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Routing and Timetabling by Topologial Searh

Alexander Schrijver

Abstract. We discuss how decomposing the search space into homo-
topy classes can help in finding solutions to combinatorial optimization
problems. Searching any homotopy class then amounts to finding a group
function ψ on the arcs of a directed graph such that ψ is cohomologous
to a given function φ and such that ψ has values in a prescribed range.

We describe applications to two specific classes of NP-complete problems:
routing wires on a chip (where the main tool is solving the cohomology
problem in a free group, and a main result the polynomial-time solv-
ability of the wire-routing problem for any fixed number of modules),
and finding a periodic timetable (applied to the Dutch railway timetable,
where liftings of the period group C60 to the integers give the classes to
be searched).

The methods also imply a characterization of the existence of an isotopy
of a compact surface S that brings a given set of disjoint closed curve on
S to a given undirected graph embedded on S.
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1. Introduction

A basic technique in combinatorial optimization, and more generally, in inte-
ger programming, is to extend (‘relax’) the feasible solution set X ⊆ Zk to
conv.hull(X) ⊆ Rk, and to use the solution of the relaxed problem as a guideline
in an approximative method or in a branch and bound process. This is based on
the hope that a fractional solution is close to the integer solution, and on the idea
that the relaxed problem can be solved fast with linear programming techniques.

Mathematically, the idea can be described as embedding the group Zk into
the group Rk, where Zk is a ‘hard’ group, while Rk is a ‘tractable’ group (as long
as the feasible region is convex).

In this survey we describe a different technique of reducing problems on ‘hard’
groups to problems on ‘tractable’ groups. Instead of embedding the hard group
into a tractable group, we lift the hard group to a tractable group. We give two
examples where this technique can be applied successfully, although it is not as
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generally applicable as the embedding technique described above. We will not
venture upon describing the method in its full generality, but hope that the reader
will see that the frameworks we describe have a common underlying structure.

The type of problems where the technique applies can be described as follows.
Let D = (V,A) be a directed graph, and let G be a group. Call two functions
φ, ψ : A→ G cohomologous (denoted by φ ∼ ψ) if there exists a function p : V → G

such that for each arc a = (u, v) one has

ψ(a) = p(u)−1φ(a)p(v). (1)

Consider the following cohomology feasibility problem:

given: φ : A→ G and Ψ : A→ 2G,
find: ψ ∼ φ such that ψ(a) ∈ Ψ(a) for each a ∈ A.

(2)

This problem is in general hard to solve, even if G = C3. Then, if φ(a) := 1
and Ψ(a) := G \ {1} for a ∈ A (assuming that G is the multiplicative group with
three elements), the cohomology feasibility problem has a solution if and only if
the directed graph D is 3-vertex-colourable. As the latter problem is NP-complete,
the cohomology feasibility problem is NP-complete.

On the other hand, there are groups where the cohomology feasibility prob-
lem is solvable in polynomial time, provided that the sets Ψ(a) each are convex in
a certain sense. For instance, if G = Rk and each Ψ(a) is convex, the cohomol-
ogy feasibility problem can be solved in polynomial time by linear programming
methods (assuming that the Ψ(a) are appropriately described).

Another tractable group is the group Z of integers, where each Ψ(a) is a
convex subset of Z. The cohomology feasibility problem then can be solved with
a variant of the Bellman-Ford method for finding shortest paths.

As an extension of this, we have shown in [6] that if G is a free group, and
each Ψ(a) is hereditary (closed under taking contiguous subwords), then again the
cohomology feasibility problem is solvable in polynomial time. This holds more
generally for free partially commutative groups, if the subsets Ψ(a) are convex in
a certain sense — see Section 3 ([7]).

We give two applications in which the cohomology feasibility problem with a
hard group shows up (Zk, C60), and show how a lifting to a tractable group (the
free group, Z) can help in solving the problem. (In fact, Zk is a special case of a
free partially commutative group; however, the subsets in the application are not
of the prescribed type.)

