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A
tive Set and Interior Methods

for Nonlinear Optimization

Richard H. Byrd and Jorge Nocedal

Abstract. We discuss several fundamental questions concerning the
problem of minimizing a nonlinear function subject to a set of inequality
constraints. We begin by asking: What makes the problem intrinsically
difficult to solve, and which characterizations of the solution make its
solution more tractable? This leads to a discussion of two important
methods of solution: active set and interior points. We make a critical
assessment of the two approaches, and describe the main issues that must
be resolved to make them effective in the solution of very large problems.
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The most important open problem in nonlinear optimization is the solution of
large constrained problems of the form

minimize f(x)

subject to h(x) = 0 (1)

g(x) ≤ 0,

where the functions f : Rn → R, h : Rn → Rm and g : Rn → Rt are assumed to
be smooth.

Assuming that certain regularity assumptions hold, the solution of (1) is char-
acterized by the Karush-Kuhn-Tucker conditions [4]. They state that any solution
x∗ must satisfy the system

∇f(x∗) +Ah(x
∗)λ∗h +Ag(x

∗)λ∗g = 0 (2)

h(x∗) = 0 (3)

g(x∗) ≤ 0 (4)

g(x∗)Tλ∗g = 0 (5)

λ∗g ≥ 0, (6)

for some Lagrange multiplier vectors λ∗h and λ∗g. Here Ah and Ag denote the
matrices whose columns are the gradients of the functions h and g. The first
equation can be written as ∇xL(x

∗, λ∗) = 0, where L is the Lagrangian function

L(x, λ) = f(x) + λThh(x) + λTg g(x). (7)
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This mathematical characterization is, however, not suitable for computation
because finding a pair (x∗, λ∗) that satisfies the Karush-Kuhn-Tucker system (2)-
(6) is a very hard problem.

Indeed we could attempt to guess the optimal active set, i.e. the set of in-
equality constraints that will be satisfied as equalities at the solution x∗. Based
on this guess, we could then replace (4) by a set of equalities, remove (5) and (6),
and define all Lagrange multipliers corresponding to inactive inequality constraints
to be zero. This transforms (2)-(6) into a system of nonlinear equations, which
is much more tractable. Unfortunately, the set of all possible active sets grows
exponentially with the number t of inequality constraints. Moreover, not all pairs
(x, λ) satisfying the Karush-Kuhn-Tucker conditions are solutions of (1); some of
them could be, for example, maximizers. Therefore this type of approach can only
be practical if we make intelligent guesses of the active set. We will return to this
question below.

The fact that it is impractical to solve the Karush-Kuhn-Tucker system di-
rectly has given rise to a variety of constrained optimization methods which make
use of two fundamental ideas:

transformation and approximation.

In the rest of the paper we describe how these ideas are used in some of the most
powerful methods for nonlinear optimization.

1 Exact Penalty Functions

A very appealing idea is to replace (1) by a single unconstrained optimization
problem. At first glance this may seem to be impossible since the general nonlinear
optimization problem (1) must be much more complex than the minimization of
any unconstrained function.

Nevertheless, several “exact penalty functions” have been discovered [4], and
can be used in practice to solve nonlinear programming problems. The best ex-
ample is the ℓ1 penalty function

ψ(x; ρ) = f(x) + ρ

m
∑

i=1

|hi(x)|+ ρ

t
∑

i=1

g+i (x), (8)

where a+ = max{0, a}. Here ρ is a positive penalty parameter whose choice is
problem dependent. One can show that if the value of ρ is large enough, then
local solutions of the nonlinear program (1) are normally local minimizers of (8).

The beauty and simplicity of this approach is undeniable. But it has two
drawbacks. First of all, the function φ function is not differentiable, and thus
minimizing it is far more difficult than minimizing a smooth function. One could
use the tools of non-differentiable optimization, but an approach that may be much
more effective is to make linear-quadratic approximations of φ, and use them to
generate a series of estimates of the solution [4]. Interestingly enough, this leads
to a method that is closely related to the active set method described in the next
section.
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The second drawback may be potentially fatal: the approach appears to be
very sensitive to the choice of the penalty parameter ρ. Small values of ρ may
lead to unbounded solutions, and excessively large values will slow the iteration
because the nonlinear constraints will be followed closely. It is interesting that
even though this exact penalty approach [4] was proposed more than 15 years ago,
it has not yet been firmly established whether the difficulty in choosing the penalty
parameter is serious enough to prevent it from becoming a powerful technique for
large-scale optimization.

