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Column Generation

and the Airline Crew Pairing Problem

Ranga Anbil, John J. Forrest and William R. Pulleyblank

Abstract. The cost of flight crews is the second largest operating cost of
an airline. Minimizing it is a fundamental problem in airline planning and
operations, and one which has leant itself to mathematical optimization.
We discuss several recent advances in the methods used to solve these
problems. After describing the general approach taken, we discuss a
new method which can be used to obtain approximate solutions to linear
programs, dramatically improving the solution time of these problems.
This is the so-called volume algorithm. We also describe several other
ideas used to make it routinely possible to get very good solutions to
these large mixed integer programs.
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1 Airline Operations and the Crew Pairing Problem

The Airline Crew Pairing problem has become well known as a prototypical applied
problem which lends itself to a column generation approach. A pairing, or tour of

duty, is a sequence of flights to be flown by a crew, starting and ending at the crew
member’s home base. Typically the length of a pairing will range from a single day
to four or five days. The pairing problem is to compute a set of pairings covering
all the scheduled flights of an airline, which has minimum, or near minimum, cost.
This problem normally forms the third major stage in a four part planning process:

1. Schedule Creation. Flights are planned, based on market demands and
competitive analysis. For example, we may schedule a flight from New York’s
La Guardia Airport to Chicago’s O’Hare Airport every non-holiday weekday
departing at 6:15 P.M.

2. Fleet Scheduling. Airlines normally have several different types (fleets)
of aircraft. A fleet is chosen for each flight scheduled in the first stage,
subject to the constraints that the type of aircraft chosen for each flight be
of suitable capacity and flying characteristics and subject to “Kirchoff’s law”
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for aircraft – each aircraft that departs from an airport must have landed
there first. Subject to these constraints, the operating cost of the aircraft
should be minimized.

3. Crew Pairing. A set of pairings is created which assigns crews to aircraft
flights. This will normally be solved separately for each fleet, as typically a
crew member only has current authorization for one type of fleet.

4. Rostering. Individual crew members are assigned to each pairing, often
based on seniority, sometimes by an auction process.

The difficulty of the crew pairing problem comes from several factors:

1. The rules which govern the feasibility of a pairing are very complex, often
combining FAA regulations with sets of rules coming from union negotia-
tions.

For example, the rules governing a feasible assignment of duties of a major
US carrier, include the following rules: the maximum trip length is 4 duty
days; the maximum duty flying time is 8 hours; the minimum time allowed
between connecting flights is 40 minutes; at most one aircraft changes is
permitted in a duty.

There are also more complicated rules. One example requires that in any 24
hour window of a pairing, a crew member flying up to 8 hours is entitled to
an intervening rest period of 540 minutes before the next duty. However, if
necessary, this can be shortened to 510 minutes, but if this is done, then the
following intervening rest must be at least 630 minutes.

2. The calculation of the cost of a pairing is complex, and usually incorporates
several nonlinear components. Most of the cost is for the crew pay. This
is based on the amount of actual flight time, but also has minima that are
applied based on the time of duty each day and the number of days in
the pairing. There are also costs associated with hotel costs and per diem
expenses.

3. The number of feasible pairings is very large, so it is not practical to generate
the complete set of feasible pairings for a problem.

The table below illustrates the number of feasible pairings, with maximum
length three or four days, for several fleets.

Fleet Max Days #Flights #Bases #Duties #Pairings
(millions)

AAS80 3 1152 12 690,000 48,400
AA757 3 251 15 7,000 1
AA727 3 375 11 31,000 36
AAF10 4 307 3 55,000 63,200
UA737 4 773 7 568,000 100,000,000
USDC9 4 478 4 562,000 105,000,000
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Note that although the number of feasible pairings is very large, the number of
feasible one day duties is of a much more manageable size.

2 Overall Approach and Formulation

2.1 Basic formulation

The crew pairing optimization problem is normally solved in several stages. First,
a daily problem is solved, which handles all the flights which are scheduled every
day. Then a weekly problem is solved which reuses as much of the daily solution as
possible, and also handles weekends. Then a monthly or dated problem is solved
which keeps as much as possible of the weekly solutions and creates a complete
monthly schedule, dealing with holidays and week to week transitions. Each stage
of this problem can be formulated as an integer program.