2. Disjoint paths in directed planar graphs

The first application is that of routing the wires on a very large-scale integrated
(VLSI) circuit (a chip). If we restrict ourselves to one layer, the following k disjoint
paths problem emerges:

given: a planar directed graph D = (V,E), and distinct vertices
s1, t1, . . . , sk, tk of D;
find: pairwise disjoint directed paths P1, . . . , Pk, where Pi runs
from si to ti (i = 1, . . . , k).

Documenta Mathematica · Extra Volume ICM 1998 · III · 687–695



Routing and Timetabling by Topological Search 689

For general directed graphs, this problem is NP-complete even when fixing
k = 2 (Fortune, Hopcroft, and Wyllie [1]). This is in contrast with the undirected
case (for those believing NP 6=P), where Robertson and Seymour [4] showed that,
for any fixed k, the k disjoint paths problem is solvable in polynomial time for any
undirected graph (not necessarily planar).

Also, for directed planar graphs, the k disjoint paths problem is NP-complete
if we do not fix k (Lynch [2]). However, in [6] it is shown that for fixed k and for
directed planar graphs, it is solvable in polynomial time. We sketch the method.

For each i = 1, . . . , k, choose a simple curve Ci in R2 connecting si and ti,
in such a way that the Ci are pairwise disjoint. Now the following k disjoint
homotopic paths problem is solvable in polynomial time:

given: pairwise disjoint simple curves C1, . . . , Ck, where Ci con-
nects vertices si and ti of D (i = 1, . . . , k);
find: pairwise disjoint directed paths P1, . . . , Pk in D, such that Pi

is homotopic to Ci in the space R2 \ {s1, t1, . . . , sk, tk}.

The curves Ci can be described equivalently by a flow φ : A → FGk, where
FGk denotes the free group with k generators g1, . . . , gk. Thus at any vertex
v 6∈ {s1, t1, . . . , sk, tk}, the flow conservation law should hold; that is, if a1, . . . , an
are the arcs of D incident with v in clockwise order, then the product

φ(a1)
sign(a1,v) · . . . · φ(an)

sign(an,v)

equals 1, where sign(a, v) = +1 if a enters v and sign(a, v) = −1 if a leaves v. If
v = si, the product should be a conjugate of g−1

i , and if v = ti, a conjugate of gi.
Let us call a flow φ : A→ FGk feasible if for each arc a: φ(a) ∈ {1, g1, . . . , gk},

and for each vertex v and for each two faces f and g incident with v, if a1, . . . , am
are the arcs incident with v met when going from f to g around v in clockwise
order, then

φ(a1)
sign(a1,v) · . . . · φ(am) sign(am,v)

belongs to {1, g1, g
−1
1 , . . . , gk, g

−1
k }.

So feasible flows correspond to solutions to the original k disjoint paths prob-
lem. Now given a flow φ : A → FGk, we can find in polynomial time a feasible
flow ψ : A→ FGk homotopic to φ, if it exists. Here φ and ψ are called homotopic
if there exists a function p : F → FGk such that for each arc a of D, if f and f ′

denote the faces incident with a at its left-hand and right-hand side, respectively,
then ψ(a) = p(f)−1φ(a)p(f ′). (Here F denotes the collection of faces of D.)

This follows from the polynomial-time solvability of the cohomology feasibility
problem for free groups, with each Ψ(a) hereditary. Indeed, by passing from the
graph D to its (planar) dual graph D∗, the problem of finding a feasible flow
homotopic to a given flow, is transformed to the cohomology feasibility problem.

The polynomial-time solvability of the k disjoint homotopic paths problem
implies that for fixed k, the k disjoint paths problem in directed planar graphs is
polynomial-time solvable: it can be shown that one can enumerate in polynomial
time (for fixed k) flows φ1, . . . , φN : A→ FGk with the property that each feasible
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flow is homotopic to at least one of φ1, . . . , φN . (The exponent of the polynomial
depends on k.) This is the proof method for:

Theorem 1. For each fixed k, the k disjoint paths problem in directed planar
graphs can be solved in polynomial time.

