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On the Solution of Traveling Salesman Problems
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Abstract. Following the theoretical studies of J.B. Robinson and
H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulk-
erson, and S.M. Johnson demonstrated in 1954 that large instances of the
TSP could be solved by linear programming. Their approach remains the
only known tool for solving TSP instances with more than several hun-
dred cities; over the years, it has evolved further through the work of
M. Grötschel, S. Hong, M. Jünger, P. Miliotis, D. Naddef, M. Padberg,
W.R. Pulleyblank, G. Reinelt, G. Rinaldi, and others. We enumerate
some of its refinements that led to the solution of a 13,509-city instance.
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The traveling salesman problem, or TSP for short, is easy to state: given a finite
number of “cities” along with the cost of travel between each pair of them, find the
cheapest way of visiting all of the cities and returning to your starting point. The
travel costs are symmetric in the sense that traveling from city X to city Y costs just
as much as traveling from Y to X; the “way of visiting all the cities” is simply the
order in which the cities are visited. The simplicity of this problem, coupled with
its apparent intractability, makes it an ideal platform for exploring new algorithmic
ideas. Surveys of work on the TSP can be found in Bellmore and Nemhauser [1968],
Lawler, Lenstra, Rinnooy Kan, and Shmoys [1985], Reinelt [1994], and Jünger,
Reinelt, and Rinaldi [1995].

The origins of the TSP are obscure. In the 1920’s, the mathematician and
economist Karl Menger publicized it among his colleagues in Vienna. In the 1930’s,
the problem reappeared in the mathematical circles of Princeton. In the 1940’s,
it was studied by statisticians (Mahalanobis [1940], Jessen [1942]) in connection
with an agricultural application and the mathematician Merrill Flood popularized
it among his colleagues at the RAND Corporation. Eventually, the TSP gained
notoriety as the prototype of a hard problem in combinatorial optimization.

A breakthrough came when Dantzig, Fulkerson, and Johnson [1954] published
a description of a method for solving the TSP and illustrated the power of this
method by solving an instance with 49 cities, an impressive size at that time.
Riding the wave of excitement over the numerous applications of the simplex
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method (designed by Dantzig in 1947) and following the studies of Robinson [1949]
and Kuhn [1955], Dantzig, Fulkerson, and Johnson attacked the salesman with
linear programming as follows.

Each TSP instance with n cities can be specified by a vector c with n(n−1)/2
components, whose values are the travel costs; each tour through the n cities can
be represented as its incidence vector with n(n − 1)/2 components; if S denotes
the set of the incidence vectors of all the tours, then the problem is to

minimize cTx subject to x ∈ S. (1)

Like the man searching for his lost wallet not in the dark alley where he actually
dropped it, but under a street lamp where he can see, Dantzig, Fulkerson and
Johnson begin not with the problem they want to solve, but with a related problem
they can solve,

minimize cTx subject to Ax ≤ b (2)

with some suitably chosen system Ax ≤ b of linear inequalities satisfied by all x in
S: solving linear programming problems such as (2) is precisely what the simplex
method is for. Since (2) is a relaxation of (1) in the sense that every feasible
solution of (1) is a feasible solution of (2), the optimal value of (2) provides a
lower bound on the optimal value of (1).

The ground-breaking idea of Dantzig, Fulkerson, and Johnson was that solving
(2) can help with solving (1) in a far more substantial way than just by providing
a lower bound: having determined that the wallet is not under the street lamp,
one can pick the street lamp up and bring it a little closer to the place where the
wallet was lost. If (2) has an optimal solution and if the polyhedron {x : Ax ≤ b}
has an extreme point, then the simplex method finds an optimal solution x∗ of
(2) such that x∗ is an extreme point of {x : Ax ≤ b}; in particular, if x∗ is not
a member of S, then some linear inequality is satisfied by all the points in S and
violated by x∗. Such an inequality is called a cutting plane or simply a cut . Having
found cuts, one can add them to the system Ax ≤ b, solve the resulting tighter
relaxation by the simplex method, and iterate this process until one arrives at a
linear programming relaxation of (1) and its optimal solution x∗ such that x∗ ∈ S.

