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Free Material Optimization

Michal Kočvara and Jochem Zowe

Abstract. Free material design deals with the question of finding the
stiffest structure with respect to one or more given loads which can be
made when both the distribution of material and the material itself can be
freely varied. We consider here the general multiple-load situation. After
a series of transformation steps we reach a problem formulation for which
we can prove existence of a solution; a suitable discretization leads to a
semidefinite programming problem for which modern polynomial time
algorithms of interior-point type are available. Two numerical examples
demonstrates the efficiency of our approach.
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1 Problem Formulation

In this section we introduce the problem of free material optimization. Only basic
description of the problem is given; for more details the reader is refered to [2, 5, 1].
We study the optimization of the design of an elastic continuum structure that
is loaded by multiple independent forces. The material properties at each point
are the design variables. We start from the infinite-dimensional problem setting,
show the existence of a solution after a reformulation of the problem and, after
discretization, reach a finite-dimensional formulation expressed as a semidefinite
program, and as such accessible to modern numerical interior-point methods.

First we sketch the single-load model in the two-dimensional space. Let Ω ⊂
R

2 be a bounded domain (the elastic body) with Lipschitz boundary Γ. The
standard notation [H1(Ω)]2 and [H1

0 (Ω)]
2 for Sobolev spaces of functions v : Ω →

R
2 is used. By u(x) = (u1(x), u2(x)) with u ∈ [H1(Ω)]2 we denote the displacement

vector at point x of the body under load. Further, let

eij(u(x)) =
1

2

(

∂ui(x)

∂xj

+
∂uj(x)

∂xi

)

for i, j = 1, 2

denote the (small-)strain tensor, and σij(x), i, j = 1, 2, the stress tensor. To
simplify the notation we will often skip the space variable x in u, e, etc.
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Our system is governed by linear Hooke’s law, i.e., the stress is a linear func-
tion of the strain

σij(x) = Eijkl(x)ekl(u(x)) (in tensor notation), (1)

where E(x) is the (plain-stress) elasticity tensor of order 4; this tensor character-
izes the elastic behaviour of material at point x. The strain and stress tensors are
symmetric and also E is symmetric in the following sense:

Eijkl = Ejikl = Eijlk = Eklij for i, j, k, l = 1, 2.

These symmetries allow us to and interpret the 2-tensors e and σ as vectors

e = (e11, e22,
√
2e12)

T ∈ R
3, σ = (σ11, σ22,

√
2σ12)

T ∈ R
3.

Correspondingly, the 4-tensor E can be written as a symmetric 3× 3 matrix

E =





E1111 E1122

√
2E1112

E2222

√
2E2212

sym. 2E1212



 . (2)

In this notation, equation (1) reads as σ(x) = E(x)e(u(x)). Henceforth, E will be
understood as a matrix and we will use double indices for its elements. To allow
switches from material to no-material, we work with E ∈ [L∞(Ω)]3×3.

We consider a partitioning of the boundary Γ into two parts: Γ = Γ1 ∪ Γ2,
where Γ1 and Γ2 are open in Γ and Γ1 ∩ Γ2 = ∅. Further we put

H = {u ∈ [H1(Ω)]
2 |ui = 0 on Γ1 for i = 1 or 2 or any combination},

i.e., [H1
0 (Ω)]

2 ⊂ H ⊂ [H1(Ω)]
2
. To exclude rigid-body movements, we assume

throughout that

{v ∈ H | vi = ai + bxi, ai ∈ R, i = 1, 2, b ∈ R arbitrary} = ∅.

For the elasticity tensor E and a given external load f ∈ [L2(Γ2)]
dim the

potential energy of an elastic body as a function of the displacement u ∈ H is
given by

−1

2

∫

Ω

〈Ee(u), e(u)〉 dx+ F (u) with F (u) :=

∫

Γ2

f · u dx. (3)

The system is in equilibrium for u∗ which maximizes (3), i.e., u∗ which solves

sup
u∈H

{

−1

2

∫

Ω

〈Ee(u), e(u)〉 dx+ F (u)

}

. (4)

Under our assumptions, the supremum in (4) is equal to 1
2F (u∗); this value is

known as compliance. Now the role of the designer is to choose the material
function E such that the “sup” in (4) becomes as small as possible, that is, the
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body responds with minimal displacements in the direction of the load f . We
assume E(x) to be a symmetric and positive semidefinite matrix for almost all
x ∈ Ω (recall E ∈ L∞(Ω)), what we write as