Note that the k disjoint paths problem asks for any flow; that is, one not restricted
by its homotopy class. In other words, we ask for a feasible flow φ : A→ Zk. (So
the generators may commute; this corresponds to the possibility that curves may
be shifted over each other.) Not fixing k, this is an NP-complete problem. By
lifting Zk to FGk, we restrict the solution set, and obtain a polynomial-time
solvable problem (also polynomial-time for nonfixed k). As the number of liftings
can be bounded by a polynomial for fixed k, we can solve the original problem for
fixed k in polynomial time. (In fact, generally there are infinitely many liftings,
but only a restricted number of them potentially gives a feasible solution.)

3. Free partially commutative groups

The algorithm for solving the cohomology feasibility problem for free partially
commutative groups (with convex sets Ψ(a)) implies a necessary and sufficient
condition for the existence of a solution ψ, which we describe now.

There is an obvious necessary condition for the existence of such a function ψ.
Let us denote a path P in D as a word a1 · · · at over the alphabet {a, a−1|a ∈ A}.
In this way we indicate that P traverses the arcs a1, . . . , at in this order, where
ai = a−1 means that arc a is traversed in backward direction. A v − w path is a
path starting in v and ending in w.

Define φ(a−1) := φ(a)−1 and Ψ(a−1) := Ψ(a)−1. For any path P = a1 · · · at
define φ(P ) := φ(a1) · · ·φ(at) ∈ G and Ψ(P ) := Ψ(a1) · · ·Ψ(at) ⊆ G.

A necessary condition for the existence of ψ in the cohomology feasibility
problem (2) is:

for each v ∈ V and each v − v path P there exists an x ∈ G such
that x−1φ(P )x ∈ Ψ(P ).

(3)

Indeed, we can take x = p(v) where p is as in (1).
In some cases this condition is sufficient as well, for instance, if G is the infinite

group with one generator g and each Ψ(a) is convex (that is, if gi, gj ∈ Ψ(a) then
also gk ∈ Ψ(a) whenever k is inbetween i and j).

However, this condition generally is not sufficient. A stronger necessary con-
dition is:

for each v ∈ V and each two v − v paths P1, P2 there exists an
x ∈ G such that x−1φ(P1)x ∈ Ψ(P1) and x

−1φ(P2)x ∈ Ψ(P2),
(4)

since again we can take x = p(v).
Now for free partially commutative groups, condition (4) is also sufficient,

for certain subsets Ψ(a). A free partially commutative group is constructed as
follows. Let g1, . . . , gk be generators, and let E be a collection of pairs {i, j} with
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i, j ∈ {1, . . . , k} and i 6= j. Then the group G = Gk,E is the group generated
by g1, . . . , gk with relations gigj = gjgi for each {i, j} ∈ E. So if E = ∅ then
Gk,E is the free group generated by g1, . . . , gk, while if E consists of all pairs from

{1, . . . , k} then Gk,E is isomorphic to Zk.

There is the following direct reduction rule for words over the ‘symbols’
g1, g

−1
1 , . . . , gk, g

−1
k : if symbol α commutes with each symbol occurring in word

y, then xαyα−1z = xyz. It can be shown that repeating this reduction as long as
possible starting with a word w, one reaches the empty word 1 if w equals 1 in the
group. So the word problem can be solved easily (cf. Wrathall [10]).

Applying this reduction to a general word w, one obtains a shortest possible
word w′ (shortest among all words w′′ that are equal to w in the group). The length
of w′ is denoted by |w|. This defines a ‘norm’ onGk,E , satisfying |1| = 0, |u−1| = |u|
and |uw| ≤ |u|+ |w|. So we can define a distance function dist on G by:

dist(x, y) := |x−1y|

for x, y ∈ G. For x, y ∈ G let [x, y] be the set of all z ∈ G satisfying dist(x, z) +
dist(z, y) = dist(x, y). Call a subset H of G convex if 1 ∈ H, [x, y] ⊆ H for all
x, y ∈ H, [x, y] ⊆ H−1 for all x, y ∈ H−1.

Note that if G is the free group then H ⊆ G is convex if and only if H 6= ∅
and H is hereditary.

In [7] the following theorem is proved.

Theorem 2. Let G be a free partially commutative group and let each Ψ(a) be
convex. Then the cohomology feasibility problem (2) has a solution ψ if and only
if condition (4) is satisfied.

