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Semidefinite Programming
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Abstract. We describe a few applications of semidefinite programming
in combinatorial optimization.
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Semidefinite programming is a special case of convex programming where the feasi-
ble region is an affine subspace of the cone of positive semidefinite matrices. There
has been much interest in this area lately, partly because of applications in com-
binatorial optimization and in control theory and also because of the development
of efficient interior-point algorithms.

The use of semidefinite programming in combinatorial optimization is not new
though. Eigenvalue bounds have been proposed for combinatorial optimization
problems since the late 60’s, see for example the comprehensive survey by Mohar
and Poljak [20]. These eigenvalue bounds can often be recast as semidefinite
programs [1]. This reformulation is useful since it allows to exploit properties of
convex programming such as duality and polynomial-time solvability, and it avoids
the pitfalls of eigenvalue optimization such as non-differentiability. An explicit
use of semidefinite programming in combinatorial optimization appeared in the
seminal work of Lovász [16] on the so-called theta function, and this lead Grötschel,
Lovász and Schrijver [9, 11] to develop the only known (and non-combinatorial)
polynomial-time algorithm to solve the maximum stable set problem for perfect
graphs.

In this paper, we describe a few applications of semidefinite programming in
combinatorial optimization. Because of space limitations, we restrict our attention
to the Lovász theta function, the maximum cut problem [8], and the automatic
generation of valid inequalities à la Lovász-Schrijver [17, 18]. This survey is much
inspired by another (longer) survey written by the author [7]. However, new results
on the power and limitations of the Lovász-Schrijver procedure are presented as
well as a study of the maximum cut relaxation for graphs arising from association
schemes.

1Supported in part by NSF contract 9623859-CCR.
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1 Preliminaries

In this section, we collect several basic results about positive semidefinite matrices
and semidefinite programming.

Let Mn denote the cone of n× n matrices (over the reals), and let Sn denote
the subcone of symmetric n× n matrices. A matrix A ∈ Sn is said to be positive
semidefinite if its associated quadratic form xTAx is nonnegative for all x ∈ Rn.
The positive semidefiniteness of a matrix A will be denoted by A � 0; similarly,
we write A � B for A − B � 0. The cone of positive semidefinite matrices will
be denoted by PSDn. The following statements are equivalent for a symmetric
matrix A: (i) A is positive semidefinite, (ii) all eigenvalues of A are nonnegative,
and (iii) there exists a matrix B such that A = BTB. (iii) gives a representation
of A = [aij ] as a Gram matrix: there exist vectors vi such that aij = vTi vj for all
i, j. Given a symmetric positive semidefinite matrix A, a matrix B satisfying (iii)
can be obtained in O(n3) time by a Cholesky decomposition.

Given A,B ∈ Mn, the (Frobenius) inner product A •B is defined by A •B =
Tr(ATB) =

∑

i

∑

j AijBij . The quadratic form xTAx can thus also be written

as A • (xxT ). Since the extreme rays of PSDn are of the form xxT , we derive
that A • B ≥ 0 whenever A,B � 0. We can also similarly derive Fejer’s theorem
which says that PSDn is self-polar, i.e. PSD∗

n = {A ∈ Sn : A • B ≥ 0 for all
B � 0} = PSDn.

Semidefinite programs are linear programs over the cone of positive semidefi-
nite matrices. They can be expressed in many equivalent forms, e.g.

SDP = inf C • Y (1)

subject to: Ai • Y = bi i = 1, · · · ,m
Y � 0.

In general a linear program over a pointed closed convex cone K is formulated
as z = inf{cTx : Ax = b, x ∈ K}, and its dual (see [22]) is w = sup{bT y :
AT y + s = c, s ∈ K∗} where K∗ = {a : aT b ≥ 0 for all b ∈ K}. Weak duality
always holds: cTx− yT b = (AT y + s)Tx− yTAx = sTx for any primal feasible x
and dual feasible y. If we assume that A has full row rank, {x ∈ intK} 6= ∅, and
{(y, s) : AT y + s = c, s ∈ int K∗} 6= ∅, then z = w and both the primal and dual
problems attain their optimum value. In the case of semidefinite programs, the
dual to (1) is sup{∑n