There is another open question concerning this, and most other methods for
constrained optimization. It concerns the use of a merit function to determine
whether a step is acceptable. We could regard a step p to be acceptable only if it
gives a reduction in ψ. Some analysis, as well as numerical experience indicates
that this strategy may be overly conservative and that it may be preferable to
allow controlled increases in the merit function. How to do this is still an active
area of research; an interesting recent proposal is described in [5].

2 Active Set Methods

Let us now consider a different approach, which is based on the strategy of making
a series of intelligent guesses of the optimal active set, mentioned in the introduc-
tion.

Suppose that x is an estimate of the solution of (1) and that we wish to
compute a displacement p leading to a better estimate x+ = x + p. We can do
this by making a linear-quadratic approximation – but this time of the original
problem (1) — and solving the following subproblem in the variable p,

minimize ∇xL(x, λ)
T p+

1

2
pT∇2

xxL(x, λ)p

subject to h(x) +Ah(x)
T p = 0 (9)

g(x) +Ag(x)
T p ≤ 0.

This subproblem is much more tractable than (1). In fact, if ∇2
xxL(x, λ) is

positive definite, then (9) is not much more difficult to solve than a linear pro-
gram. For this reason it is common to either modify ∇2

xxL(x, λ), so that it is
always positive definite in the null space of constraints, or to replace it — directly
or indirectly — by a positive definite approximation. (A recently developed algo-
rithm [5]) deviates from this standard practice by formulating indefinite quadratic
programming subproblems, but it is too early to determine if it will supersede the
current approaches.)

The step p is considered to be acceptable only if it leads to a reduction in a
merit function. An example of such a merit function is (8), but many other choices
that combine constraint satisfaction and objective function decrease are possible
[4]. This method is called Sequential Quadratic Programming and is currently
regarded as the most powerful active set method.

There is a good mathematical justification [9, 8] for generating steps by means
of the quadratic subproblem (9). One can show that the step is a direction of de-
scent for a variety of merit functions. Moreover, the model (9) has the precise
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balance between constraint satisfaction and decrease in the objective function.
Unlike approaches, such as reduced gradient methods, that attempt to satisfy the
original constraints of the problem at each step (which can be computationally very
demanding) the quadratic programming model (9) applies successive linearizations
to the constraints – which is the idea behind Newton’s method for solving equa-
tions. Thus we can expect that the iterates generated by this active set approach
will decrease a measure of feasibility at a quadratic rate.

There are really two different ideas in the method we have just described.
The first is to use the subproblem (9) to provide us with an informed guess of
the optimal active set: our guess is the active set identified in the solution of the
quadratic subproblem. The second idea is to use the right level of approximation to
the objective function and constraints, as discussed above. In the interior methods
described next, we no longer attempt to guess the optimal active set, but retain
the idea of making linear-quadratic approximations.

3 Interior Point Methods

Let us use slack variables s to transform (1) into the following equivalent problem
in the variables x and s,

minimize f(x)

subjet to h(x) = 0

g(x) + s = 0

s ≥ 0.

Even though the only inequalities are now simple non-negativity constraints, a
little reflection shows that this problems is just as complex as (1). Let us now
soften the inequalities by introducing a barrier term in the objective function to
obtain the new problem

minimize φ(x;µ) = f(x)− µ

t
∑

i=1

ln si

subject to h(x) = 0 (10)

g(x) + s = 0,

where µ is a positive parameter. Note that we have removed the bound s ≥ 0
because we will assume that the initial value of s is positive, and the barrier term
prevents us from generating negative values of s – or for that matter, values that
are close to zero.

Of course, (10) is not equivalent to (1) and we have introduced a parameteri-
zation of the problem that is controlled by the barrier parameter µ. Note that (10)
contains only equality constraints, and is much simpler to solve than an inequality
constrained problem. Once the barrier problem (10) is approximately solved, we
decrease µ, and repeat the process. This will lead to a sequence of iterates xµ that
will normally converge to a solution of (1) as µ→ 0.
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The set of estimates xµ obtained by this approach is interior to the region
s > 0, but is not necessarily feasible with respect to the inequalities g(x) ≤ 0.
Thus the term “interior point method” must be interpreted in a broad sense.
The ability to generate infeasible iterates turns out to be highly advantageous in
practice because finding a feasible point for a nonlinear system is computationally
expensive, and it is more efficient to perform the minimization while searching for
a feasible point.

