microtubule
has zero length, see Eq.4.

The cycle time Sc has two components:

Sc = S0 + Sp (13)

where S0 is the waiting time in state B0, and Sp is the time elapsed between a
given departure from B0 and the subsequent arrival at B0. Since S0 and Sp are
independent random variables, we have τc = E[Sc] = E[S0] + E[Sp] and vc =
Var[Sc] = Var[S0] + Var[Sp], where Var[ ] denotes the variance of the enclosed
random variable.

On general principles concerning chemical reactions, we know that the waiting
time S0 in the state B0 is exponentially distributed with mean 1/α′. It follows
that E[S0] = 1/α′ and Var[S0] = (1/α′)2 Thus, to evaluate τc and vc, we just
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need to know the mean and variance of the random variable Sp. These are found
by assuming that the system starts (t = 0) in the state A1 and by treating B0

as an absorbing state. The reaction scheme is the same as Eq.4, except that the
transition B0 → A1 is omitted:

α α α α α
A1 → A2 → · · · → An → An+1 → · · ·
↓ β′ α′ ↑↓ β′ α′ ↑↓ β′ α′ ↑↓ β′

B0 ← B1 ← · · · ← Bn−1 ← Bn ← · · ·
β β β β β

(14)

The differential equations are

dq0
dt

= β′p1 + βq1 (15)

dp1
dt

= −(α+ β′)p1 (16)

and for n ≥ 1, we have, as before, Eqs.7 and 8. Finally, the initial conditions are
p1(0) = 1 with all of the other pn and all of the qn equal to zero at t = 0.

If we can solve this initial-value problem, then we shall have the probability
density function of Sp, denoted ρp(t), which is given by

ρp(t) =
dq0
dt

= βq1(t) + β′p1(t) (17)

The initial-value problem stated above can indeed be solved in terms of
Laplace transforms. Instead of inverting the Laplace transform to find ρp(t), how-
ever, we shall be content with finding the mean and variance of Sp, which can
be evaluated directly from the Laplace transform itself. Specifically, if we define
ρ̂p(λ) =

∫

∞

0
ρp(t) exp(−λt)dt (and similarly for all other functions of t), then we

have

E[Sp] =

∫

∞

0

tρp(t)dt = −
dρ̂p
dλ

(0) (18)

and similarly,

Var[Sp] = E[S2
p ]− (E[Sp])

2
=

d2ρ̂p
dλ2

(0)−

(

dρ̂p
dλ

(0)

)2

(19)

In terms of the transformed variables q̂n and p̂n, the initial value problem
becomes

λq̂0 − βq̂1 − β′p̂1 = 0 (20)

λp̂1 + (α+ β′)p̂1 = 1 (21)

and for n ≥ 1:
(λ+ α′ + β)q̂n − β′p̂n+1 − βq̂n+1 = 0 (22)

(λ+ α+ β′)p̂n+1 − αp̂n − α′q̂n = 0 (23)
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Now Eq.21 gives p̂1 directly, and we look for a solution of Eqs.22-23 of the
following form

p̂n(λ) = p̂1(λ)z
n−1, n ≥ 1 (24)

q̂n(λ) = q̂1(λ)z
n−1, n ≥ 1 (25)

where we must require |z| < 1. With this assumed form, Eqs.22 and 23 reduce to
the homogeneous 2× 2 system

(

λ1z − α −α′

−β′z λ2 − βz

)(

p̂1(λ)
q̂1(λ)

)

= 0 (26)

where λ1 = λ+ α+ β′ and λ2 = λ+ α′ + β. Of course, z is chosen so that Eq.26
has nontrivial solutions and |z| < 1. Then q̂1 can be found from Eq.26, since p̂1
is already known from Eq.21. The details are left as a (lengthy) exercise for the
reader. The results, after adding the expectations of Sp and S0, and similarly after
adding their variances, are as follows:

τc = E[Sc] =
1

α′
+

α+ β

ββ′ − αα′
(27)

vc = Var[Sc]

=

(

1

α′

)2

+
2β

(α+ β′)(ββ′ − αα′)

(

1 +
αβ′(α+ β′ + α′ + β)2

(ββ′ − αα′)2

)

−

(

α+ β

ββ′ − αα′

)2

(28)

5 Optimal Design of Dynamic Instability

We are now ready to state the optimization problem that is the main subject
of this paper. In order that the stochastic process of dynamic instability should
proceed as regularly as possible, let us choose α, α′, β, and β′ to minimize the
variance vc of the cycle time, subject to given values of the mean cycle time τc
and the mean length np of nonzero length microtubules.