Let P be the set of all feasible pairings. For each j ∈ P , we define a 0, 1
variable xj with the interpretation xj = 1 if the pairing j is used and xj = 0 if it
is not used. Let cj denote the cost of pairing j, which can be computed based on
the cost structure as described above.

Let F be the set of all flights that must be covered in the period of time under
consideration. For each i ∈ F , let P i denote the set of all pairings which cover the
flight i. Then the problem becomes:

Minimize
∑

j∈P cjxj (1)

subject to xj ∈ {0, 1} for all j ∈ P, (2)
∑

j∈P i xj = 1 for all i ∈ F. (3)

Let A = (aij : i ∈ F, j ∈ P ) denote the 0, 1 flight-pairing incidence matrix,
where aij = 1 if pairing j includes flight i and 0 otherwise. Then this can be
written as the set partitioning problem:

Minimize cx subject to 0 ≤ x ≤ 1, integer, and Ax = 1. (4)

A is a matrix which typically has several hundred rows (one for each flight
to be covered) and many millions of columns, corresponding to the set of feasible
pairings. The size of A makes exhaustive column enumeration impractical.

Early works, discussed in Arabeyre et al.[3], Bornemann[11], and Marsten and
Shepardson[23], restrict column generation a priori to a small, manageable subset
of preferred pairings and solve the resulting set partitioning problem by implicit
enumeration or branch-and-bound via linear programming or Lagrangian relax-
ation. Other works, reported in Rubin[26], Baker et al.[4], Ball and Roberts[5],
Etschmaier and Mathaisel[15], Gershkoff[18], Anbil et al.[1] and Graves et al.[19]
employ iterative column generation schemes centered around local improvement
procedures but do not guarantee global convergence.

Anbil, Johnson and Tanga[2], present a method to handle more than 5 million
columns and report excellent cost savings over a local improvement scheme, but
the search is nonetheless limited to this subset. Recently, Housos and Elmroth
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[21] solve the problem a day at a time over a week horizon and report excellent
results, however, it is not clear if their iterative scheme has global convergence.

Minoux[24] is perhaps the first to present a globally converging column gen-
eration method for the linear relaxation of the crew pairing problem. This is
described in the next solution. Crainic and Rousseau[13] also report a similar but
less formal procedure.

Desaulniers et al.[14] and Barnhart et al.[9] discuss convergence rate issues
and column generation integrated into branch-and-bound for solving the overall
mixed integer program. Barnhart, Hatay and Johnson[8] discuss a scheme for
interactively expanding the duty network to include deadhead flights as they are
needed. Ryan and Falkner[28], Hoffman and Padberg[20], Bixby et al.[10], Chu et
al.[12] and Wedelin[30] discuss specialized optimization algorithms for the underly-
ing mixed integer programs. Vance, Barnhart, Johnson and Nemhauser[29] present
a different formulation for the crew pairing problem but with similar algorithmic
issues.

Some additional constraints may also be added to this formulation. For ex-
ample, Crew base constraints associate each pairing with a crew base from which
it can be flown. Then the number of pairings associated with each crew base is
given both upper and lower bounds. Quality constraints may apply to an entire
problem, and restrict the number of three and four day pairings which can be
used in an optimal solution. Often these are soft constraints, in that they can be
violated, but an artificial penalty cost is added to the solution if this happens.

2.2 Solution Approach

Our solution approach combines rapid solutions of linear programming relaxations
with column generation and specialized branching:

1. Generate an Initial Solution. If a warm start solution is available, use
it. (A warm start solution is a solution obtained from an earlier, similar run.) If
not, use heuristics to create a feasible solution. Add additional columns to the
problem, as described in the following section.

2. Solve the linear program using the Sprint method, described below.
3. Generate additional columns to improve the quality of the linear program

solution. We focus on flights which are being covered by expensive pairings, but
also randomize. Also, we use the column generation method described in the next
section.

4. Repeat Steps 2 and 3 until the linear program solution only improves
negligibly.

5. Collapse flights based on best follow-on using the linear program solution.
This is described in Section 4.

6. Reduce the matrix, generate additional columns to improve the linear
programming solution using the reduced matrix, and return to Step 5.

7. When the number of flights in Step 5 is less than 100, solve for the best
integer programming solution.

The selection of flights to be used for deadheading creates an additional prob-
lem. Airlines generally prefer to use their own flights, but will permit the use of
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competitor flights, if it substantially improves the objective function. This then
has the potential to substantially increase the problem size, even to an extent that
it cannot be solved. For that reason, careful selection of a suitable set of deadheads
is crucial.

