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The Riemann-Roh Theorem and Geometry, 1854-1914

Jeremy J Gray

Abstract. The history of the Riemann-Roch Theorem, from its discov-
ery by Riemann and Roch in the 1850’s to its use by Castelnuovo and
Enriques in from 1890 to 1914, offers one of the most instructive examples
in the history of mathematics of how a result stays alive in mathemat-
ics by admitting many interpretations. Various mathematicians over the
years took the theorem to be central to their researches in complex func-
tion theory, and in the study of algebraic curves and surfaces in a variety
of algebraic and geometric styles. In surveying their interpretations and
extensions of the theorem, the historian traces the creation of a gen-
eral theory of complex algebraic curves and surfaces in the period, and
uncovers lively agreements and disagreements. This paper provides an
overview of the field; the Congress lecture will concentrate on the route
from Riemann and Roch via Brill and Noether to Castelnuovo and En-
riques. For reasons of space a number of the better-known developments
have been omitted. One may consult Dieudonné [1976].
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1 Curves

In the 1850s (see his [1857] and Laugwitz [1996]) Riemann put together a theory
of complex functions defined on some 2-dimensional domain, which might be
any simply-connected domain, or the whole complex z-sphere (what we call the
Riemann sphere) or a finite covering of the z-sphere branched over some points
(what we call a Riemann surface). He showed how to define such a function
with poles on a patch using his version of the Dirichlet principle. His motivation
was the example of algebraic curves, and the outstanding topic of abelian integrals.

He established the existence of complex functions on a surface with no bound-
ary by the Riemann inequality - his contribution to the Riemann-Roch Theorem.
His imprecise argument retains its heuristic value. He supposed the surface was
(2p + 1)-fold connected, which means that it is rendered simply-connected by
2p cuts, when it forms a 4p-sided polygon. He showed that there are p linearly
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independent everywhere holomorphic functions defined inside the polygon by con-
sidering what would happen if the real parts of their periods all vanished (using
the Dirichlet principle again). Later he showed that the differentials of these
functions are everywhere-defined holomorphic integrands. Then he specified d
points at which the function may have simple poles, again imposing the condition
that the functions jump by a constant along the cuts. Now he argued that to
create functions with only simple poles and constant jumps one took a sum of
p linearly independent functions with no poles plus functions of the form 1

z
at

one of the specified points, and added a constant term. The resulting expression
depends linearly on p + d + 1 constants. The jumps therefore depend linearly
on p + d + 1 constants, and there are 2p of them to be made to vanish (if the
function is single-valued as required). So there will be non-constant meromorphic
functions when p + d + 1 − 2p ≥ 2, i.e. d > p. This result, today called the
Riemann inequality, says there is a linear space of complex functions of dimension
h0 ≥ d+ 1− p, and this contains non-constant functions as soon as d+ 1− p > 1,
or d > p.

Roch was a gifted student of Riemann who died of tuberculosis in 1866 aged
only 26. He was able to interpret analytically the difference d + 1 − p as the
dimension of a certain space of holomorphic integrands, those that vanish at some
of the points where the function may have poles. This implies that the difference
h1 = h0−(d+1−p) is an analytically meaningful quantity. In Roch’s terminology:
if a function w has d simple poles, and if q linearly independent integrands can van-
ish at these poles, then w depends on d−p+q+1 arbitrary constants (Roch [1865]).

Riemann showed that any two meromorphic functions on an algebraic curve
are algebraically related, whence a theorem establishing that a ‘Riemann surface’
branched like an algebraic curve over the Riemann sphere can be mapped into the
projective plane. This established a close relationship between intrinsic curves
and embedded curves, and Riemann showed that any two polynomial equations
for the same algebraic curve are birationally related (the variables in one equation
for the curve are rational functions of the variables in any other equation for the
curve). He also used his inequality to calculate that the dimension of the moduli
space of algebraic curves of genus p > 1 is 3p− 3.

The approach of Riemann and Roch was aimed at extending complex func-
tion theory. It made abundant use of the Dirichlet principle (which Riemann
attempted to prove; his proof was refuted by Prym in 1870). But by directing
attention to a theory based on a topological concept of connectivity, Riemann
opened the way to elucidate intrinsic properties of curves independent of their
embeddings in the plane.

