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Drawing Instruments:

Theories and Pra
ti
es from History to Dida
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s

Maria G. Bartolini Bussi

Abstract. Linkages and other drawing instruments constitute one of
the most effective fields of experience at secondary and university level
to approach the theoretical dimension of mathematics. The main thesis
of this paper is the following: By exploring, with suitable tasks and un-
der the teacher’s guidance, the field of experience of linkages and other
drawing instruments, secondary and university students can 1) relive the
making of theories in a paradigmatic case of the historical phenomenology
of geometry; 2) generate ‘new’ (for the learners) pieces of mathematical
knowledge by taking active part in the production of statements and the
construction of proofs in a reference theory 3) assimilate strategies for
exploration and representative tools (such as metaphors, gestures, draw-
ings, and argumentations) that nurture the creative process of statement
production and proof construction. This thesis will be defended by re-
ferring to research studies already published or in progress.
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1. Introduction.

In recent years several efforts have been made at the international level to clar-
ify the objects, the aims, the research questions, the methodologies, the findings
and the criteria to evaluate the results of research in didactics of mathematics (or
mathematics education, according to the name preferred in some countries). I may
quote the volume edited for the 20 years of work at the IDM, Bielefeld University,
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and Professor Hans-Georg Steiner’ s 65th birthday [BSSW] ; the ICMI Study held
in 1994 in Washington DC about ‘What is Research in Mathematics Education
and what are its Results’ [KS]; the Working Group 25 in ICME 8 [Mal]; the Inter-
national Handbook edited by Bishop [Bi]. Didactics of mathematics as a scientific
discipline is fairly young compared to other sciences, yet is deeply rooted in the
perennial effort of mathematicians to advance human understanding of mathemat-
ics and to transmit mathematics knowledge to future generations. It has become
clear that analytical tools are needed from different disciplines (such as epistemol-
ogy, history, psychology) to obtain results that can increase the knowledge of the
teaching and learning processes in the classroom, produce effective innovation in
schools and understand why some designed innovation works or does not work,
and, at a larger level, influence the development of school systems.

Analytical tools from history and epistemology are necessary to tackle one
issue which is perhaps crucial: the nature of mathematics knowledge. One of the
distinctive features of mathematics is theoretical organisation. This has created a
very specific mathematician’s style, with a very impressive form, that alternates
definitions and theorems. Yet, when a mathematician reads a theorem and, in
particular, its proof, it is not the form that commands most attention, but rather
the process by means of which mathematical ideas have been generated or have
been illuminated by the proof in a new way. If we look at the ‘confessions’ of
working mathematicians [T], we have an idea of a continuous (not always indi-
vidual) process: the major discontinuity seems to happen in the final phase of
written communication in Journals, where the leading ideas, the intuitions, the
associations, the metaphors or the explorations of special cases are hidden by the
formidable and conventional mathematician’s style. Unfortunately the curriculum
revolution of the sixties gave too much importance to the product (i. e. the form)
and put in shadow the process (i. e. the construction of reasoning and arguments).
But it was realised soon that teaching beginners the formalities of proof might be
very difficult (and, perhaps, meaningless). Instead of scrutinising the reason for
failure, what happens now is that, in some countries, proving processes are being
eliminated from mathematics curriculum, not taking into account that giving up
proofs for a sheer acquisition of isolated facts and notions hides the theoretical
organisation of mathematics (for a detailed discussion of these issues see [Ha]).

This is the scenario in which a collective project has been set some years ago
by a group of Italian researchers [MBBFG], [AMORP1]. The project highlights
the permanent value of proof in mathematics and didactics of mathematics and
aims to design, implement and analyse effective teaching experiments, that can
introduce students to the theoretical dimension of mathematical culture up to the
construction of theorems and proofs. As far as the activity of mathematicians is
concerned, from a didactic perspective, we are much more interested in the hidden
process of conjecture production and proof construction than in the final product:
this very process does offer suggestions on the way of organising effective class-
room activity. In particular, whenever the process of producing conjectures about
something may evolve continuously and smoothly into the process of constructing
proofs, the task of producing ‘new’ theorems is proved to be easier for students.
In confirmation of that, we may recall a typical strategy, used by good teachers.
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When a difficult and crucial theorem is introduced in the standard lecture format,
before giving the proof, the students are presented with examples, counterexam-
ples and reasons for the plausibility of the statement to make them relive the
intellectual experience of the prior inventor of the theorem, although they have
been deprived of the long process of generating the conjecture by themselves.