i=1 biyi :
∑

i yiAi � C}.
Semidefinite programs can be solved (more precisely, approximated) in

polynomial-time within any specified accuracy either by the ellipsoid algorithm
[9, 11] or more efficiently through interior-point algorithms. For the latter, we
refer the reader to [22, 1, 24]. The above algorithms produce a strictly feasible
solution (or slightly infeasible for some versions of the ellipsoid algorithm) and, in
fact, the problem of deciding whether a semidefinite program is feasible (exactly)

is still open. However, we should point out that since

(

1 x
x a

)

� 0 iff |x| ≤ √
a,

a special case of semidefinite programming feasibility is the square-root sum prob-
lem: given a1, · · · , an and k, decide whether

∑n
i=1

√
ai ≤ k. The complexity of

this problem is still open.
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2 Lovász’s Theta Function

Given a graph G = (V,E), a stable (or independent) set is a subset S of vertices
such that no two vertices of S are adjacent. The maximum cardinality of a stable
set is the stability number (or independence number) of G and is denoted by α(G).
In a seminal paper [16], Lovász proposed an upper bound on α(G) known as the
theta function ϑ(G). The theta function can be expressed in many equivalent
ways, as an eigenvalue bound, as a semidefinite program, or in terms of orthogonal
representations. These formulations will be summarized in this section. We refer
the reader to the original paper [16], to Chapter 9 in Grötschel et al. [11], or to
the survey by Knuth [15] for additional details.

As an eigenvalue bound, ϑ(G) can be derived as follows. Consider P = {A ∈
Sn : aij = 1 if (i, j) /∈ E (or i = j)}. If there exists a stable set of size k, the
corresponding principal submatrix of any A ∈ P will be Jk, the all ones matrix of
size k. By a classical result on interlacing of eigenvalues for symmetric matrices
(see [13]), we derive that λmax(A) ≥ λmax(Jk) = k for any A ∈ P , where λmax(·)
denotes the largest eigenvalue. As a result, minA∈P λmax(A) is an upper bound
on α(G), and this is one of the equivalent formulations of Lovász’s theta function.

This naturally leads to a semidefinite program. Indeed, the largest eigenvalue
of a matrix can easily be formulated as a semidefinite program: λmax(A) = min{t :
tI −A � 0}. In order to express ϑ(G) as a semidefinite program, we observe that
A ∈ P is equivalent to A − J being generated by Eij for (i, j) ∈ E, where all
entries of Eij are zero except for (i, j) and (j, i). Thus, we can write

ϑ(G) = min t

subject to: tI +
∑

(i,j)∈E

xijEij � J.

By strong duality, we can also write:

ϑ(G) = max J • Y (2)

subject to: yij = 0 (i, j) ∈ E (3)

I • Y = 1 (i.e. T r(Y ) = 1) (4)

Y � 0. (5)

Lovász’s first definition of ϑ(G) was in terms of orthonormal representa-
tions. An orthonormal representation of G is a system v1, · · · , vn of unit vec-
tors in Rn such that vi and vj are orthogonal (i.e. vTi vj = 0) whenever i
and j are not adjacent. The value of the orthonormal representation is z =
minc:||c||=1 maxi∈V

1
(cTui)2

. This is easily seen to be an upper bound on α(G) (since

||c||2 ≥ ∑

i∈S(c
Tui)

2 ≥ |S|/z for any stable set S). Taking the minimum value
over all orthonormal representations of G, one derives another expression for ϑ(G).
This result can be restated in a slightly different form. If x denotes the incidence
vector of a stable set then we have that

∑

i

(cT vi)
2xi ≤ 1. (6)
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In other words, the orthonormal representation constraints (6) are valid inequal-
ities for STAB(G), the convex hull of incidence vectors of stable sets of G.
Grötschel et al. [10] show that if we let TH(G) = {x : x satisfies (6) and x ≥ 0},
then ϑ(G) = max{∑i xi : x ∈ TH(G)}. Yet more formulations of ϑ are known.