Barrier methods for nonlinear programming have been known for a long time
[3]. But they fell out of favor in the 1970s, and have been resurrected only re-
cently, in a variation that we now call interior point methods. There are three
recent developments that have made barrier methods more effective in solving
large problems. We will discuss each of these separately.

3.1 Primal-Dual Steps

Let us consider the problem of finding an approximate solution of the barrier prob-
lem (10) for a fixed value of the parameter µ. The Karush-Kuhn-Tucker conditions
take the form

∇f(x) +Ah(x)λh +Ag(x)λg = 0

−µS−1e+ λg = 0

h(x) = 0 (11)

g(x) + s = 0,

where e = (1, ..., 1)T and S = diag(s1, ..., st). This is a nonlinear system of equa-
tions in x, λh and λg. We can ignore (for the moment) the fact that s and λg must
be positive, and simply apply Newton’s method to (11) to compute a displacement
p in x and new values of the multipliers. We obtain the iteration









∇2
xxL 0 Ah(x) Ag(x)
0 Σ 0 I

AT
h (x) 0 0 0

AT
g (x) I 0 0

















px
ps
λ+h
λ+g









=









−∇f(x)
µS−1e
−h(x)

−g(x)− s









, (12)

where Σ = µS−2. This approach is very similar to the barrier techniques used in
the 1980s (cf. [10]) and is called a primal barrier method.

An important observation is that (11) is not well suited for Newton’s method
because the second equation is rational. But if we multiply this equation by S we
obtain the equivalent system

∇f(x) +Ah(x)λh +Ag(x)λg = 0

Sλg − µe = 0

h(x) = 0 (13)

g(x) + s = 0.

This nonlinear transformation is very beneficial because the rational equation has
now been transformed into a quadratic – and Newton’s method is an excellent
technique for solving quadratic equations.
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Applying Newton’s method to (13) gives the iteration (12) but now Σ is
defined as

Σ = ΛS−1, (14)

where Λ is a diagonal matrix containing the entries of λg. This primal-dual iter-
ation is at the heart of most interior point methods. After the step is computed,
one can backtrack along it to make sure that s and the λg remain positive.

Note that, in contrast to standard practice, we have not used any duality
arguments in deriving the primal-dual step computation. Indeed the term “primal-
dual” is not very descriptive of the key idea, which consists of applying a nonlinear
transformation that changes the optimality conditions (11) into the equivalent
system (13). Even though these two systems have the same solutions, Newton’s
method will produce different iterates, and the primal-dual step is known to be
superior [13].

An interesting question is whether the nonlinear transformation we used is
the best possible.

3.2 Coping With Ill-Conditioning

The barrier function φ(x;µ) defined in (10) is inherently ill conditioned. A simple
computation shows that the Hessian of φ has condition number of order O(1/µ).
This is reflected in the primal-dual iteration (12) where the matrix Σ = ΛS−1

becomes unbounded as µ → 0. Nevertheless, solving (12) by a direct method, as
is done in most linear programming codes, does not lead to significant roundoff
errors, even when µ is very small [11, 12].

The key observation in this roundoff error analysis can be better explained if
we consider Newton-like methods for solving the unconstrained problem min f(x).
Here the step p is computed by solving a system of the form

Ap = −∇f(x),

where A is either the Hessian matrix ∇2f(x) or some other related matrix. It is
easy to see that the quality of the search direction is very sensitive to the accuracy
with which ∇f(x) is calculated, but is not particularly sensitive to changes in A.
The ill-conditioning of the barrier function can cause errors in the factorization of
the iteration matrix, but very significant errors can be tolerated before the quality
of the iteration is degraded — and simple safeguards ensure that high accuracy is
obtained in most cases [12].

All of this assumes that a direct method is used to solve (12). But in many
practical applications, the problem is so large that direct methods are impractical
due to the great amount of fill that occurs in the factorization. In other applica-
tions, the Hessians of f, g or h are not be available, and only products of these
Hessians times vectors can be computed. In these cases it is attractive to use the
linear conjugate gradient (CG) method to solve the Newton equations (12). This
system is indefinite, but by eliminating variables, one obtains a positive definite
reduced system to which the projected conjugate gradient method can be applied
[2, 1].
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When using the conjugate gradient method to solve the Newton equations,
ill-conditioning is a grave concern. The unfavorable distribution of eigenvalues of
the matrix in (12) may require a large number of CG iterations, and may even
prevent us from achieving sufficient accuracy in the step computation. Fortunately,
since the barrier function is separable and the portion that gives rise to the ill-
conditioning is known explicitly, we can apply preconditioning techniques. To
describe them let us recall that the step given by (12) has been decomposed in
terms of its x and s-components, p = (px, ps). Then the change of variables