Riemann died in 1866. His eventual successor at Göttingen was Clebsch,
who had already pioneered the application of Riemann’s ideas to geometry in
his [1863]. His initial response to these ideas had been to find them very hard
- the topological nature of a Riemann surface was difficult to grasp and the
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Dirichlet principle appeared confusing - and Roch’s paper struck him as almost
incomprehensible. So he initially defined the genus of a curve as the number of
linearly independent holomorphic integrands on it. If the curve is non-singular,
these, he observed, are integrands of the form φdz/∂F

∂w
where φ(z, w) is of degree

at most n − 3. The condition on the degree of φ arises by considering what
happens at infinity, and was dealt with by passing to homogeneous coordinates.
If the curve has a k-fold point (it passes k times through a point) then the curve
φ = 0 is required to pass k− 1 times through that singular point (such curves are
called adjoint curves). In his book of 1866 with Paul Gordan, Clebsch restricted
his attention to curves having only double points and cusps, for which a purely
algebraic definition of the number p (called the genus by Clebsch) is possible:
p = 1

2 (n − 1)(n − 2) − d − r where n is the degree of the defining equation, d is
the number of double points and r the number of simple cusps.

The response of Riemann’s former student Prym was harsh. He wrote to
Casorati (2 December 1866): ”They would never have dared publish the foreword
in Riemann’s lifetime. The attempt to base function theory on algebra can be
regarded as completely useless . . . . On the contrary, algebra is an outcome
of function theory and not the other way round. (In Neuenschwander, [1978],
p. 61). But Clebsch was a charismatic teacher, Klein [1926, p. 297] called him
divinely inspired in that respect, and when he too died young, in 1872, he left
behind a vigorous group of mathematicians who were to become the custodians of
the Riemann-Roch Theorem. They regarded him as having led German mathe-
maticians into the newer geometry and algebra - precisely the subjects, one might
note, upon which Gauss did not work.

Prominent among them were Brill and Noether, and their critique of Clebsch-
Gordan was that it had not gone far enough in embracing algebra. For them
algebra was the source of rigour, and moreover, in Brill’s opinion Riemann’s work
on the Riemann-Roch Theorem was in a form foreign to geometry. This was
a sound, critical response, but the price was high: the very definition of genus
became entangled with the nature of the singular points a plane curve might
have, and the invariance of genus under birational transformations now had to
be proved. Clebsch and Gordan had given such a geometric proof by means of a
subtle elimination process, which Brill and others wanted to simplify.

The first problem is to define the multiplicity of a singular point on an alge-
braic curve, the second is to show that by suitable birational transformations any
curve can be reduced to one having only what were called ordinary singularities,
that is, singular points where all the tangent directions are distinct. Such a point
was said to be of multiplicity k if there are k branches at that point. Noether
broached the first of these topics in his paper of 1873 with a theorem which gave
conditions for a curve that passes through the common points of two curves with
equations F = 0 and G = 0 to have an equation of the form AF +BG = 0, where
A, B, F , and G are polynomials in the complex variables x and y. It is indicative
of the subtleties involved that the English mathematician F.S. Macaulay in the
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1890s was among the first to pay scrupulous attention to the cases where the
tangent directions are not separated.

The second problem is also difficult. It must be shown that a birational
transformation can be found to simplify any given singularity, which is not obvi-
ous, and then, since the transformation necessarily introduces new singular points
on the transformed curve, it must be shown that these can be made ordinary
singularities. The consensus in the literature as to when this was achieved is as
late as Walker’s (unpublished) Chicago thesis of 1906. There is a significant papers
on the topic by Bertini in 1888, and Bliss made it the subject of a Presidential
address as late as 1923.

Brill and Noether were the first to call the Riemann-Roch Theorem by
that name, in their [1874]. They took from Clebsch the idea that it was to be
studied geometrically, that is, in terms of a linear family of adjoint curves. It
followed from their definition of the genus (a generalisation of the Clebsch-Gordan
definition to a curve having arbitrary ordinary singularities) that the number of
free coefficients in the equation for an adjoint curve of degree n− 3 is p− 1. The
total number of intersection points of the curve and its adjoint apart from the
multiple points is 2p − 2, so at most p − 1 of these are determined by the rest,
equivalently, at least 2p− 2− (p− 1) = p− 1 can be chosen arbitrarily. It follows
that q, the dimension of the space of adjoint curves of order n− 3 that cut out a
set of Q points, satisfies the inequality q ≥ Q− p+ 1.