2.1 Perfect Graphs

A graph G is called perfect if, for every induced subgraph G′, its chromatic number
is equal to the size of the largest clique in G′. Even though perfect graphs have
been the focus of intense study, there are still important questions which are
still open. The strong perfect graph conjecture of Berge claims that a graph is
perfect if and only if it does not contain an odd cycle of length at least five or its
complement. It is not even known if the recognition problem of deciding whether
a graph is perfect is in P or NP-complete. However, the theta function gives some
important characterizations (but not a “good” or NP∩co-NP characterization) of
perfect graphs.

Theorem 1 (Grötschel et al. [10]) The following are equivalent:

• G is perfect,

• TH(G) = {x ≥ 0 :
∑

i∈C xi ≤ 1 for all cliques C}

• TH(G) is polyhedral.

Moreover, even though recognizing perfect graphs is still open, one can find the
largest stable set in a perfect graph in polynomial time by computing the theta
function using semidefinite programming (Grötschel et al. [9, 11]); similarly one
can solve the weighted problem, or find the chromatic number or the largest clique.
Observe that if we apply this algorithm to a graph which is not necessarily perfect,
we would either find the largest stable set or have a proof that the graph is not
perfect.

Although ϑ(G) = α(G) for perfect graphs, ϑ(G) can provide a fairly poor
upper bound on α(G) for general graphs. Feige [6] has shown the existence of
graphs for which ϑ(G)/α(G) ≥ Ω(n1−ǫ) for any ǫ > 0. See [7] for further details
and additional references on the quality of ϑ(G).

3 The Maximum Cut Problem

Given a graph G = (V,E), the cut δ(S) induced by vertex set S consists of the set
of edges with exactly one endpoint in S. In the NP-hard maximum cut problem
(MAX CUT), we would like to find a cut of maximum total weight in a weighted
undirected graph. The weight of δ(S) is w(δ(S)) =

∑

e∈δ(S) we. In this section,

we describe an approach of the author and Williamson [8] based on semidefinite
programming.

The maximum cut problem can be formulated as an integer quadratic pro-
gram. If we let yi = 1 if i ∈ S and yi = −1 otherwise, the value of the cut
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δ(S) can be expressed as
∑

(i,j)∈E wij
1
2 (1 − yiyj). Suppose we consider the ma-

trix Y = [yiyj ]. This is a positive semidefinite rank one matrix with all diagonal
elements equal to 1. Relaxing the rank one condition, we derive a semidefinite
program giving an upper bound SDP on OPT :

SDP = max
1

2

∑

(i,j)∈E

wij(1− yij) (7)

subject to: yii = 1 i ∈ V

Y = [yij ] � 0.

It is convenient to write the objective function in terms of the (weighted) Laplacien
matrix L(G) = [lij ] of G: lij = −wij for all i 6= j and lii =

∑

j wij . For any matrix

Y , we have L(G) • Y =
∑

(i,j)∈E wij(yii + yjj − 2yij) (in particular, if Y = yyT

then we obtain the classical equality yTL(G)y =
∑

(i,j)∈E wij(yi − yj)
2). As a

result, the objective function can also be expressed as 1
4L(G) • Y .

The dual of this semidefinite program is SDP = 1
4 min{∑j dj : diag(d) �

L(G)}. This can also be rewritten as

SDP =
1

4
n min

u:
∑

i
ui=0

λmax(L+ diag(u)). (8)

This eigenvalue bound was proposed and analyzed by Delorme and Poljak [4, 3].
In their study, they conjectured that the worst-case ratio OPT/SDP is 32/(25 +
5
√
5) ∼ 0.88445 for nonnegative weights and achieved by the 5-cycle. By exploiting

(7), Goemans and Williamson [8] derived a randomized algorithm that produces
a cut whose expected value is at least 0.87856SDP , implying that OPT/SDP ≥
0.87856 for nonnegative weights. We describe their random hyperplane technique
and their elementary analysis below.