The issue of continuity between the production of conjectures and the con-
struction of proofs has been raised from a cognitive perspective in a study carried
out in the 8th grade [GBLM], concerning the production of a theorem of geometry
about a problem situation in the field of sunshadows. The authors have described
the cognitive continuity as a process with the following characteristics. During
the production of the conjecture, the student progressively works his/her state-
ment through an intense argumentative activity; during the subsequent statement
proving stage, the student links up with this process in a coherent way, organising
some of the justifications (‘arguments’) produced during the construction of the
statement according to a logical chain. The construct of cognitive continuity, fur-
ther developed by Arzarello & al. [AMORP1] to include also the case of advanced
learners has proved to be useful to interpret existing teaching experiments and to
design new ones.

In recent years several experiments in different fields have been carried out at
very different school level, from primary to tertiary education (primary school :
[B2], [BBFG]; middle school: [BGM], [GBLM], [BPR1], [BPR2]; secondary school:
[B1], [BP], [Mar], [AMORP2] [MB]; tertiary: [AMORP1]). Some characteristics
are shared by nearly all the experiments: 1) the selection, on the basis of historic-
epistemological analysis, of fields of experience, rich in concrete and semantically
pregnant referents (e. g. perspective drawing; sunshadows; Cabri-constructions;
gears; linkages and drawing instruments); 2) the design of tasks, which require
the students to take part in the whole process of production of conjectures, of
construction of proofs and of generation of theoretical organisation; 3) the use
of a variety of classroom organisation (e. g. individual problem solving, small
group work, classroom discussion orchestrated by the teacher, lectures); 4) the
explicit introduction of primary sources from the history of mathematics into the
classroom at any school level.

In my own research, I have found that linkages and other drawing instruments
might be one of the most effective fields of experience at secondary and university
level. In the following I shall give some details on this case, by analysing the
activities designed and implemented for approaching mathematical theorems and
more generally the theoretical organisation of mathematics.

2. Linkages and Drawing Instruments: An Historical Digression.

In this section, I shall outline the history of linkages and other drawing instru-
ments by using the metaphor of a theatre play. Only planar drawing instruments
will be considered; however spatial drawing instruments such as perspectographs
have also played a relevant role in specific practices (e. g. painting, architec-
ture) and have given rise to specific theories (such as projective geometry). But
this is another story and, maybe, the topic of a different paper (examples in
http://www.museo.unimo.it/labmat/)
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2. 1. The Prologue : Euclid and the Classical Age. Drawing instruments
have been considered in geometry treatises from the time of Euclid, whose first
postulates implicitly define the kind of instruments that are allowed for geometrical
constructions [He] : ‘1) Let the following be postulated : to draw a straight line
from any point to any point; 2) To produce a finite straight line continuously in a
straight line ; 3) To describe a circle with any centre and distance.’

Even if the description is supposed to recall a practical use of instruments,
there is no doubt that the intention is theoretical. Actually the instruments are
never quoted directly, not even in the large number of constructions that are
discussed in the following books. Moreover, the problem is never to find the
approximate solution that could be useful for applications: rather a theoretical
solution by straight lines and circles is looked for. Other drawing instruments
(and curves) were known at the time of Euclid, yet not included in the set of
accepted theoretical tools (e. g. the conchoid of Nicomedes, [He]). They were
rather used to solve practical problems. For instance, by means of the conchoid it
is possible to find two mean proportionals between two straight lines and, hence,
to construct a cube which is in any given ratio to a given cube. This allows to find
a set of weights in given proportion to calibrate catapults.