The influence of this work reached far beyond the narrow confines of the
TSP: the cutting-plane method can be used to attack any problem (1) such that
S is a finite subset of Rm and an efficient algorithm to recognize points of S is
available. Many problems in combinatorial optimization have this form: in the
maximum clique problem, S consists of the incidence vectors of all cliques in the
input graph; in the maximum cut problem, S consists of the incidence vectors
of all edge-cuts in the input graph; and so on. Applications of the cutting-plane
method to these problems stimulated the development of the flourishing field of
polyhedral combinatorics. Another important class of problems (1) are the integer
linear programming problems, where S is specified as the set of all integer solutions
of a prescribed system of linear inequalities. For this class, Gomory [1958] designed
efficient procedures to generate cutting planes in a way that guarantees the cutting-
plane method’s termination.

The efficiency of the cutting-plane method is a different matter. Where the
TSP is concerned, there are reasons to believe that the method may require
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prohibitively large amounts of time even on certain reasonably small instances:
R.M. Karp, E.L. Lawler, and R.E. Tarjan (see Karp [1972]) proved that the deci-
sion version of the TSP is an NP-complete problem.

When S consists of all tours through a set of cities V , Dantzig, Fulkerson,
and Johnson let the initial polyhedron consist of all vectors x, with components
subscripted by edges of the complete graph on V , that satisfy

0 ≤ xe ≤ 1 for all edges e, (3)
∑

(xe : v ∈ e) = 2 for all cities v. (4)

In solving the 49-city problem, Dantzig, Fulkerson, and Johnson tightened this
initial LP relaxation first by a number of subtour inequalities ,

∑

(xe : e ∩ S 6= ∅, e− S 6= ∅) ≥ 2 with S ⊂ V, S 6= ∅, S 6= V , (5)

and then by two additional cuts, after which x∗ became the incidence vector of a
tour; to show that these two inequalities are satisfied by incidence vectors of all
tours, Dantzig, Fulkerson, and Johnson used ad hoc combinatorial arguments.

When an LP relaxation of a TSP instance includes all constraints (3), (4),
a nonempty set of cuts can be found easily whenever x∗ 6∈ S: on the one hand,
if x∗ is not an integer vector, then Gomory’s procedures find a nonempty set of
cuts; on the other hand, if x∗ is an integer vector, then it is the incidence vector of
the edge-set of a disconnected graph and each connected component of this graph
yields a subtour cut. This scheme is used, with embellishments, in the computer
code of Martin [1966], which seems to be the first computer code for solving the
TSP. Eventually, subtour inequalities became a staple of TSP cuts but, when new
ways of finding TSP cuts emerged, Gomory cuts fell into disuse as TSP cuts.

1 Finding cuts

Hypergraph cuts

Given a subset S of V and given an x satisfying (3), (4), we write

η(S, x) =
∑

(xe : e ∩ S 6= ∅, e− S 6= ∅)− 2.

A hypergraph is an ordered pair (V,F) such that V is a finite set and F is a family
of (not necessarily distinct) subsets of V ; elements of V are called the vertices

of the hypergraph and the elements of F are called the edges of the hypergraph.
Given a hypergraph (V,F) denoted H, we write H ◦ x =

∑

(η(S, x) : S ∈ F)
and we let µ(H) stand for the minimum of H ◦ x taken over the incidence vectors
of tours through V . Every linear inequality satisfied by all the incidence vectors
of tours through V is the sum of a linear combination of equations (4) and a
hypergraph inequality ,

H ◦ x ≥ t

with t ≤ µ(H). Subtour inequalities are the simplest instances of hypergraph
inequalities; one class of more complex instances is as follows.

Documenta Mathematica · Extra Volume ICM 1998 · III · 645–656



648 Applegate, Bixby, Chvátal, and Cook

The intersection graph of a hypergraph (V,F) is the graph with vertex-set F
and with two vertices adjacent if and only if these two members of F intersect. A
clique tree is any hypergraph H such that

• the intersection graph of H is a tree
and such that the edge-set of H can be partitioned into a set of “handles” and a
set of “teeth” with the following properties:

• there is at least one handle,
• the handles are pairwise disjoint,
• the teeth are pairwise disjoint,
• the number of teeth that each handle intersects is odd and at least three,
• each tooth includes a point that belongs to no handle.

Grötschel and Pulleyblank [1986] introduced this notion and proved that, for every
clique-tree H with s teeth, the incidence vector x of any tour through V satisfies

H ◦ x ≥ s− 1. (6)

Let us give a short proof of this theorem here. Consider a clique tree with
handles H1, . . . , Hr and teeth T1, . . . , Ts; let tj denote the number of handles that
intersect tooth Tj and let hi denote the number of teeth that intersect handle Hi;
write

cij =

{

1 if the tour includes an edge from Hi ∩ Tj to Tj −Hi,
0 otherwise.