Using induction on q and Q, Brill and Noether proved the converse: there is
a family of dimension q of adjoint curves of degree n − 3 that cut out a set of Q
points, provided q ≥ Q − p + 1. This is their version of the Riemann inequality.
They now came to their version of the Riemann-Roch Theorem, which they
stated in terms of what they called special families. By definition a special family
satisfies the strict inequality q > Q − p + 1. The Brill-Noether version of the
Riemann-Roch Theorem then says: If an adjoint curve of order n − 3 is drawn
through a special set of Q points in a q-dimensional family of points, for which
q = Q− p+ 1+ r (where 0 < r < p− 1), then this curve meets the given curve in
2p− 2−Q = R further points that themselves belong to a special set of R points
in an r-dimensional family, where r = R− p+ 1 + q.

Their strong preference for algebra and geometry over function theory was
criticised by Klein in his [1892]. Relations between Klein and the followers of
Clebsch became strained as he moved in the late 1880s to adopt the mantle of
Riemann and became his true successor at Göttingen. His enthusiasm for intuitive
geometry clashed with their preference for the certainties of algebra.

For Brill and Noether, the Riemann-Roch Theorem was a theorem about
families of plane curves. The first to use higher-dimensional geometry in this
context were L. Kraus (who had studied under Klein and Weierstrass and died
at the age of 27) and E.B. Christoffel, although credit has usually been given to
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Noether. All started from the observation that an algebraic curve of genus p > 1
has a p-dimensional space of holomorphic 1-forms. While Christoffel and Noether
pursued the analytic implications of taking a basis for these 1-forms, say ω1,. . .,ωp,
Kraus [1880] thought of the p-tuple (ω1(z), . . .,ωp(z)) = (f1(z)dz, . . ., fp(z)dz) as
giving a map from the curve to a projective space of dimension p−1 : z −→ [f1(z),
. . ., fp(z)]. That this map is well-defined (independent of the coordinate system
used) and is a map into projective space (the fi never simultaneously vanish)
was fudged by Kraus, (a modern simple proof uses the Riemann-Roch Theorem).
That the degree of the map is 2p − 2 was explicit in Riemann’s work. As Kraus
saw, the case where the curve is hyper-elliptic also causes problems: here one
gets a 2-1 map from the curve to the Riemann sphere. The novelty of Kraus’s
insight, which Klein appreciated, is the emphasis on higher-dimensional geometry.
Whenever there is such a map, questions about the curve, or whole families of
curves, are reduced to questions in projective geometry.

First Dedekind and Weber [1882] then Hensel and Landsberg (see Gray
[1997]) took up the study of algebraic curves via their associated function fields.
Landsberg’s [1898a] gave a new proof of the Riemann-Roch theorem, as he put
it ‘in full generality and without birational transformations’. In the same issue
of Mathematische Annalen Lansdberg also formulated and proved what he called
an analogue of the Riemann-Roch Theorem in the theory of algebraic numbers,
and observed that Hilbert had told him that an analogous result held for alge-
braic number fields. In 1902 Hensel and Landsberg published their joint book
on the subject, which was to be the foundation of subsequent work in this direction.

The weak point of this approach is that it does not generalise automatically
to algebraic surfaces. Nonetheless in his [1909] (corrected and simplified in his
[1910a, b]) Heinrich Jung was able to extended the ideas of Hensel and Landsberg
to cover function fields in two variables, and in this way he was able to obtain
a Riemann-Roch theorem within the arithmetic tradition (see Gray [1994b]).
As he pointed out, his proof was not that different from the Italian one, except
that it also applied to divisors that were not integral, which in his view was an
improvement.

The markedly algebraic approaches just described were different in spirit from
those adopted by Klein and Poincaré, who hewed more closely to the ideas first
elaborated by Riemann. The uniformisation theorem, conjectured by Poincaré
and Klein in 1881 and eventually proved by

Poincaré and Koebe in 1907, (see Gray [1994a]) opened another route, if one
could count the free constants in the Fuchsian functions having at most m poles
on a given Riemann surface. The first to try was a former student of Klein’s,
Ernst Ritter, who made a spirited attempt in his [1894] to connect Klein’s work to
Poincaré’s. Ritter was led to what he called an extended Riemann-Roch Theorem
not for functions but for pairs of automorphic forms of particular kinds, and for-
mulated for fractional divisors (a concept first introduced by Klein in his lectures
[1892, p.65]). Ritter died age 28, but his ideas were taken up by Robert Fricke
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and incorporated into the second volume of Fricke-Klein [1912]. Hermann Weyl,
in his famous [1913], proved both the usual Riemann-Roch Theorem and what he
called Ritter’s extended Riemann-Roch Theorem. The first to give a proof of the
Riemann-Roch Theorem using the uniformisation theorem was probably Osgood,
who communicated such a proof to his Harvard colleague Coolidge in 1927 and
later published it in the second volume of his Funktiontheorie, 1929.