p̃s = µS−2ps,

transforms the primal-dual matrix Σ = ΛS−1 into Σ = µ−1ΛS. The second
equation in (11) implies that ΛS converges to µI, showing that the new matrix
Σ will not only be bounded, but will converge to the identity matrix. The CG
iteration can now be effectively applied to the transformed system [1]. One should
note, however, that this preconditioning comes at a price, and increases the cost
of the CG iteration [1].

In summary, we have learned how to cope with ill-conditioning in barrier
methods for nonlinear optimization. These observations also indicate that de-
veloping quasi-Newton variants of the interior methods just described may not
pose significant difficulties provided that we approximate only the Hessian of the
Lagrangian (7) of the original problem (1), as opposed to the Hessian of the La-
grangian of the barrier problem (10) which contains structural ill-conditioning.

3.3 Predictor-Corrector Strategy

The third key contribution of interior point methods has been the idea of using
probing schemes to determine how fast to reduce the barrier parameter, and at the
same time to determine (indirectly) how accurately to solve the barrier problem
[7]. We cannot describe these predictor-corrector techniques here, and refer the
reader to [13] for an excellent treatment of this subject.

We will only outline the key ideas of this approach which, at present, has
only been implemented in the context convex optimization. Its most interesting
feature is that it goes beyond the principle of Newton’s method which computes a
step based on an approximation of the problem at the current point. Instead, one
first probes the problem by attempting to solve (12) with µ = 0, which amounts
to trying to solve the original nonlinear program (1). By gathering information
in this probing iteration (the predictor), we can make a decision on how much to
decrease the barrier parameter. At the same time, and at minimal cost, we can
compute a primal-dual type step that corrects the predictor step and generates an
iterate that is closer to the solution of the current barrier problem.

4 Final Remarks

Let us contrast the active set and interior approaches described in the previous
sections by comparing the way in which they generate steps.
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In the active set method we compute an exact solution of the subproblem (9).
This is a full-fledged inequality constrained problem which can be costly to solve
when the number of variables and constraints is large – particularly if the Hessian
of the model is not positive definite. This is the main disadvantage of active set
methods.

The great virtue of the active set approach is that it gives us, at every iteration,
a guess of the optimal active set. As the iterates approach the solution, the active
set of the subproblem (9) does not change, or undertakes minimal changes. This
allows great savings in the solution of the subproblem because a warm start can be
used: the solution of a new subproblem (9) can start from the active set identified
at the previous iteration, and one can also re-use certain matrix factorizations [6].

Let us now consider interior point methods. The primal-dual iteration (12)
is only a local method, and must be modified to be capable of dealing with non-
convex problems. The interior methods described in [1] and [14] compute the step
by solving a quadratic subproblem obtained by making a linear-quadratic approx-
imation of the barrier problem. This approximation is such that, asymptotically,
the iteration reduces to the primal-dual iteration (12). In both of these approaches
there is an explicit bound on the step ps in the slack variables. It takes the form

ps ≥ 0.995s,

and is known as a “fraction to the boundary rule”.
This subproblem appears to be very similar to (9) since it also contains in-

equality constraints, but the presence of the barrier terms in the objective softens
these constraints. Whereas in the active set approach the solution of the sub-
problem will normally lie on the boundary of the feasible region, in the interior
approach this will not be the case, and solving the subproblem is simpler. This is
one of the great advantages of interior methods.

A drawback of interior methods is that they normally do not provide a clear
indication of the optimal active set until the solution is computed to high accu-
racy. This is undesirable in some applications, and future interior point codes may
need to switch to an active set iteration, if necessary. Another weakness of interior
methods is that they cannot efficiently re-use information from a previous sub-
problem. Roughly speaking, the solution of every subproblem requires the same
amount of work. Finally, it is not yet known if interior point methods will prove
to be as robust as active set methods for solving difficult non-convex problems.

These observations are based on the limited numerical experience that has
been accumulated for both approaches when solving large problems. Once we have
gained a better understanding of their practical behavior, and after new variants
have been proposed, we will undoubtly discover that other unforeseen issues will
tilt the balance towards one approach or the other.
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