Since the teeth are pairwise disjoint, we have η(Hi, x) ≥
∑

j cij − 2; by definition,
we have

∑

j cij ≤ hi; since η(Hi, x) is even and hi is odd, we conclude that

η(Hi, x) ≥ 2

s
∑

j=1

cij − hi − 1. (7)

The restriction of the tour on a tooth Tj consists of 1 + η(Tj , x)/2 segments; one
of these segments passes through the point of Tj that belongs to no handle; since
the handles are pairwise disjoint, each i such that Hi ∩ Tj 6= ∅ and cij = 0 adds a
new segment; we conclude that

η(Tj , x) ≥ 2(tj −
r

∑

i=1

cij). (8)

From (7) and (8), we obtain H ◦ x ≥ 2
∑

j tj −
∑

i hi − r =
∑

j tj − r; since the
intersection graph of H is a tree, we have

∑

j tj = r + s− 1 and (6) follows.
Clique-trees with precisely one handle are called combs and the corresponding

inequalities (6) are called comb inequalities .

Facet-inducing cuts and the template paradigm

Some cuts are better than others. The ultimate measure of quality of a cut is its
contribution to reducing the total running time of the cutting-plane method.
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It is well known (Grötschel and Padberg [1975], Maurras [1975]) that the
affine hull of the set S of all tours through V consists of all solutions x of (4); it
follows that every cut is the sum of

• a linear combination of equations (4) and
• a nonnegative combination of linear inequalities that induce facets
of the convex hull of S.

Appealing to this fact, one may argue for preferring facet-inducing cuts to all
others. This point of view suggests a two-phase paradigm for finding TSP cuts:

(i) describe linear inequalities that induce facets of the convex hull of S,
(ii) for each template obtained in phase (i), design an efficient algorithm that,

given an x∗, finds a cut matching that template, if such a cut exists.
Algorithms designed in phase (ii) are called exact separation algorithms ; algorithms
that attempt to find a cut matching the template, and may fail even if such a cut
exists, are called heuristic separation algorithms .

The template paradigm was championed by Grötschel and Padberg [1979a,
1979b] and by Padberg and Hong [1980]. As for its phase (i), Grötschel and Pad-
berg [1979a, 1979b] proved that both subtour inequalities and comb inequalities
induce facets of the convex hull of S; Grötschel and Pulleyblank [1986] proved that
clique tree inequalities induce facets of the convex hull of S; Naddef and Rinaldi
[1998] proved that path inequalities (another generalization of comb inequalities,
introduced by Cornuéjols, Fonlupt, and Naddef [1985]) induce facets of the convex
hull of S.

A polynomial-time exact separation algorithm for subtour inequalities was
pointed out by Hong [1972]. It uses the observation that the problem of minimizing
η(S, x∗) subject to S ⊂ V , S 6= ∅, S 6= V reduces to |V |−1 instances of the problem

minimize η(S, x∗) subject to S ⊂ V , s ∈ S, t 6∈ S (9)

with s fixed and t ranging through the remaining cities; it relies on the fact that
(9) can be solved in polynomial time by variations on the max-flow min-cut theme
of Ford and Fulkerson [1962]. The appeal of this scheme for actual computations
is much enhanced when the input size is first reduced by “shrinking procedures”
designed by Crowder and Padberg [1980] and by Padberg and Rinaldi [1990];
these procedures alone, without the subsequent max-flow min-cut computations,
constitute fast heuristic separation algorithms for subtour inequalities.

A comb with each tooth having exactly two vertices is called a blossom. Pad-
berg and Rao [1982] designed a polynomial-time exact separation algorithm for
blossom inequalities. Their algorithm is an important tool in the computer codes
of Grötschel and Holland [1991] and Padberg and Rinaldi [1991]: besides deliv-
ering blossom cuts, it is also used in heuristic separation algorithms for the more
general comb inequalities. (The idea is to select sets S such that η(S, x∗) = 0
and to shrink each of these sets into a single vertex: blossom inequalities over the
shrunken image of V yield comb inequalities over the original V .)