E(x) = E(x)T � 0 a.e. in Ω. (5)

To introduce a resource (cost) constraint for E, we use the (invariant) trace of E

tr(E(x)) :=

3
∑

i=1

Eii(x) (6)

and require with some given positive α that
∫

Ω

tr(E(x)) dx ≤ α. (7)

Further, to exclude singularities at isolated points (e.g., at boundary points of Γ2)
we demand that, with some fixed 0 < r+ ∈ L∞(Ω),

tr(E(x)) ≤ r+(x) a.e. on Ω. (8)

The feasible design functions are collected in a set

E :=

{

E ∈ [L∞]3×3(Ω) | E is of form (2) and
satisfies (5), (7) and (8)

}

. (9)

With this definition, the single-load problem becomes

inf
E∈E

sup
u∈H

{

−1

2

∫

Ω

〈Ee(u), e(u)〉 dx+ F (u)

}

. (10)

Let us now assume that the structure must withstand a whole collection of
independent loads f1, . . . , fL from L2(Γ2), acting at different times; further, the
design should be the “best possible” one in this framework. This leads to the fol-
lowing multiple-load design (MLD) problem, in which we seek the design function
E which yields the smallest possible worst-case compliance

inf
E∈E

sup
ℓ=1,...,L

sup
u∈H

{

−1

2

∫

Ω

〈Ee(u), e(u)〉 dx+ F ℓ(u)

}

; (11)

here

F ℓ(u) :=

∫

Γ2

f ℓ · u dx for ℓ = 1, . . . , L. (12)

2 Existence of a solution

We first eliminate the discrete character of the “ sup
ℓ=1,...,L

” in (11). With a weight

vector λ for the loads, which runs over the unit simplex

Λ :=

{

λ ∈ R
L |

L
∑

ℓ=1

λℓ = 1, λℓ ≥ 0 for ℓ = 1, . . . , L

}

,
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we get from a standard LP-argument as reformulation of (11):

inf
E∈E

sup
λ∈Λ

sup
(u1,...,uL)∈H×···×H

L
∑

ℓ=1

{

−1

2

∫

Ω

λℓ〈Ee(uℓ), e(uℓ)〉 dx+ λℓF
ℓ(uℓ)

}

. (13)

The objective function in (13) is linear (thus convex) in the inf-variable E; it is,
however, not concave in the sup-argument (λ;u1, . . . , uL). We will show that a
simple change of variable yields a convex-concave version of the problem.

First note that the inf-sup value in (13) remains the same when restricting λ

to the half-open set

Λ0 := {λ ∈ Λ | λℓ > 0 for ℓ = 1, . . . , L}

and then pass from the variable (λ;u1, . . . , uL) to

(λ; v1 := λ1u
1, . . . , vL := λLu

L).

This converts (13) to

inf
E∈E

sup
(v;λ)∈V

L
∑

ℓ=1

{

−1

2

∫

Ω

λ−1
ℓ 〈Ee(vℓ), e(vℓ)〉 dx+ F ℓ(vℓ)

}

, (14)

where we put v := (v1, . . . , vL) and

V :=
{

(v;λ) | v ∈ [H]L, λ ∈ Λ0
}

.

The objective function in (14)

F(E; (v;λ)) :=

L
∑

ℓ=1

{

−1

2

∫

Ω

λ−1
ℓ 〈Ee(vℓ), e(vℓ)〉 dx+ F ℓ(vℓ)

}

(15)

is now concave in (v;λ) = (v1, . . . , vL;λ) ∈ V and a result due to Moreau ([4])
yileds the following existence theorem.

Theorem 1 There exists E∗ ∈ E such that

sup
(v;λ)∈V

F(E∗; (v;λ)) = min
E∈E

sup
(v;λ)∈V

F(E; (v;λ)).

Further
inf
E∈E

sup
(v;λ)∈V

F(E; (v;λ)) = sup
(v;λ)∈V

inf
E∈E

F(E; (v;λ)).

3 Discretization and Semidefinite Reformulation

Using the well-known identity for the trace of the product of a d×d matrix A and
the rank-one matrix aaT with a ∈ R

d:

tr(A · aaT ) = 〈Aa, a〉 (16)
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we can rewrite the objective function (15) in (14) as

F(E; (v;λ)) = −1

2

∫

Ω

tr

(

E ·
L
∑

ℓ=1

λ−1
ℓ e(vℓ)e(vℓ)

T

)

dx+

L
∑

ℓ=1

F ℓ(vℓ).