Consider any feasible solution Y to (7). Since Y admits a Gram represen-
tation, there exist unit vectors vi ∈ Rd (for some d ≤ n) for i ∈ V such that
yij = vTi vj . Let r be a vector uniformly generated from the unit sphere in Rd, and
consider the cut induced by the hyperplane {x : rTx = 0} normal to r, i.e. the cut
δ(S) where S = {i ∈ V : rT vi ≥ 0}. By elementary arguments, the probability
that vi and vj are separated is precisely θ/π, where θ = arccos(vTi vj) is the angle
between vi and vj . Thus, the expected weight of the cut is exactly given by:

E[w(δ(S))] =
∑

(i,j)∈E

wij
arccos(vTi vj)

π
. (9)

Comparing this expression term by term to the objective function of (7) and
using the fact that arccos(x)/π ≥ α 1

2 (1 − x) where α = 0.87856 · · ·, we derive
that E[w(δ(S))] ≥ α 1

4L(G) • Y . Hence if we apply the random hyperplane tech-
nique to a feasible solution Y of value ≥ (1 − ǫ)SDP (which can be obtained in
polynomial time), we obtain a random cut of expected value greater or equal to
α(1 − ǫ)SDP ≥ 0.87856SDP ≥ 0.87856OPT . Mahajan and Ramesh [19] have
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shown that this technique can be derandomized, therefore giving a deterministic
0.87856-approximation algorithm for MAX CUT.

The worst-case value for OPT/SDP is thus somewhere between 0.87856 and
0.88446, and even though this gap is small, it would be very interesting to prove
Delorme and Poljak’s conjecture that the worst-case is given by the 5-cycle. This
would however require a new technique. Indeed, Karloff [14] has shown that the
analysis of the random hyperplane technique is tight, namely there exists a family
of graphs for which the expected weight E[w(δ(S)] of the cut produced is arbitrarily
close to αSDP .

No better approximation algorithm is currently known for MAX CUT. On the
negative side though, H̊astad [12] has shown that it is NP-hard to approximate
MAX CUT within 16/17 + ǫ = 0.94117 · · · for any ǫ > 0. Furthermore, H̊astad
shows that if we replace the objective function by 1

2

∑

(i,j)∈E1
wij(1 − yiyj) +

1
2

∑

(i,j)∈E2
wij(1 + yiyj), then the resulting problem is NP-hard to approximate

within 11/12 + ǫ = 0.91666 · · ·, while the random hyperplane technique still gives
the same guarantee of α ∼ 0.87856.

The analysis of the random hyperplane technique can be generalized fol-
lowing an idea of Nesterov [21] for more general Boolean quadratic programs.
First observe that (9) can be rewritten as E[w(δ(S))] = 1

2πL(G) • arcsin(Y ),
where arcsin(Y ) = [arcsin(yij)]. Suppose now that we restrict our attention to
weight functions for which L(G) ∈ K for a certain cone K. Then a bound of α
would follow if we can show that L(G) • ( 2π arcsin(Y )) ≥ L(G) • (αY ) or L(G) •
(

2
π arcsin(Y )− αY

)

≥ 0. This corresponds to showing that
(

2
π arcsin(Y )− αY

)

∈
K∗, where K∗ is the polar cone to K. For several interesting cones K (e.g. the
cone of positive semidefinite matrices), this analysis can be performed.

We now describe a situation in which the semidefinite programming relaxation
simplifies considerably. This is similar to the well-known LP bound in coding
introduced by Delsarte [5] which corresponds to the theta function for graphs
arising from association schemes. The results briefly sketched below were obtained
jointly with F. Rendl.

Consider graphs whose adjacency matrix can be written as
∑

i∈M Ai where
M ⊆ {1, · · · , l} and A0, A1, · · · , Al are n× n 0− 1 symmetric matrices forming an
association scheme (see [2]):

1. A0 = I,

2.
∑l

i=0 Ai = J ,

3. there exist pkij (0 ≤ i, j, k ≤ l) such that AiAj = AjAi =
∑n

k=0 p
k
ijAk.

When l = 2, the graph with incidence matrix A1 (or A2) is known as a strongly
regular graph.