2.2. The First Act : Descartes and Seventeen Century Geometers.

Descartes, like most scientists of his age, was deeply involved in the study of
mechanisms for either practical or theoretical purposes. A famous example of the
former kind (i. e. the machine to cut hyperbolic lenses) is described in the ‘Diop-
trique’. The latter issue forms the core of the ‘Géométrie’, where two methods of
representing curves are clearly stated: the representation by a continuous motion
and the representation by an equation [Bos]. Descartes deals with the following
question: ‘Which are the curved lines that can be accepted in geometry? (p. 315)’
and gives an answer (or, better, two answers) different from the one of classical
geometers : 1) ‘[...] we can imagine them as described by a continuous motion, or
by several motions following each other, the last of which are completely regulated
by those which precede. For in this way one can always have an exact knowledge
of their measure (Géométrie p. 316)’; 2) ‘[...] those which admit some precise and
exact measure, necessarily have some relation to all points of a straight line, which
can be expressed by some equation, the same equation for all points (Géométrie,
p. 319)’ The goal of Descartes was related to the very foundations of geometry: if
a curve (e. g. a conic or a conchoid) is to be accepted as a tool to solve geomet-
rical problems, one must be sure that, under certain conditions, the intersection
points of two such curves exist. Hence, pointwise generation is not sufficient and
the continuum problem is called into play: by the standards of the seventeenth
century mathematicians, it is solved by referring to one of the most primitive in-
tuitions about the continuum, i. e. the movement of an object. Descartes did not
confront the question whether the two given criteria - i. e. the mechanical and
the algebraic - are equivalent or not. This problem actually requires constructing
more advanced algebraic tools and, what is more important, changing the status
of drawing instruments from tools for solving geometric problems to objects of a
theory. The importance of the generation of curves by movement is proved by the
flourish of innumerable treatises of ‘organic’ geometry (i. e. geometry developed
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by instruments), thanks to leading mathematicians, such as Cavalieri , L’Hospital,
Newton, or van Schooten. They designed and studied dozens of different draw-
ing instruments for algebraic curves (incidentally, in the same age when the very
concept of algebraic curve started to be worked out).

2.3. The Second Act : Kempe and the Nineteenth Century Geometers.

In the nineteenth century there was a shift from studying individual drawing in-
struments to developing a theory of drawing instruments, in the special case of
linkages. On the one side, geometers started to study which curves could be drawn
by any n-bar linkage; on the other side they asked which linkages could be used
to draw any curve. The curve that resisted longest the attack of geometers was
the simplest one, i. e. the straight line. After the approximate 3-bar solution
offered by Watt in 1784 (that is still used in nearly every beam-engine), only in
1864 Peaucellier presented a 7-bar linkage, that embodies a rigorous solution based
on the properties of circular inversion [K2]. The general problem of drawing any
algebraic curve of any degree was temporarily solved by Kempe, a few years later
(1876), with the paper entitled ‘On a General Method of Describing Plane Curves
of the nth Degree by Linkwork’ [K1]. The structure of Kempe’s proof is quite
interesting. Starting from the equation F(x,y)=0 of any plane algebraic curve and
from a particular point P of the curve, the polynomial is expanded into a linear
combination of cosines of suitable angles. For each element of the sum, an elemen-
tary linkage is provided. By combining such linkages, a new linkwork is obtained,
that has the effect of ‘drawing’ the given curve in the neighbourhood of P. Rather
than an actual linkwork, the theorem gives an algorithm to construct a (virtual)
linkwork, that depends on the equation of the curve.

2.4. The Third Act : Modern Revival of Curve Drawing Devices. The
study of linkages is reconsidered in today’s mathematics from two different, yet
related, perspectives. The problem of drawing curves is reread as the problem of
forcing a point of a robot to execute a given trajectory [Ba], [HJW]. The study
of abstract linkages and their realisation is related to the study of algebraic vari-
eties and of immersed submanifolds of Euclidean space [GN], [KM]. According to
Kapovich & Millson, a major role in the revival of this field of research has been
played by Thurston, who has given lectures on this topic since the late seven-
ties. The new theory is completely algebraized and, at a first glance, has nothing
to share with the problems that have been described in the previous acts. Yet,
the very theorem of Kempe, combined with the work of today’s mathematicians,
has lead to proving general realizability theorems for vector-valued polynomial
mappings, real-algebraic sets and compact smooth manifolds by moduli spaces
of planar linkages. Kempe’s proof has been carefully scrutinised, revealing some
weakness related for instance to the presence of some ‘degenerate’ configurations
of linkages appearing during the movement. However, the structure of the proof,
based on the recourse to elementary linkages as building blocks, is still the original
one. Hence Kempe’s theorem might be considered an hinge: on the one side it
closes Descartes’ implicit problem to relate motion of instruments and equations
and on the other side it opens the way to the modern theory of abstract linkages.