Since there are 4 variables and 2 constraints, it should be possible to reduce
the number of independent variables to 2. A convenient choice of independent
variables is α′ and β. From the constraints, Eqs.12 and 27, we find

α =
β(np − 1)

Q
(29)

β′ =
α′np + β

Q
(30)

where

Q = (α′τc − 1)(np +
β

α′
)− α′τc(np − 1) (31)
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We can use these results to express vc as a function of α′ and β only (though
of course it will also contain as parameters the given constants np and τc):

vc(α
′, β;np, τc) =

(

1

α′

)2

+ τ2c

(

1 + 2(np − 1)
α′

β

)

− 2
τc
α′

+

(

1

α′ + β

)((

1

α′

)(

2np − 1 +
β

α′

)

− 4(np − 1)τc

)

(32)

Our goal is to minimize vc with respect to α′ and β. Let us first consider

∂vc
∂β

= −
2(np − 1)

α′(α′ + β)2

(

(

α′ + β

β

)2

(α′τc)
2 − 2(α′τc) + 1

)

(33)

Since (α′ + β)/β > 1, and since np > 1, it is evident that ∂vc/∂β < 0, and there
can be no minimum at finite β We can, however, look for a minimum at β = ∞.
Letting β →∞, we find

vc(α
′,∞;np, τc) =

(

1

α′

)2

+

(

τc −
1

α′

)2

(34)

which is minimized by setting

α′ =
2

τc
(35)

To complete the solution, we need only find α and β′. Taking the limit β →∞
in Eqs.29-31, we find

α =
np − 1

τc −
1

α′

=
2

τc
(np − 1) (36)

β′ =
1

τc −
1

α′

=
2

τc
(37)

Thus, in summary, the optimal solution is given by α′ = β′ = 2/τc; α =
(np − 1)(2/τc); and β =∞. The variance in the mean cycle time obtained in this
way is given by vmin

c = τ2c /2, which is half that of an exponentially distributed
random variable with the same mean. Note that vmin

c is independent of np.
To appreciate better the optimal solution, let us contrast it with the case

obtained by setting α′ = α and β′ = β. As discussed above, this means that
there is no distinction between the T.GDP and the T.GTP subunit. Under these
(degenerate) circumstances, we have, after some algebra,

vc =

(

1

α

)2

+
2β

(β − α)3
−

(

1

β − α

)2

=

(

τc
np

)2
(

1 + (2np − 1)(np − 1)2
)

(38)

which is asymptotic to 2npτ
2
c as np →∞.

Thus, in the absence of a mechanism that distinguishes T.GDP from T.GTP,
we find that the variance of the cycle time is a large multiple of the square of the
mean cycle time, instead of being fixed at τ2c /2 as in the optimal solution. Such
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Figure 1: Near-optimal dynamic instability (above) and no dynamic instability
(below); sample trajectories obtained by Monte-Carlo simulation. The horizontal
axis measures time in units of τc, and the vertical axis is polymer length expressed
in terms of the number of subunits. Note the extreme difference in statistical
character of the trajectories, even though both have the same mean polymer length
np = 25 and the same mean cycle time τc = 1. The (nearly) optimal case has many
cycles of comparable duration, whereas the degenerate case has a few long cycles
and a great many cycles that are much too short to be effective. This difference
in statistics, which is already quite dramatic, can be tremendously accentuated by
increasing the mean polymer length np.
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a large multiple indicates a long-tailed distribution of cycle times. Under these
conditions, a microtubule that missed its target (and that would be most of them,
after the first try) might spend a long time wandering up and down in length before
shrinking to zero length to try again. In the case of the optimal solution, though,
the cycle time is rather tightly controlled, and its variance is independent of the
mean length of the microtubules. The length can therefore be made large without
paying a price in terms of the variability of the cycle time. The degenerate case
and a near-optimal case (finite but large β) are further contrasted in Figure 1.
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