Other heuristic separation algorithms for comb inequalities, and for 2-handled
clique tree inequalities, were designed by Padberg and Rinaldi [1991]; guided by
the structure of the graph with vertex-set V and edge-set {e : 0 < x∗

e < 1}, they
attempt to build the desired hypergraph in a greedy fashion. Heuristic separation
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algorithms for path inequalities and other templates of TSP cuts were designed
by Clochard and Naddef [1993] and by Christof and Reinelt [1995].

We have written a computer code for the TSP that follows in part the template
paradigm. Our separation algorithms are

• an exact separation algorithm for subtour cuts that consists of Padberg-
Rinaldi shrinking followed by repeated calls of the push-relabel method, as imple-
mented by Cherkassky and Goldberg [1997], to solve max-flow min-cut problems,

• the Padberg-Rao exact separation algorithm for blossom cuts,

• the Grötschel-Holland and Padberg-Rinaldi heuristics for comb cuts,

• a greedy heuristic of the Clochard-Naddef kind for certain path cuts,

and heuristic separation algorithms that we have designed. Three of them that
turned out to be important in solving the more difficult instances are as follows.

• Like most TSP codes, ours maintains the best tour x that we know of. One
may suspect that, as both x∗ and x approximate an optimal tour, sets S with
η(S, x∗) < 0 are likely to satisfy η(S, x) < 2, and so constitute single segments
of the tour x; our computational experience confirms this suspicion. We have
designed an algorithm that, given x∗ and x, returns a family of segments Sv(v ∈ V )
of x such that each Sv minimizes η(S, x∗) over all segments S that begin at v; its
running time is in O(m log |V |), where m is the number of positive components of
x∗. (We have used this algorithm not only in solving TSP instances, but also in
computing lower bounds for TSP instances with up to 500,000 cities.)

• Having collected a family F of sets S such that η(S, x∗) < 2, we search for
combs with handle H and teeth T1, T2, T3 such that H,T1, T2, T3 ∈ F and such
that x∗ violates the corresponding comb inequality. The search is guided by the
observation that the desired {H,T1, T2, T3}, as well as {H,T1, T2, V − T3}, is a
minimal family without the consecutive ones property ; as an oracle for testing the
consecutive ones property, we use PQ-trees , an efficient data structure designed
by Booth and Lueker [1976].

• One way of showing that comb inequalities are satisfied by all tours is related
to the framework for describing Gomory cuts propounded by Chvátal [1973]. We
decided to turn the argument into an algorithm and search for comb cuts by
solving certain systems of linear congruences mod 2. Our implementation of this
plan uses PQ-trees once again, this time as a compact device for storing families
of sets S such that η(S, x∗) = 0: variables in our system of linear congruences are
in a one-to-one correspondence with Q-nodes of our PQ-tree. (Later on, Adam
Letchford pointed out to us how our algorithm could be adjusted to search for the
more general path cuts.)

Beyond the template paradigm

There are routine and well known algorithms that, given a finite subset S of some
R

m and given a point x∗ in R
m, either express x∗ as a convex combination of

points in S or find a linear inequality that is satisfied by all points of S and
violated by x∗. Using these algorithms directly to find cuts would be insane, since
their running time is prohibitively long when m is large; using them in conjunction
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with the trick of first projecting S and x∗ into a lower-dimensional space was a
crucial ingredient in our solution of a 13,509-city TSP instance.

Given x∗, we choose many different linear mappings φ : Rm → R
d; for each of

our choices of φ, we express x∗ as a convex combination of points in φ(S) or find a
linear inequality aT ξ ≥ b that is satisfied by all points ξ of φ(S) and aTφ(x∗) < b;
in the latter case, inequality aTφ(x) ≥ b is a cut. This scheme is feasible as long as
d is reasonably small: large size of φ(S) presents no difficulty provided that φ(S)
can be accessed by an efficient oracle which, given any vector c in R

d, returns an
element ξ of φ(S) that maximizes cT ξ.

True, it may happen that φ(x∗) belongs to the convex hull of φ(S) even though
x∗ lies outside the convex hull of S; however, this is not always the case, and φ(S)
is easier to handle than S. Going a step further in this spirit adds flexibility to
the method: for φ(S), we may substitute any T such that φ(S) ⊆ T . True, it may
happen that φ(x∗) belongs to the convex hull of T even though it lies outside the
convex hull of φ(S); however, this is not always the case, and T may be easier to
handle than φ(S).