Due to Theorem 1, we may switch the order of “inf” and “sup” in (14); further,
in order to simplify, let us multiply (14) by −2 to get

inf
(v;λ)∈U

sup
E∈E

{

∫

Ω

tr

(

E ·
L
∑

ℓ=1

λ−1
ℓ e(vℓ)e(vℓ)

T

)

dx− 2

L
∑

ℓ=1

F ℓ(vℓ)

}

. (17)

For convenience, we will use the same symbols for the “discrete” objects
(vectors) as for the “continuum” ones (functions). Assume that Ω is partitioned
into M polygonal elements Ωm of volume ωm and let N be the number of nodes
(vertices of the elements). We approximate E by a function that is constant on
each element Ωm, i.e., E becomes a vector (E1, . . . , EM ) of 3 × 3 matrices Em—
the values of E on the elements. The feasible set E is replaced by its discrete
counterpart

E :=







E ∈ R
3×3M |

Em = ET
m � 0 and tr(Em) ≤ r+m for m = 1, . . . ,M

M
∑

m=1
tr(Em)ωm ≤ α







.

To avoid merely technical details we neglect in the following the constraint

tr(Em) ≤ r+m for m = 1, . . . ,M.

Further assume that the displacement vector uℓ corresponding to the load-case ℓ is
approximated by a continuous function that is bi-linear (linear in each coordinate)
on every element. Such a function can be written as

uℓ(x) =

N
∑

n=1

uℓ
nϑn(x)

where uℓ
n is the value of uℓ at nth node and ϑn is the basis function associated

with this node (for details, see [3]). Recall that, at each node, the displacement
has 2 components, hence u ∈ R

D, D ≤ 2N (D could be less than 2N because
of boundary conditions which enforce the displacements of certain nodes to lie in
given subspaces of R2).

For basis functions ϑn, n = 1, . . . , N , we define matrices

Bn(x) =











∂ϑn

∂x1
0

0 ∂ϑn

∂x2

1
2
∂ϑn

∂x2

1
2
∂ϑn

∂x1











.
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For an element Ωm, let Dm be an index set of nodes belonging to this element.
The value of the approximate strain tensor e on element Ωm is then (we add the
space variable x as a subscript to indicate that ex(u

ℓ) is a function of x)

ex(u
ℓ) =

∑

n∈Dm

Bn(x)u
ℓ
n on Ωm.

Finally, the linear functional F ℓ(uℓ) reduces to (f ℓ)Tuℓ with some f ℓ ∈ R
D.

As discrete version of (17) we thus obtain, after a simple manipulation,

inf
(v;λ)∈V

sup
E∈E

{

M
∑

m=1

tr

(

Em ·
L
∑

ℓ=1

λ−1
ℓ

∫

Ωm

ex(v
ℓ)ex(v

ℓ)
T
dx

)

− 2

L
∑

ℓ=1

F ℓvℓ

}

. (18)

Note that for each element Ωm the d × d matrices

∫

Ωm

ex(v
ℓ)ex(v

ℓ)
T
dx can be

computed explicitly using the Gaussian integration rule; namely, there exist points
xms ∈ Ωm and weights γ2

ms for s = 1, . . . , S such that

∫

Ωm

ex(v
ℓ)ex(v

ℓ)
T
dx = ωm

S
∑

s=1

γ2
msexms

(vℓ)exms
(vℓ)

T
. (19)

For instance, for linear Bn(.) (i.e. bilinear ϑn) one takes S = 4. Hence (18)
becomes

inf
(v;λ)∈V

sup
E∈E

{

M
∑

m=1

ωmtr(EmAm(v, λ))− 2
L
∑

ℓ=1

F ℓvℓ

}

(20)

where

Am := Am(v;λ) :=
L
∑

ℓ=1

λ−1
ℓ

S
∑

s=1

γ2
msexms

(vℓ)exms
(vℓ)

T
. (21)

We now make one further step and introduce a dummy variable ρm for tr(Em)
and m = 1, . . . ,M . Then the constraint E ∈ E in (20) splits into a global part
(the global material distribution)

ρ ∈ R
M
+ ,

M
∑

m=1

ρmωm ≤ α

and a local one (the local material properties)

Em = ET
m � 0, tr(Em) = ρm, for m = 1, . . . ,M.