The proof is based on a polynomial-time algorithm giving either the function
ψ or a pair of paths P1, P2 violating (4). Therefore we also have:

Theorem 3. The cohomology feasibility problem (2) is solvable in polynomial time
if G is a free partially commutative group and each Ψ(a) is convex.

We assume here that membership of Ψ(a) of a given word can be checked in
polynomial time.

4. Disjoint closed curves in graphs on a compact surface

We describe a consequence of Theorem 2. Let S be a compact surface. A closed
curve on S is a continuous function C : S1 → S, where S1 is the unit circle in
C. Two closed curves C and C ′ are called freely homotopic, in notation C ∼ C ′,
if there exists a continuous function Φ : S1 × [0, 1] → S such that Φ(z, 0) = C(z)
and Φ(z, 1) = C ′(z) for each z ∈ S1.

For any pair of closed curves C,D on S, let cr(C,D) denote the number of
crossings of C and D, counting multiplicities. Moreover, mincr(C,D) denotes the
minimum of cr(C ′, D′) where C ′ and D′ range over closed curves freely homotopic
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to C and D, respectively. That is,

mincr(C,D) := min{cr(C ′, D′)|C ′ ∼ C,D′ ∼ D}.

Let G = (V,E) be an undirected graph embedded on S. (We identify G with its
embedding on S.) For any closed curve D on S, cr(G,D) denotes the number of
intersections of G and D (counting multiplicities):

cr(G,D) := |{z ∈ S1|D(z) ∈ G}|.

The following was shown in Schrijver [5] (motivated by Robertson and Sey-
mour [3]) — it can also be derived (with surface duality) from Theorem 2.

Theorem 4. Let G = (V,E) be an undirected graph embedded on a compact sur-
face S and let C1, . . . , Ck be pairwise disjoint simple closed curves on S, each non-
nullhomotopic. Then there exist pairwise vertex-disjoint simple circuits C ′

1, . . . , C
′

k

in G such that C ′

i ∼ Ci (i = 1, . . . , k), if and only if for each closed curve D on S:

cr(G,D) ≥
k∑

i=1

mincr(Ci, D),

with strict inequality if D is doubly odd.

Here we call a closed curve D on S doubly odd (with respect to G and
C1, . . . , Ck) if D is the concatenation D1 · D2 of two closed curves D1 and D2

such that D1(1) = D2(1) 6∈ G and such that

cr(G,Dj) 6≡
k∑

i=1

cr(Ci, Dj) (mod 2),

for j = 1, 2.
The essence of the theorem is sufficiency of the condition.
The theorem can be extended to directed circuits in directed graphs embedded

on a compact orientable surface, although the condition becomes more difficult to
describe. (For the torus, see Seymour [9].) In any case, the method yields a
polynomial-time algorithm finding the directed circuits.

5. Periodic timetabling

The cohomology feasibility problem also shows up in the problem of making the
timetable for Nederlandse Spoorwegen (Dutch Railways), a project currently per-
formed for NS by CWI (with Adri Steenbeek). The Dutch railway system belongs
to the busiest in the world, with several short distance trajectories, while many
connections are offered, with short transfer time.

Task is to provide algorithmic means to decide if a given set of conditions on
the timetable can be satisfied. In particular, the hourly pattern of the timetable
is considered. The basis of the NS-timetable is a periodic cycle of 60 minutes.
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How can this problem be modeled? First of all, each departure time to be
determined is represented by a variable vt. Here t is a train leg that should go
every hour once. So vt represents a variable in the cyclic group C60. Similarly, the
arrival time of leg t is represented by a variable at in C60.

In the problem considered, a fixed running time is assumed for each leg. This
implies that if train leg t has a running time of, say, 11 minutes, then at−vt = 11.
The waiting period of a train at a station is prescribed by an interval. E.g., if t
and t′ are two consecutive train legs of one hourly train, and if it is required that
the train stops at the intermediate station for a period of at least 2 and at most
5 minutes, then one poses the condition that vt′ − at ∈ [2, 5] (as interval of C60).

This gives relations between train legs of one hourly train. To make connec-
tions, one has to consider train legs of two different trains. So if one wants to make
a connection from leg t, arriving in Utrecht say, of one train, to a leg t′ departing
from Utrecht of another train, so that the transfer time is at least 3 and at most
7 minutes, then one gets the condition that vt′ − at ∈ [3, 7].