Success of this method depends on making choices of φ and T in such a way
that φ(x∗) has a reasonable chance of lying outside the convex hull of T and
yet T is reasonably easy to handle. In the special case where S consists of all
tours through a set V , our computer code makes each choice of φ by choosing a
partition of V into nonempty sets V0, V1, . . . , Vk. The corresponding φ is defined
by shrinking each of these sets into a single point: the component of φ(x) that is
indexed by i and j (0 ≤ i < j ≤ k) has value

∑

(xe : e ∩ Vi 6= ∅, e ∩ Vj 6= ∅). Our
T consists of all nonnegative integer vectors ξ with components indexed by edges
of the complete graph with vertex-set {0, 1, . . . , k} such that

• the graph with vertex-set {0, 1, . . . , k} and edge-set {e : ξe > 0} is connected,

•
∑

(ξe : v ∈ e) is even whenever v ∈ {0, 1, . . . , k}.
(Cornuéjols, Fonlupt, and Naddef [1985] call the problem of minimizing a pre-
scribed linear function over this T the graphical traveling salesman problem.) We
let k range between 8 and 30; our choices of V0, V1, . . . , Vk are guided by the
structure of x∗; in particular, η(Vj , x

∗) = 0 for all j = 1, 2, . . . , k.

We do not know how useful this approach might prove in finding cuts for
other problems (1); possibly its success in our experience with the TSP comes at
least in part from the peculiar nature of the TSP; let us elaborate. The algorithm
that we use to deal with T and φ(x∗) either expresses x∗ as a convex combination
of points in T or finds an inequality aT ξ ≥ b that induces a facet of the convex
hull of T and is violated by φ(x∗). In the latter case, we transform aT ξ ≥ b into
a hypergraph inequality H ◦ ξ ≥ t before substituting φ(x) for ξ; in our experi-
ence, these hypergraph inequalities are often (but not always) tight triangular ; a
conjecture implicit in the work of Naddef and Rinaldi [1992] suggests that, under
this condition, inequality H ◦ φ(x) ≥ t induces a facet of the convex hull of S.

Another algorithm for finding TSP cuts that strays off the beaten path of the
template paradigm, but starts from the Naddef-Rinaldi notion of tight triangular
inequalities, has been designed by Carr [1998].
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Alterations while you wait

Watching our computer code run, we have observed that optimal solutions x∗ of
the successive LP relaxations often react to each new cut we add by shifting the
defect prohibited by this cut to an area just beyond the cut’s control. The remedy
is obvious: we respond to each slight adjustment of x⋆ with a slight adjustment of
our hypergraph cuts.

Given a hypergraph H with edges E1, . . . , Em, we set

α(I,H) =
⋂

i∈I

Ei −
⋃

i/∈I

Ei

for each subset I of {1, . . . ,m}; we refer to each α(I,H) as an atom of H; we write
H ⊑ H′ to signify that H and H′ are hypergraphs with the same set of vertices
and the same number of edges, and such that α(I,H′) 6= ∅ whenever α(I,H) 6= ∅.
It can be shown that H ⊑ H′ implies µ(H′) ≥ µ(H). By tightening a hypergraph
H with respect to a vector x∗, we mean a swift attempt to modify H in such a
way that the resulting hypergraph, H′, satisfies

• H ⊑ H′ and H′ ◦ x∗ < H ◦ x∗.
We tighten H by a greedy algorithm that moves single vertices from one atom to
another if such a move decreases H ◦ x∗ (or, with some restrictions, if the move
at least does not increase H ◦ x∗). Some of these permissible moves are more
appealing than others; all of them are kept in a priority queue, which is updated
after each move is made. We make extensive use of tightening in our computer
code. Every cut that we find is tightened before it is added to the LP relaxation.
We also periodically run through all constraints of the LP relaxation and tighten
each of them.

We use one additional technique for adjusting comb inequalities. Let us refer
to a comb with some of its teeth removed as a generalized comb; let us say that a
tooth of a generalized comb is big if its size is at least three; for every generalized
comb H0, let ∆(H0, x

∗) denote the minimum of H ◦ x∗ − µ(H) over all combs H
such that H and H0 have the same handle and all big teeth of H are teeth of H0.
We have designed a dynamic programming algorithm that, given a generalized
comb H0, finds either

• a comb H such that all big teeth of H are teeth of H0 and,
if ∆(H0) ≤ 0, then H ◦ x∗ − µ(H) ≤ ∆(H0)

or else a subtour inequality violated by x∗. We refer to this algorithm as teething,
and we apply it to comb constraints in the LP relaxation.