2.5. The History Goes On: The Critical Impact of Drawing Instru-

ments. The historical analysis sketched in the previous ‘acts’ suggests that in the
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domain of geometry the relationship between theoretical and practical issues has
always been very rich and complex. On the one side, drawing instruments, inti-
mately connected with the development of algebraic tools, are theoretical products
of the continuous modelling effort, that aims at rationalising the perception and
the production of shapes. On the other side, drawing instruments are physical
objects of the world to be modelled: to understand their functioning means to be
able to design instruments which fulfil a desired action. Theories and practices
might have been developed for some time independently, but in each age they
happen to nurture each other: a double arrow describes the dialectic relationship
between them, that is constructed anew repeatedly with shifts of meaning. In
the teaching of mathematics such general complex ideas are to be translated into
ordered activities for the classroom. If the ideas are interconnected as in a loop,
as in this case, an apparently obvious solution is supposed to be to cut the loop
somewhere, so that the double arrow becomes a single arrow from theories to prac-
tices (i. e. practices are applications of theories) or from practices to theories (i.
e. practices are motivations for theories). These are the most common options.
It is far beyond the scope of this paper to discuss them in detail. I intend to
defend a different option: to put drawing instruments in the centre and to use
them as mediators for both theories and practices. This idea is not new: drawing
instruments were part of the education of gentlemen in arts such as the military
art or the art of navigating since the 17th century [Tu]; they were used in pres-
tigious Institutes of Mathematics (e. g. Goettingen [Mu]) to educate generations
of leading mathematicians; drawing instruments are even on show in Scientific
Museums for the popularisation of mathematics. In each of these uses, the vis-
ibility of theoretical aspects is surely different, because, when concrete referents
come into play, the risk is always that the attention is captured by isolated facts
and that the argument, if any, is not detached from everyday styles of reasoning
[S]. For instance, the very possibility of making ‘infinitely many’ experiments by
dynamic exploration might help, on the one side, the production of conjectures,
but, on the other side, might render things self-evident and destroy the need of
constructing proofs. If the theoretical aspects of mathematics are central in di-
dactics of mathematics, as we have argued in the introduction, a careful didactic
treatment of concrete referents is always needed. Whether an object is considered
from a practical or from a theoretical perspective depends on the habits of the
students, acquired through a slow process, on the types of exploration tasks and
on the issues raised by the teacher in the classroom interaction. This is true for
drawing instruments too, for both the material copies and the virtual copies of
ancient instruments produced by computer (such as the simulations produced by
means of software with graphic interface - such as Cabri - or by means of Java)
and for the computer itself considered as the most flexible drawing instrument.
In this part of the study, the function of analytical tools from the psychology of
mathematics education appears to be relevant.

3. Drawing Instruments in the Classroom.

3. 1. Exploring Linkages. This example concerns the study of one of the
pantographs (i. e. the pantograph of Sylvester), which were designed in the 19th
century to realise elementary geometric transformations and to give the elemen-

Documenta Mathematica · Extra Volume ICM 1998 · III · 735–746



Drawing Instruments . . . 741

tary blocks of Kempe’s theorem. The study was originally carried out with 11th
graders [B1],[ BP], but we have collected later items of anedoctal evidence that
confirm the emergence of similar processes (with the same slowness) when similar
tasks are given to undergraduate students, to graduate students or to teachers of
mathematics or mathematics educators. Hence, what follows is supposed to apply
to both novices and expert explorers. The pantograph of Sylvester is an 8-bar
linkage (see the figures).

The students had already been given an introductory lecture concerning the
early history of drawing instruments in Euclid’s age. They were given a specimen
of the pantograph and a set of eight tasks to guide the exploration in small group
work. Two tasks are especially relevant for our discussion [B1]: ‘1) Represent the
linkage with a schematic figure and describe it to somebody who has to build a
similar one on the basis of your description alone; 2) Are there any geometric prop-
erties that are related to all the configurations of the linkage? State a conjecture
and try to prove your statement’.