2 Surfaces

In the wake of work by Cayley and Clebsch (see Gray [1989]) Noether defined
what became known as the arithmetic genus of a surface of degree n in his
[1871]. It was a number, pa, obtained by counting coefficients, which was re-
lated to the dimension of the space of adjoint surfaces of order n − 4 passing
(i − 1)-times through each i-fold curve of F and (k − 2)-times through each
k-fold point. Zeuthen had shown it was a birational invariant, and so one
which would survive attempts to resolve the singularities. In his [1875], Noether
defined the surface genus, later called the geometric genus, pg, as the actual
number of linearly independent surfaces of degree n − 4 adjoint to a surface
F of degree n. He called the genus of the intersection of F with an adjoint
surface the linear genus and showed that surfaces with small values of these
genera yielded immediately to classification, as surfaces defined by a polynomial
equation of a certain degree with such-and-such double curves and multiple points.

Then in a short paper of 1886 Noether gave the first statement of a Riemann-
Roch theorem for algebraic surfaces. Although hopelessly flawed, Noether’s mis-
takes give a good indication of the difficulties inherent in the new subject. Noether
took a curve C of genus π on a surface F , and supposed it belongs to an r-
dimensional linear system, |C|, of curves of the same order, and that C meets a
generic curve of this system in a set, Gs, of s points (called the characteristic series
on C). This set of points belongs to a linear series on the curve C of dimension
r− 1. If ρ denotes the dimension of the space of adjoints of degree n− 4, that also
pass through C, then Noether’s Riemann-Roch theorem asserts that

r ≥ pg + s− π − ρ+ 1,

where pg is the geometric genus of the surface F . For, by the Riemann-Roch
theorem on the curve C, there is a linear system |C ′| residual to |C| that cuts C
in point group consisting of 2π − 2 − s points. This residual linear system has
dimension d = r − s + π − 1, and arises by cutting C with adjoint surfaces that
pass through a fixed Gs. These include a fixed surface through the Gs and a linear
system of free surfaces adjoint to F of dimension pg − ρ. Therefore, said Noether,

r − s+ π − 1 ≥ pg − ρ.

As Enriques and Castelnuovo showed, Noether’s account rests on two crucial,
and doubtful, statements. First, the application of the Riemann-Roch theorem
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on C assumed that the characteristic series Gs was complete (i.e. of maximal
dimension), but this not obvious, and indeed is not always true. One can only say
that d = r−s+π−1+δ , for some δ ≥ 0. Second, Noether’s claim that d = pg−ρ,
is again neither obvious nor always true. One can only say that the dimension d
is pg − ρ+ η, where η ≥ 0. Consequently one only has

r = s− π + pg + 1− ρ− δ + η,

which is a disaster, because the correction terms δ and η, each non-negative, enter
with opposite signs, and not even an inequality can be disentangled from the
correct formula. In the absence of a Noether Nachlass, we may never know why
Noether offered only this brief, and flawed, sketch.

Another approach to the study of algebraic surfaces was initiated by the
Italian mathematician Veronese, who in his [1881] used the method of projection
and section to show how curves and surfaces in the plane or in 3-space with singu-
larities could profitably thought of a non-singular objects in a higher-dimensional
space; the singularities were the result of the projection of the object into 3-space.
Veronese’s insight, together with that of Kraus as taken up by Klein, suggested
to Corrado Segre that the best approach to surfaces would be to study them
birationally, and to look for families of curves sufficiently well behaved to yield an
embedding of the surface in some suitable projective space. So Segre advocated
a third approach to the Riemann-Roch Theorem, also algebrao-geometrical, but
with the emphasis on higher-dimensional projective geometry, which was to prove
characteristically Italian. On this approach all birational images of a surface in
any projective space were treated equally.

The aim became to find systems of canonical curves on an algebraic surface
that yield embeddings in some projective space. Canonical curvesK on the surface
should be cut out by appropriate adjoint surfaces (as in Noether’s approach). The
adjoint, A(C), of a curve C should be the sum C +K. A suitable generalisation
of the Riemann-Roch Theorem should apply to the surface and a curve C or the
maximal linear system |C| to which C belongs and evaluate dimensions of linear
systems of curves. In particular, if the dimension of the space of canonical curves
(or some multiple of them) is large enough, the adjoint surfaces will yield an
embedding of the surface in projective space.