2.3 The Sprint method

The linear programs solved in the above procedure have a small number of rows
but a very large number of columns. As the problems get large, the solution times
using standard linear programming methods grow too rapidly to be practical. John
Forrest[16] introduced the so-called Sprint method. The example below, based on
a problem from American Airlines, had 837 flights and generated a total of 5.5
million feasible pairings. The problem was solved with IBM’s OSL Primal, Dual
and Sprint, for successively larger subsets of the 5.5 million columns. In each case,
the pairings represented by the first 110 columns gave a good feasible solution. All
times are minutes of solution time on a S/390 (in 1989).

Number of Primal Dual Sprint
Pairings Iterations Time Iterations Time Iterations Time

5,000 479 .05 203 .05 933 .10
10,000 1416 .35 295 .10 1072 .14
50,000 7239 11.1 1861 3.99 2870 .86
100,000 17273 57.7 4804 21.5 6981 2.68
200,000 33950 226.8 8008 74.3 36356 12.7
250,000 44215 397.8 8727 100.7 57181 21.5
500,000 11105 258.6 106002 54.5

The Sprint method proceeds as follows: It begins by solving the linear program
obtained by keeping a small subset of the columns and then uses the optimal dual
variables to price out all columns of the original problem. If the solution is not
optimal to the original problem, then there are columns having negative reduced
cost. A new problem is formed by keeping the columns in the optimal basis and
then adding a subset of the best unused columns, based on the current reduced
cost. This is done by first bucketing the columns based on the reduced cost, adding
the columns in the best buckets, plus a random selection of columns from other
buckets. Note that even though the number of Sprint iterations grows rapidly,
they are performed very quickly, enabling our low solution times.

3 Optimal Column Generation

In the solution approach described above, we go through a number of waves of
column generation. Minoux[24] introduced an approach, based on the optimal
dual variables to the linear program described above, which would generate new
columns that could reduce the cost of the current solution, if any existed.

The linear programming relaxation of the integer program above is
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Minimize cx subject to 0 ≤ x, and Ax = 1. (5)

We have dropped the upper bounds on the variables, as they are implied by
the non negativity constraints, combined with the equations Ax = 1. The dual
problem will have a variable yi corresponding to each flight i ∈ F .

Minoux observed that the total number of feasible one-day duties is manage-
able. (See the table above.) He suggested building a tree of duties to represent
pairings as paths in this tree. A path includes both duty arcs and ground arcs
that link consecutive duties, and the cost of a path or pairing is viewed as a linear
sum of duty and ground arc costs. Initially, some paths are selected and a linear
programming solver gives the dual variables corresponding to each flight. The
duty arc costs are then reduced by their flight duals and a shortest path algorithm
applied to the duty tree gives the most negative reduced cost pairing to enter the
problem. It is then resolved and the updated duals drive the next shortest path
generation. This process will eventually reach a point when the shortest path
yields a non-negative reduced cost. The columns present in the current linear
program contain the optimum solution.

Current column generation methods reported in Barnhart et al.[7] Desaulniers
et al.[14] Lavoie et al.[22], Wise[31] and Barnhart et al.[9] are mostly further
extensions to Minoux’s seminal work that address one or more of three main
limitations: the path cost is not necessarily linear in the arc costs; all paths may
not be legal; there are extra constraints such as crew base constraints that may
limit the number of pairings that may be flown from a specific base.

The most common approach is dynamic programming on a shortest-path for-
mulation with side constraints to ensure accurate costing, legal paths and the
proper accounting of the extra constraints.

We use a variant of the shortest path column generation scheme. Like
Minoux[24], we use a duty tree with duty arcs and ground arcs, but carry a vector
of arc costs to enable the different ways of computing the cost. Using the set of
dual variables from a previously solved linear program, we reduce the arc costs
component-wise. We then perform a depth first traversal of the duty tree, ensuring
we are feasible as we proceed, and keeping a component-wise tally of the reduced
arc costs. We now add this tally to the cost of the shortest path from our location
to the end of the tree, again component-wise, and use the maximum of the com-
ponent sums as a lower bound on the true shortest path cost. If this lower bound
exceeds a threshold, then we backtrack. We ensure that every pairing we generate
will be feasible as we proceed, by ensuring that all constraints are satisfied as we
go along. This is in contrast with some earlier methods which generated a superset
of the feasible columns and then were filtered afterwards. Our method also avoids
the excessive memory requirements inherent in dynamic programming.