The first task aimed at encouraging students’ manipulation of the linkage. It
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has to be said that the tradition of abstract and symbolic work has often the effect
of inhibiting recourse to manipulation in mathematics lessons. In this case, on
the contrary, the students had to measure bars and angles and to try to connect
these empirical data with the pieces of geometrical knowledge that were part of
their past experience. Actually the small group debated for a long time whether
the imaginary addressee had to build an ‘equal’ linkage (i. e. with the same
measure) or a ‘similar’ one (i. e. capable for working in the same way). In the
first case, it would have been enough to write down the length of each bar and to
give the instructions for assembling the linkage. When they decided for the second
solution, they had to cope with the problem of identifying the structural features
of the linkage (i. e. the presence of a parallelogram and of two similar isosceles
triangles) from the empirical evidence offered by perception and by measuring.
The process of solving the second task resulted in three interlaced phases: (1)
producing the conjecture; (2) arguing about the conjecture; (3) constructing a
proof.

Producing the conjecture was difficult and slow. The linkage actually realises
a rotation as for every configuration, a) OP=OP’; b) POP’ = PAB = BCP’. Yet
the rotation is approached at as a correspondence between two points that has
no transparent relationships with the motion of the linkage. The teacher had a
helping attitude, but the whole exploring process was carried out by the students,
who at the end agreed with the proposal of one of them, who had ‘seen’ suddenly
the invariant during the exploration. The suggestion was checked experimentally
in different configurations and then accepted by the whole group.

Arguing about the conjecture and constructing the proof were actually inter-
laced processes. The students were helped by the large amount of exploration they
had made before. For instance the observation of an intermediate limit case (figure
2b when two sides of the parallelogram and two sides of the triangles are aligned)
was considered empirical evidence that the triangles POP’, PAB and BCP’ are
similar. While trying to defend the conjecture by arguments, the students mixed
continuously experimental data (obtained by direct manipulation of the mecha-
nism) and statements deduced logically from already accepted statements. Whilst
the verbal proof was eventually complete, the process of polishing the entire rea-
soning in order to give it the form of a logical chain and to write it down was slow
and not complete, as the students’ text shows:

‘Thesis: POP’ is constant (see figure 2 for notation).

The angle POP’ is constant as the triangles POP’ obtained by means of the
deformations of the mechanism are always similar, whatever the position of P
and P’. In fact OP=OP’, because the triangles OCP’ and OAP are congruent,
as CP’=OA,CO=AP and OCP’=OAP (BCO=OAB and P’CB=BAP). The above
triangles are also similar to a third triangle PBP’, because, as the triangles BCP’
and BAP are similar, it follows that BP’ : BP = CP’ : CO and the angle P’BP =
OCP’ as (setting CP’B = CBP’ = a and CBA = b) we have PBP’ = 360 - (2a+b);
OCP’ = 360 - (2a+b).

This is true because prolonging the line BC from the side of C the angle
supplementary to BCP’ is equal to 2a and the angle supplementary to BCO is
equal to b as two contiguous angles of a parallelogram are always supplementary’.
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Surely this written text in neither complete nor well ordered, according to the
mathematician’s style: the order of the steps recalls the sequence of production of
statements, as observed during the small group work, rather than the logical chain
that could have been used by an expert. Nevertheless it was easily transformed
later with the teacher’s help into the accepted format with reference to elementary
euclidean geometry; yet, what is important, the time given to laboriously produce
their own proof ensured that the final product in the mathematician’s style, where
the genesis of the proof was eventually hidden, retained meaning for the students.

3.2. Theoretical Framing of Drawing Instruments and Linkages. The
small group study was only one step in a long term teaching experiment. The
study was done in the frame of Euclid’s elementary geometry. From a cultural
perspective, students must be introduced to the different theories which have been
invented later, with their own goals and objects, and to the different practices
which have been developed, from beam-engines to robotics, otherwise we would
have relapsed into the standard linear teaching path from concrete referents to
a geometrical study framed by Euclid’s geometry, where practices are only the
starting point, i. e. motivations for theories.

The students who had realised the study of the pantograph, together with
their schoolfellows who had studied other pantographs according to the same tasks,
took part in lessons where each small group presented the results of the guided
study. The teacher related the different pantographs to each other, generating an
embryo of a theory of linkages, where the same proof could be applied, with small
adaptations, to different instruments [BP]. The shifts in meaning from considering
an individual linkage to developing a theory of linkages was introduced by means
of guided reading of some historical sources, like the ones quoted in the theatre
play of the section 2; historical sources were assimilated by students, producing
explorations and proofs according to the inquiry style of each age.