We list below properties of association schemes, for details see for example [2].
Since the Ai’s commute, they can be diagonalized simultaneously and thus they
share a set of eigenvectors. Furthermore, the (Bose-Mesner) algebra A generated
by the Ai’s has a unique basis of minimal idempotents (i.e. E2 = E) E0, · · · , El.
These matrices Ei’s are positive semidefinite (since their eigenvalues are all 0 or 1
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by idempotence), and have constant diagonal equal to µi/n where µi is the rank
of Ei.

For association schemes, we can show that the optimum correcting vector in
(8) is u = 0, giving SDP = n

4λmax(L(G)), and that the optimum primal solution
Y is equal to nEp/µp where p is the index corresponding to the eigenspace of the
largest eigenvalue of L(G). To see this optimality, one simply needs to realize that
Z = λmax(L(G))I −L(G) can be expressed as

∑

i6=p ciEi and, as a result, satisfies
complementary slackness with nEp/µp: ZEp = 0. Furthermore, if we were to add
valid inequalities of the form Ci • Y ≤ bi with Ci ∈ A to the primal semidefinite
program then the primal and dual SDPs can be seen to reduce to a dual pair of
linear programs:

1
4 max

∑

j

(L(G) • Ej)xj = 1
4 min ns+

∑

i

bizi

s.t.
∑

j

µjxj = n s.t. µjs+
∑

i

(Ci • Ej)zi ≥ L • Ej ∀j
∑

j

(Ci • Ej)xj = bi ∀i zi ≥ 0 ∀i

xj ≥ 0 ∀j
The primal semidefinite solution is then

∑

j xjEj and the dual constraints imply
that sI +

∑

i ziCi � L(G). As an illustration, the triangle inequalities can be
aggregated in order to be of the required form, and thus the semidefinite program
with triangle inequalities can be solved as a linear program for association schemes.

4 Deriving Valid Inequalities

Lovász and Schrijver [17, 18] have proposed a technique for automatically gener-
ating stronger and stronger formulations for integer programs. We briefly describe
their approach here and discuss its power and its limitations.

Let P = {x ∈ Rn : Ax ≥ b, 0 ≤ x ≤ 1}, and let P0 = conv(P ∩ {0, 1}n)
denote the convex hull of 0− 1 solutions. Suppose we multiply a valid inequality
∑

i cixi − d ≥ 0 for P by either 1 − xj ≥ 0 or by xj ≥ 0. We obtain a quadratic
inequality that we can linearize by replacing xixj by a new variable yij . Since
we are interested only in 0-1 solutions, we can impose that x2

i = xi for all i.
Replacing xi by yii, we therefore obtain a linear (“matrix”) inequality on the
entries of Y . Let M(P ) denote the set of all symmetric matrices satisfying all
the matrix inequalities that can be derived in this way, and let N(P ) = {x : Y ∈
M(P ), x = Diag(Y )}, where Diag(Y ) denotes the diagonal of Y ; thus N(P ) is a
projection of M(P ). By construction, we have that P0 ⊆ N(P ) ⊆ P . They also
consider a much stronger operator involving semidefinite constraints. Observe
that, for any 0-1 solution x, the matrix Y defined above as xxT must satisfy
Y −Diag(Y )Diag(Y )T = 0. This is again an (intractable) quadratic inequality but
it can be relaxed to Y −Diag(Y )Diag(Y )T � 0. Viewing Y −Diag(Y )Diag(Y )T

as a Schur complement, this is equivalent to
[

1 Diag(Y )T

Diag(Y ) Y

]

� 0. (10)
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As a result, defining M+(P ) as {Y ∈ M(P ) satisfying (10)} and N+(P ) = {x :
Y ∈ M+(P ), x = Diag(Y )}, we have that N0(P ) ⊆ N+(P ) ⊆ N(P ) ⊆ P and
optimizing a linear objective function over N+(P ) can be done via semidefinite
programming.