However, as Enriques observed in his first major paper, his [1893], Noether’s
definition of an adjoint surface invokes the degree, so it is projective but not
birational. Another definition of the terms ‘adjoint’ and ‘canonical’ must be
sought. Moreover, linear families of curves on the surface will yield maps to
projective space, but if the curves have base points (points common to all the
curves), the image of the surface that they provide will have new singularities
(the base points will ‘blow up’ into curves). Similarly components common to
all curves of a family may blow down to points. So a way must be found of
controlling, and ideally eliminating, these exceptional curves.
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In an interesting split in the development of the theory, Italian algebraic
geometers offered definitions that had nothing to do with holomorphic integrands,
whereas the study of single and double integrals on an algebraic surface (1-
and 2-forms) was energetically taken up by the French, notably Picard but also
Humbert (see Houzel [1991]). The algebraic and transcendental theories were
developed in parallel, with each side reading the other’s work, but not merged.

When Castelnuovo and Enriques began their work, little was known about the
nature of algebraic surfaces, and there was no method available for the resolution
of their possible singularities (one was later developed in Jung [1908]). Much
of their work behind the scenes is documented in the recently published letters
of Enriques to Castelnuovo (see Bottazzini et al, [1996]). They came to favour
a characterisation of surfaces in terms of integers, generalising the arithmetic
and geometric genera, and the crucial result that gave them control over these
numbers was their formulation of a Riemann-Roch Theorem.

To produce birationally invariant definitions in his [1893], Enriques excluded
irregular surfaces (those for which the geometric genus exceeds the arithmetic
genus, such as ruled surfaces) and surfaces of genus 0. For regular algebraic surfaces
of genus greater than zero he could give quite general conditions that ensured that
the characteristic series was complete. Under these conditions he considered a
curve C of genus π on the surface that belongs to a linear system of curves of
dimension r, such that C meets a generic curve of |C| in s points. If the system
|C| is not contained in the canonical system he supposed that through the points
common to two curves |C| there passed a space of adjoint curves of dimension
2p + ω; he called the non-negative number ω the super-abundance of |C|. If
the system |C| is contained in the canonical system and the residual system has
dimension i − 1, the space of adjoint curves has dimension 2p + ω − i. He then
established the first Riemann-Roch Theorem for algebraic surfaces:

r = s− π + pg + 1 + ω − i,

by an ingenious application of the Riemann-Roch theorem on the curve C. His
friend Castelnuovo then showed how irregular surfaces could be treated, in his
[1896].

Enriques soon became dissatisfied with the arithmetic and geometric genera,
because they did not characterise surfaces. In 1896 (see Bottazzini et al [1996, p.
278]) Enriques considered a tetrahedron in CP

3 and observed that there was a
surface of degree 6 which had the edges of the tetrahedron as its double curves.
Its adjoint surfaces must be of degree 6 - 4 = 2, and must pass through the double
curves of the surface. But plainly there is no quadric surface through the 6 edges
of a tetrahedron. However, there is a surface of degree 2(n − 4) = 2.(6 − 4) = 4
which passes twice through the edges of the tetrahedron: the surface composed
of the four planes that form the faces of the tetrahedron. So the surface of degree
6 has no adjoint surface and its genus is zero, but it does have what is called
a bi-adjoint surface and its bi-genus, the dimension of the space of bi-adjoint
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surfaces, is P2 is 1, not zero. In his [1896] Castelnuovo showed that a surface with
arithmetic and geometric genera equal to zero and bi-genus P2 = 0 is indeed a
rational surface. This was the first birational characterisation of a surface. It also
marks the moment when the so-called plurigenera decisively enter the analysis.
The ith plurigenus, Pi, is defined as one more than the dimension of the ith mul-
tiple of the canonical system, |iK|. In their [1901] Castelnuovo and Enriques used
the Riemann-Roch Theorem to obtain lower bounds on the plurigenera (see below).

Enriques’ [1896] marks a considerable advance on his [1893] in its level of
generality. Irregular surfaces could now be treated, because of recent discoveries
by Castelnuovo in his [1896], and a Riemann-Roch Theorem proved about them.
The characteristic property of a canonical curve was now that it was a residual
curve of any linear system |C| with respect to the adjoint system A(C). Enriques
pointed out that this indirect definition had the advantage of being independent
of the nature of the fundamental curves of |C| which were therefore subject to no
restriction. In his opinion, this made it most appropriate to a birational theory of
surfaces.