This is only a prototype of teaching experiments which are made every year
with secondary school students (by Marcello Pergola) and with university students
(by the author). The difference between secondary school and university students
concerns the length of the play: the second act is within the reach of secondary
school students, whilst university students can understand the whole play.

3.3. Some Issues to be Deepened. In the above sections, a complex teaching
experiment has been outlined. Different classroom organisations have been shown
with different roles for the teacher: lectures, small group works, whole class dis-
cussions. In small group work phases of joint activity between the teacher and the
students were accomplished. In the theoretical framing the teacher acted, by his
own words or by quoting historical sources, as a cultural mediator. The study of
the teacher’s role is a crucial problem of didactics of mathematics, whose discussion
is far beyond the scope of this paper: it is related to the possibility of reproducing
the teaching experiments in different classrooms. For a partial account about this
issue, the interested reader could refer to [MB] for the analysis of the teacher’s role
in a classroom discussion when the object is the theoretical meaning of geometric
construction. Further investigations are planned.

In the theoretical framing episode students coped with a cultural problem,
i. e. the construction of a balanced image of mathematics, where theories and
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practices are strictly intertwined yet not confused. In the direct and guided ma-
nipulation of instruments, students experienced, at an appropriate slow pace, the
continuous and smooth transition from physical experience (gestures and manip-
ulation) to the production of their own conjectures and to the construction of a
proof. In this process, they used different linguistic tools to express their ideas,
from the metaphors taken from everyday language to the fixation of the proce-
dures according to the speech genre of elementary geometry. The study of student
processes is a crucial problem of the psychology of mathematics education. Finer
grain analyses are an unavoidable part of each of the research studies quoted in
the introduction and of ongoing research.

4. Some Implications for Teaching.

The case of linkages and other drawing instruments gives only one among several
examples of teaching experiments about the theoretical organisation of mathe-
matics and the approach to theorems. Systematic experiments in this field have
been carried out mainly at secondary and university levels, but the activity with
drawing instruments has proven to be effective with younger students too, because
the difference between a practical and a theoretical use of instruments might be
approached (yet is seldom emphasised) also in primary school. For instance, in an
experiment carried out in primary school [BBFG], pupils have become aware that
they can use a compass in two very different ways: 1) to imitate a round shape
(practical use); 2) to construct (if possible) a triangle with sides of given length
(theoretical use). In the former case the focus is on a careful use of compass that
assures the precision of the drawing. In the latter case the focus is on the definition
of the circle: even a free-hand rough sketch could be effective as the compass is
meant as a mental instrument.

What implications for curricula could the quoted experiments have? To give
an answer, we can contrast our approach to geometry with the traditional one in
a very special case: the case of conics. When this topic is considered, it is usually
introduced according to some standard steps: 1) A short introduction, concerning
the space generation of conics as conic sections, limited to explaining the origin
of the name. 2) A metric definitions of conics as loci determined by the focal
properties; in this case a particular drawing instrument for obtaining the so-called
gardener ellipse is described. 3) The canonical equations; then every problem is
considered in this analytic setting. From a cultural perspective, this path conveys
a one-sided image of mathematics, i. e. the physical generation of conics (as conic
sections or as drawings by instruments) is nothing but a rough introduction to the
very important things, that are, on the contrary, metric definitions and equations.
What is even more disappointing is the cognitive counterpart: by this approach
(even if it is completed by a careful study of quadratic forms, as in the case of
university students of mathematics), students do nor learn how to relate their
spatial intuitions (on which heuristics might be based) with the plane synthetic or
analytic study [BM].

In this paper I have proposed an alternative approach with two different, yet
related, arguments. The cultural argument: for centuries curves have been consid-
ered as trajectories determined by linkages and other drawing instruments; only
later, the mechanical study has been complemented by the algebraic study, arous-
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ing theories which retain the links with the spatial referents and which has proven
to be relevant for the development of today mathematics The cognitive argument:
the very manipulation of drawing instruments provides students with heuristics
and representative tools (such as metaphors, gestures, drawings and arguments)
that foster the production of conjectures and the construction of related proofs
within a reference theory, with a slow and laborious process that recalls the one of
professional mathematicians. Reliving the making of theories and producing one’s
own theorems is a way to appreciate and assimilate the theoretical dimension of
mathematics.
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