The “sup” over the local part can be now put under the sum:

inf
(v;λ)∈V

sup
ρ∈R

M

+∑
ρmωm≤α















M
∑

m=1

ωm sup
Em=ET

m
�0

tr(Em)=ρm

tr(Em ·Am(v, λ))− 2
L
∑

ℓ=1

F ℓvℓ















. (22)
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Now we will analytically perform the inner “sup”, thus finally reaching a
semidefinite programming formulation of the multiple-load problem.

Fix m ∈ {1, . . . ,M} and consider the inner “sup” in (22):

sup
Em=ET

m
�0

tr(Em)=ρm

tr(EmAm). (23)

We use Lagrange theory to write this as

inf
τ∈R

{τρm + sup
Em=ET

m
�0

tr(Em(Am − τId))} (24)

with the d × d identity matrix Id. The only τ for which the inenr “sup” is finite
are those with Am − τId 6� 0. Hence we get for (24)

sup
Em=ET

m
�0

tr(Em)=ρm

tr(EmAm) = ρm inf
τId−Am�0

τ. (25)

With
τm := inf

τId−Am�0
τ

our discretized problem (22) becomes (note that Am and thus τm depends on
(v;λ))

inf
(v;λ)∈V

sup
ρ∈R

M

+∑
ρmωm≤α

{

M
∑

m=1

ρmωmτm − 2

L
∑

ℓ=1

F ℓvℓ

}

.

The inner “sup” over ρ is a linear program for each fixed outer variable (v;λ).
Hence the “sup” is attained at an extreme point of the feasible ρ−set and we can
continue

inf
(v;λ)∈V

{ max
m=1,...,M

ατm − 2

L
∑

ℓ=1

F ℓvℓ},

which in view of (3) is the same as

inf
(v;λ)∈V

τ∈R

ατ − 2

L
∑

ℓ=1

F ℓvℓ

s.t.
τId −Am(v;λ) � 0 for m = 1, . . . ,M.

(26)

To emphasize the dependence of Am on (v;λ), we have again inserted the variables.
With the (d× LS)-matrix

Zm :=
[

γm1exm1
(v1), . . . , γmsexms

(v1), . . . . . . , γm1exm1
(vL), . . . , γmsexms

(vL)
]

and the (LS × LS)-matrix

Λ(λ) := diag(λ1, . . . , λ1, . . . . . . , λL, . . . , λL)
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the constraints in (26) become

τId − Zm(v)Λ(λ)
−1

Zm(v)
T � 0

which, using a standard result on Shur complement, is equivalent to

(

τId Zm(v)

Zm(v)
T

Λ(λ)

)

� 0.

We end up with the announced semidefinite program for the discretization of (14)

inf
(v;λ)∈V

τ∈R

ατ − 2
L
∑

ℓ=1

F ℓvℓ

s.t.
(

τId Zm(v)

Zm(v)
T

Λ(λ)

)

� 0 for m = 1, . . . ,M.

(27)

The semidefinite program (27) can be efficiently solved by modern interior-
point polynomial time methods. The question of recovering the optimal elasticity
matrices E∗

1 , . . . , E
∗
M from the solution of (27) is a bit technical; again we refer

the reader to [1].

4 Examples

Results of two numerical examples are presented in this section. The values of the
“density” function ρ are depicted by gradations of grey: full black corresponds to
high density, white to zero density (no material), etc.
Example 1. We consider a typical example of structural design: The two forces
(or force and fixed boundary) are opposite to each other and there is a hole in
between because of technological reasons. The geometry of domain Ω and the
forces are depicted in Figure 1. The body can be loaded either by the forces on
the left or on the right-hand side. Therefore this example has to be considered as
MLD (two-load case). Symmetry allows us to compute only one half of the original
domain. The resulting values of the “density” function ρ for 37×25 mesh are also
presented in Figure 1. Again, the figure is composed from two computational
domains to get the full body.
Example 2. In this example we try to model a wrench. The geometry of domain
Ω is depicted in Figure 2. The nut (depicted in full black in Figure 2) is considered
to present a rigid obstacle for the wrench. Hence the wrench is in unilateral contact
with the nut and there are no other boundary conditions. The loads are also shown
in Figure 2. Note that the problem is nonlinear because of the unilateral contact
conditions and that for positive vertical force we get a different design than for
a negative one; hence we have to consider these two forces as two independent
loads. The resulting values of the “density” function ρ for 37 × 22 discretization
are shown in Figure 3.
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Figure 1: Example 1

Figure 2: Example 2

Figure 3: Example 2
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