Each time we generate columns, we set a threshold and generate all columns
whose current costs will be less than this value. This value is changed during the
running of the method.
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4 Branching Methods

Normally, a branch and bound approach is used to repeatedly add constraints to
the linear programming relaxation until an integral optimum is found. A key to
the success of this approach is the method used to generate these constraints. We
use a method called branch on follow-ons, introduced by Ryan and Falkner [27].
A follow-on is the second of a pair of consecutive flights flown in a pairing. We
examine the solution obtained to a linear relaxation, and look for follow-ons which
occur in a set of pairings j for which

∑
xj is large, that is, close to 1. (Note that

the values xj will, in general, be fractional.) The sum is over all pairings j in the
optimum linear programming solution for which xj is positive. When we find such
a follow on, we fix it, that is, we force it to be part of the solution by creating
an artificial flight which combines the two consecutive flights, and reducing the
problem.

Note that the column generation phase will still consider the original set of
flights, so it is possible to recover from a bad choice.

5 The Volume Algorithm

Barahona and Anbil[6] developed an extension to the subgradient algorithm which
will produce approximate optimal feasible primal and dual solutions to a linear
program, much more quickly than solving it exactly. These methods yield signifi-
cant improvements to the running time of our crew pairing approach.

Since the early 1970’s, subgradient algorithms have been used to rapidly pro-
duce good lower bounds for linear programs, see for example Nemhauser and
Wolsey[25]. The method produces a sequence of feasible solutions to the dual
problem, which will converge to the optimum. Barahona and Anbil[6] present a
new method which also produces a feasible solution to the primal problem. It is
based on the following result:

Theorem 1 Consider the linear program Maximize z, subject to z+ aiπ ≤ bi, for

i = 1, ...,m, where π is a vector with n − 1 components. Let (ẑ, π̂) be an optimal

solution and suppose that the constraints 1, ...,m′,m′ ≤ m are active. Let z̄ < ẑ

and assume that z+aiπ ≤ bi, for i = 1, ...,m′; z ≥ z̄ defines a bounded polyhedron.

For 1 ≤ i ≤ m′, let γi be the volume between the face defined by z + aiπ ≤ bi
and the hyperplane defined by z = z̄. Then an optimal dual solution is given by

λi =
γi

∑m′

j=1
γj

.

They also show how this theorem can be used to produce a feasible dual
solution which approximates the optimum.

We apply this method to the linear programs we encounter when solving
the crew pairing problem. In addition to the performance improvements, the
dual solutions produced tend to be very good for the column generation phase.
This is because they are highly nonbasic, that is, a large number of variables are
nonzero. Dual solutions obtained using the barrier or interior method for linear
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programming share this property. However, those used by the simplex algorithm
tend to be very sparse, and do not work as well.

We also use the volume algorithm as a crash procedure for the simplex method
when the Sprint method performs poorly. These situations arise after we generate
columns for a period of time using only duals from the Volume algorithm. The
table below summarizes runs on several problems obtained from US Airways and
Southwest Airlines. All times are CPU seconds on an RS6000/590.

Using the Volume algorithm dual solution to crash the dual simplex is, on
average, nine times faster than the dual simplex algorithm and two times faster
than the interior method. We did not consider the primal simplex algorithm, since
it performs very poorly for these problems.

No. of No. of No. of Primal-Dual Dual Volume plus
Rows Columns Elements Interior Simplex Dual Simplex
2504 53226 553148 1341 3747 320
2991 46450 502338 1984 6928 923
4810 95933 1009283 4165 25917 2576

6 Conclusions

The methods we have described here are used successfully by several airlines to
solve their monthly crew planning problems. In fact, it is part of a larger system
which combines management of a database of previously created good solutions,
used for warm starts, with interactive tools permitting the scheduler to manually
change the solutions produced.

Presently attention is switching to the schedule repair problem. This is the
operational problem which occurs when a schedule is disrupted, for example, due
to weather or mechanical problems, and it is desired to get back on schedule as
efficiently as possible. This problem is complicated by the fact that we must
produce feasible solutions in minutes, rather than hours, and by the problems of
aircraft availability as well as the possibility of canceling flights.
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