In their [1901] Castelnuovo and Enriques made notable simplifications to the
theory, when they showed that a non-ruled surface can be transformed to one
without exceptional curves (curves obtained as the blow-up of points under a bi-
rational transformation). This established the existence and uniqueness of what
became called minimal models. For surfaces without exceptional curves, Castel-
nuovo’s formula for the plurigenera applied to linear system |C| of genus π and
degree n, for which n < 2π− 2 (the genus of |C| is the genus of a generic member
of |C|, the degree the number of points in the generic intersection of two members
of |C|). It asserts that

Pi ≥ pa +
1

2
i(i− 1)(p(1) − 1) + 1,

for all i > 1. The number p(1) is Noether’s linear genus of the surface, but with
a new birational definition that applies where Noether’s does not, as Castelnuovo
and Enriques pointed out. The formula indicates that the cases p(1) > 1 and
p(1) ≤ 1 will be very different. In fact, the plurigenera can grow in essentially
four ways: they might all be 0, they might be 0 or 1, they might grow linearly
with i or quadratically with i. This distinction lies at the heart of the subsequent
classification of algebraic surfaces.

Castelnuovo and Enriques now gave a preliminary classification of surfaces,
characterising rational and ruled surfaces in terms of the values of p(1) and the
plurigenera. In 1905 Enriques characterised ruled surfaces in similar terms as the
surfaces for which pg = 0 = P4 = P6. In his [1906] Enriques characterised his
sextic surface birationally as the only surface for which pa = 0 = P3, P2 = 1.
This characterised the class of surfaces nowadays called Enriques surfaces. In his
[1906] with Castelnouvo (published as an appendix in the second volume of Picard
and Simart’s book) and again in his [1907b] Enriques analysed surfaces for which
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p(1) = 1, and connected the values of p(1) and pg to growth of the plurigenera.

In his [1914a, b] Enriques turned back to the study and classification of
algebraic surfaces. He reported in more detail in his essay with Castelnuovo
published in the Encyklopädie der Mathematischen Wissenschaften for 1914. The
behaviour of the plurigenera led him to argue now that the crucial feature was the
value of P12. If P12 = 0 the surface was ruled; if P12 = 1 then p(1) = 1 and many
of the surfaces discovered by Enriques and Severi, Picard, and Bagnera and de
Francis belong in this family. If P12 > 1 and p(1) > 1 then the surface has effective
canonical and pluri-canonical curves of some positive order (which in turn meant
that it could be embedded in some projective space). Or rather, a model of the
surface containing no exceptional curves could be mapped birationally onto its
image in a projective space of an appropriate dimension. The classification is
actually somewhat finer, but it is clear that the broad outlines of the classification
are provided by numbers determined, in fair part, by the Riemann-Roch Theorem.

I wish to thank A. Beardon, D. Eisenbud, G.B. Segal, N.I. Shepherd-Barron,
and M.H.P. Wilson for commenting helpfully on various versions of this paper.
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senschaften, III.2.1 C, 674-768
Fricke, R., Klein, C.F., 1897, 1912 Vorlesungen über die Theorie der Automorphen

Functionen, 2 vols, Teubner, Leipzig and Berlin
Gray, J.J. 1989 Algebraic and projective geometry in late 19th century, in Sympo-

sium on the history of mathematics in the 19th century, 361-388, ed. J. McCleary,
D.E. Rowe, Academic Press, New York
Gray, J.J. 1994a On the history of the Riemann mapping theorem, Supp. di Rend.

circ. mat. Palermo, (2) 34, 47-94.
Gray, J.J. 1994b German and Italian Algebraic Geometry, Supp. di Rend. circ.

mat. Palermo, (2) 36, 151-183
Gray, J.J. 1997 Algebraic geometry between Noether and Noether - A forgotten
chapter in the history of algebraic geometry, Revue d’hist. Math., 3.1, 1-48
Hensel, K., Landsberg, G., 1902 Theorie der algebraischen Functionen einer Vari-

ablen, Teubner, Leipzig
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Landsberg, G. 1898b Über das Analogon des Riemann-Roch Satzes in der Theorie
der algebraischen Zahlen, Math. Ann. 50, 577-582
Laugwitz, D. 1996 Bernhard Riemann, Birkhäuser, Vita Mathematica, Basel
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