Lovász and Schrijver study the operator Nk(·) (resp. Nk
+(·)) obtained by

repeating N(·) (resp. N+(·)) k times, and show that for any P ⊆ Rn we have
Nn

+(P ) = Nn(P ) = N0. Lovász and Schrijver show that the equivalence between
(weak) optimization and (weak) separation [9, 11] implies that one can optimize
(up to arbitrary precision) in polynomial time over Nk

+ for any fixed value of k.
They introduce the N -index (resp. N+-index) of a valid inequality for P0 starting
from P as the least k such that this inequality is valid for Nk(P ) (resp. Nk

+(P )).
The N+-index of an inequality can be much smaller than its N -index. The

following theorem gives an upper bound on the N+-index. The case k = 1 appears
in [18], while the general case is unpublished by the author. Given a set Q ⊂ Rn,
let Q[I] = {x ∈ Q : xi = 1, i ∈ I}.
Theorem 2 Let aTx ≤ a0 be a valid inequality for P with a ≥ 0. Let S = {i :
ai > 0}. Assume that aTx ≤ a0 is valid for P [J ] whenever (i) J ⊆ S, |J | = k and
whenever (ii) J ⊆ S, |J | ≤ k − 1 and

∑

j∈J aj ≥ a0. Then aTx ≤ a0 is valid for

Nk
+(P ).

The condition a ≥ 0 can be satisfied through complementation. This theorem
essentially says that if one can derive validity of an inequality by fixing any set of
k variables to 1, then we can derive it by k repeated applications of N+; condition
(ii) simply takes care of those sets of k variables that do not satisfy the inequality.

As an illustration, consider the stable set polytope where we can take as initial
relaxation the fractional stable set polytope

FRAC(G) = {x : xi + xj ≤ 1 if (i, j) ∈ E, xi ≥ 0 for all i ∈ V }.

Lovász and Schrijver [18] show that the N -index of a clique constraint on k vertices
(
∑

i∈S xi ≤ 1) is k − 2 while its N+-index is just 1, as can be seen from Theorem
2. Odd hole, odd antihole, odd wheel, and orthonormal representation constraints
also have N+-index equal to 1, implying the polynomial time solvability of the
maximum stable set problem in any graph for which these inequalities are sufficient
(including perfect graphs, t-perfect graphs, etc.).

However, there are also situations where the N+ operator is not very strong.
Consider the matching polytope (the convex hull of incidence vectors of matchings,
which can also be viewed as the stable set polytope of the line graph) and its
Edmonds constraints:

∑

i∈S xi ≤ (|S| − 1)/2 for |S| odd. Stephen and Tunçel
[23] show that their N+-index (starting from the relaxation with only the degree
constraints) is exactly (|S| − 1)/2, and thus Θ(

√
n) iterations of N+ are needed

to get the matching polytope where n is its dimension. Although n iterations are
always sufficient for N or N+, here is a situation in which not significantly fewer
iterations are sufficient. Let

P =

{

x ∈ Rn :
∑

i∈S

xi ≤
n

2
for all S : |S| = n

2
+ 1

}

.
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Thus

P0 =

{

x ∈ Rn : 0 ≤ xi ≤ 1 for i = 1, · · · , n, and

n
∑

i=1

xi ≤
n

2

}

.

Let zk and zk+ denote max{ 1
n

∑n
i=1 xi} over x ∈ Nk(P ) and Nk

+(P ), respectively.
Goemans and Tunçel (unpublished) have obtained recurrences for zk and zk+ and
derived several properties; their most important results are summarized below.

Theorem 3 1. For k ≤ n
2 , z

k ≥ zk+ > n/2−r
n/2+1−r . In particular zn/2−1 > 0.5.

2. For k ≤ n
2 −√

n+ 3
2 , we have zk = zk+.

Together with Theorem 2, (i) implies that the N+-index of
∑n

i=1 xi ≤ n/2 is
exactly n/2, while one can show that its N -index is n− 2. Furthermore, (ii) says
that semidefinite constraints do not help for n/2− o(n) iterations.
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[23] T. Stephen and L. Tunçel. On a representation of the matching polytope via
semidefinite liftings. Unpublished, 1997.

[24] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev., pages
49–95, 1996.

Michel X. Goemans
M.I.T. and University of Louvain
Mailing address:
CORE, 34 Voie du Roman Pays
B-1348 Louvain-La-Neuve
Belgium
goemans@core.ucl.ac.be

Documenta Mathematica · Extra Volume ICM 1998 · III · 657–666