Finally, there is the condition that for safety each two trains on the same
trajectory should have a timetable distance of at least 3 minutes. That is, if train
leg t of one train and train leg t′ of another train run on the same railway section,
then one should pose the condition vt′ − vt ∈ [3, 57].

By representing each variable by a vertex, the problem can be modeled as
follows. Let D = (V,A) be a directed graph, and for each a ∈ A, let Ψ(a) be an
interval on C60. Find a function p : V → C60 such that p(w) − p(u) ∈ Ψ(a) for
each arc a = (u,w) of D.

This is a special case of the cohomology feasibility problem. Note that (as
C60 is abelian) one may equivalently find a ‘length’ function l : A→ C60 such that
l(a) ∈ Ψ(a) for each a ∈ A and such that each undirected circuit in D has length
0. (For arcs a in the circuit traversed backward one takes −l(a) for its length.)

It is not difficult to formulate this problem as an integer linear programming
problem. Indeed, if for any arc a = (u,w), Ψ(a) is equal to the interval [la, ua],
we can put:

la ≤ xw − xu + 60ya ≤ ua, (5)

where ya is required to be an integer. Thus we get a system of |A| linear inequalities
with |V | real variables xv and |A| integer variables ya. In fact, if there is a solution,
there is also one with the xv being integer as well (as the x variables make a network
matrix).

Now in solving (5), one may choose a spanning tree T in D, and assume that
ya = 0 for each arc a in T (cf. Serafini and Ukovich [8]). Alternatively, one may
consider the problem as follows.

A circulation is a function f : A→ R such that the ‘flow conservation law’:

∑

a∈δ−(v)

f(a) =
∑

a∈δ+(v)

f(a)

holds for each vertex v of D. Here δ−(v) and δ+(v) denote the sets of arcs entering
v and leaving v, respectively.
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Let L be the lattice of all integer-valued circulations. Now one can describe
the problem as one of finding a linear function Φ : L→ Z such that there exist za
(for a ∈ A) with the properties that la ≤ za ≤ ua for each arc A and zT f = 60Φ(f)
for each f ∈ L.

The existence of such za can be checked in polynomial time, given the values
of Φ on a basis of L. Indeed, for a ∈ T let ya = 0, and for a 6∈ T let ya = φ(f),
where f is the incidence vector of the circuit in T ∪ {a} (so f is a circulation:
f(a′) = 1 on forward arcs a′ in the circuit, f(a′) = −1 on backward arcs a′ in
the circuit, and f(a′) = 0 on each other arc a′). Then for this fixed y we can test
(5) in polynomial time (with the Bellman-Ford method), which is equivalent to
finding z as required.

Hence, in searching a feasible timetable one can branch on choices of Φ. Each
Φ corresponds to a homotopy class of solutions of the timetable problem.

Again, this amounts to a lifting, now from C60 to Z. Indeed, we consider for
each arc a 6∈ T a translation by 60ya of the feasible interval, considered as interval
on Z, and try to solve the problem over Z.

We also note that, given Φ, if there exist za, one can optimize the za under
any linear (or convex piecewise linear) objective function (for instance, passenger
waiting time).

Typically, the problems coming from NS have about 3000 variables with about
10,000 constraints. In a straightforward way they can be reduced to about 200
variables with about 600 constraints. The above observations turn out to require
a too heavy framework in order to solve the problem fast in practice (although
they are of help in optimizing a given solution).

The package CADANS that CWI is developing for NS for solving the problem
above, is based on a fast constraint propagation technique and fast branching
heuristics designed by Adri Steenbeek. It gives, in a running time of the order of 1-
10 minutes either a solution (i.e., a feasible timetable), or an inclusionwise minimal
set of constraints that is infeasible. If CADANS gives the latter answer, the user
should drop, or relax, at least one of the constraints in the minimal set in order to
make the constraints feasible. Thus CADANS can be used interactively to support
the planner. Alternatively, it can uncover bottlenecks in the infrastructure, and
indicate where extra infrastructure (viaducts, flyovers, four-tracks) should be built
in order to make a given set of conditions feasible.
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