2 The branch-and-cut method

Progress of the cutting-plane method towards solving a particular problem instance
is often estimated by the increase in the optimal value of its LP relaxation; as more
and more cuts are added, these increases tend to get smaller and smaller. When
they become too small, the sensible thing is to branch: having partitioned the
set S of tours into sets S1,S2, apply the cutting-plane method first to one of the
subproblems

minimize cTx subject to x ∈ Si
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and then to the other. At some later time, one or both of these subproblems can be
split into sub-subproblems, and so on. In the resulting binary tree of subproblems,
each leaf has been either solved by the cutting-plane method without recourse to
branching or else found irrelevant when the optimal value of its LP relaxation
turned out to be at least as large as the cost of a previously known tour. The
standard way of splitting a problem into subproblems is

S1 = {x ∈ S : xe = 0}, S2 = {x ∈ S : xe = 1} (10)

for a suitably chosen edge e; Clochard and Naddef [1993] advocated

S1 = {x ∈ S : η(S, x) = 0}, S2 = {x ∈ S : η(S, x) ≥ 2} (11)

for a suitably chosen subset S of V . Our computer code chooses the most appealing
of all options (10), (11); in our experience with the larger TSP instances, this policy
reduces the size of the tree of subproblems.

Every subproblem in the tree has the form

minimize cTx subject to x ∈ S, Cx ≤ d

for some system Cx ≤ d of linear inequalities. When this subproblem is attacked
by the cutting-plane method, the initial LP relaxation is

minimize cTx subject to Ax ≤ b, Cx ≤ d

with S ⊆ {x : Ax ≤ b} and each cut added to Ax ≤ b, Cx ≤ d is satisfied by
all x in S ∩ {x : Cx ≤ d}; this is a variant of the branch-and-bound method. In
the branch-and-cut method, used by Hong [1972], Miliotis [1976], Padberg and
Rinaldi [1987, 1991], and others, cuts are restricted to those satisfied by all x in
S and added to Ax ≤ b; this system, acquiring more and more inequalities as
more and more subproblems are being processed, may be used to initialize the
cutting-plane method on any as yet unprocessed subproblem. Our computer code
uses the branch-and-cut method.

3 Experimental results

Computer codes for the TSP have become increasingly more sophisticated over
the years. A conspicuous sign of these improvements is the increasing size of the
nontrivial instances that have been solved: a 120-city problem by Grötschel [1980],
a 318-city problem by Crowder and Padberg [1980], a 532-city problem by Padberg
and Rinaldi [1987], a 666-city problem by Grötschel and Holland [1991], a 1,002-
city problem and a 2,392-city problem by Padberg and Rinaldi [1991].

In the table below, we report the results of running our computer code on
these instances, as well as on five others. With the exception of the 13,509-city
instance, our code was run on a single processor of a Digital AlphaServer 4100 (400
MHz). The 13,509-city TSP was run on a network of 48 workstations, including
Digital Alphas, Intel Pentium IIs and Pentium Pros, and Sun UltraSparcs. The
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Name Cities Tree of subproblems Running time
gr120 120 1 node 3.3 seconds
lin318 318 1 node 24.6 seconds
pr1002 1,002 1 node 94.7 seconds
gr666 666 1 node 260.0 seconds
att532 532 3 nodes 294.3 seconds
pr2392 2,392 1 node 342.2 seconds
ts225 225 1 node 438.9 seconds

pcb3038 3,038 193 nodes 1.5 days
fnl4461 4,461 159 nodes 1.7 days
pla7397 7,397 129 nodes 49.5 days

usa13509 13,509 9,539 nodes ∼10 years

reported time for this instance is an estimate of the cumulative CPU time spent
on the individual machines.

The problems reported in the table come from the set TSPLIB of test instances
collected by Reinelt [1991]. We sorted them by their solution time, rather than by
their size, to emphasize that the difficulty of an instance depends on factors other
than just its number of cities. In particular, ts225 is a contrived nasty instance
that was first solved only in 1994—three years after it first appeared in TSPLIB.
We will present results for the full set of 110 TSPLIB problems in a comprehensive
report of our TSP work that we are preparing.

Our computer code (written in the C programming language) is available for
research purposes. It can be obtained over the internet at the page:

http://www.caam.rice.edu/∼keck/concorde.html
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