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Let X be a noetherian scheme over which 2 is invertible, let S be a vector
bundle of rank 2 over X, and let Y = P(S) be the corresponding projective
line bundle in the sense of Grothendieck. The structure morphism f : Y → X
induces a morphism f∗ :W (X) →W (Y ) of Witt rings. In this paper we shall
show that there is an exact sequence

W (X) →W (Y ) →M⊤(X)

where M⊤(X) is a Witt group of formations over X like the one defined by
Ranicki in the affine case. (Cf. [R].) The subscript is meant to show that in
the definition of M⊤(X) we use a duality functor that might differ from the
usual one.
In his work, Ranicki shows that in the affine case the Witt group M(X) of
formations is naturally isomorphic to his L-group L1(X). We therefore could
have used the notation L1

⊤(X). Furthermore, according to Walter,M(X) is also
the higher Witt group W−1(X) as defined by Balmer using derived categories.
(Cf. [B].) And Walter, [W], has announced very interesting results on higher
Witt groups of general projective space bundles over X of which our result is
just a special case.

The paper has two main parts. In the first one we study the obstruction for
an element in W (Y ) to come from W (X). In the second part we define and
study M⊤(X). In a short third part we prove our main theorem and make
some remarks.

Besides the notation already introduced, we shall use the following. We denote
by OY (1) the tautological line bundle on Y . We shall, of course, use the usual
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12 Jón Kr. Arason

notation for twistings by OY (1). We denote by ω the relative canonical bundle
ωY/X . We also write L = S ∧ S. Then ω = f∗(L)(−2). We shall write Sk for
f∗(OY (k)). In particular, S0 = OX and S1 = S.
There is a natural short exact sequence

0 → ω → f∗(S)(−1) → OY → 0

that we shall use often. As other results that we need on algebraic geometry,
it can be found in [H].

Section 1.1

In this section we shall use higher direct images to check whether a symmetric
bilinear space over Y comes from X.
The main fact used is the corresponding result in the linear case. It must be
well known although we don’t have a reference handy. We shall, however, give
an elementary proof here.

Proposition 1: Let E be a coherent Y -module. If R1f∗(E(−1)) = 0 and
f∗(E(−1)) = 0 then the canonical morphism f∗(f∗(E)) → E is an isomorphism.
Proof: Let E be a coherent Y -module. We look at the tensor product

0 → ω ⊗ E → f∗(S)(−1)⊗ E → E → 0

of E and the natural short exact sequence above. Twisting by k+1 and taking
higher direct images we get the exact sequence

0 → f∗(ω ⊗ E(k + 1)) → S ⊗ f∗(E(k)) → f∗(E(k + 1))

→ R1f∗(ω ⊗ E(k + 1)) → S ⊗R1f∗(E(k)) → R1f∗(E(k + 1)) → 0

From it we first get:
Fact 1: If R1f∗(E(k)) = 0 then also R1f∗(E(k + 1)) = 0.
Noting that ω ⊗ E(k + 1) = f∗(L)⊗ E(k − 1) we also get:
Fact 2: If R1f∗(E(k − 1)) = 0 then the natural morphism S ⊗ f∗(E(k)) →
f∗(E(k + 1)) is an epimorphism.
Using the two previous facts and induction on k we see that if R1f∗(E(−1)) = 0
then Sk ⊗ f∗(E) → f∗(E(k)) is an epimorphism for every k ≥ 0. This implies:
Fact 3: If R1f∗(E(−1)) = 0 then the canonical morphism f∗(f∗(E)) → E is an
epimorphism.
In the situation of Fact 3 we have a natural short exact sequence 0 → N →
f∗(f∗(E)) → E → 0. We note that N is coherent because f∗(E) is coherent.
Taking higher direct images, using that f∗(f

∗(f∗(E))) → f∗(E) is an isomor-
phism and that R1f∗(f

∗(f∗(E))) = 0, we get that f∗(N ) = 0 and R1f∗(N ) = 0.
Twisting the short exact sequence by −1 and then taking higher direct images,
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Projective Line Bundles 13

using that f∗(f
∗(f∗(E))(−1)) = 0 and R1f∗(f

∗(f∗(E))(−1)) = 0, we get that
R1f∗(N (−1)) is naturally isomorphic to f∗(E(−1)). So if f∗(E(−1)) = 0 then
R1f∗(N (−1)) = 0. As f∗(N ) = 0 it then follows from Fact 3 that N = 0. The
proposition follows.
Proposition 1, cntd: Furthermore, if E is a vector bundle on Y then f∗(E)
is a vector bundle on X.
Proof: Clearly, Y is flat over X, so E is flat over X. Using the Theorem of
Cohomology and Base Change, (cf. [H], Theorem III.12.11), we therefore see
that if E is a vector bundle on Y such that R1f∗(E) = 0 then f∗(E) is a vector
bundle on X.

Although we really do not need it here we bring the following generalization of
Proposition 1.

Proposition 2: Let E be a coherent Y -module. If R1f∗(E(−1)) = 0 then
there is a natural short exact sequence

0 → f∗(f∗(ω(1)⊗ E))(−1) → f∗(f∗(E)) → E → 0

Proof: In the proof of Proposition 1 we had, even without the hypothesis
f∗(E(−1)) = 0, that f∗(N ) = 0 and R1f∗(N ) = 0. By Proposition 1 the
canonical morphism f∗(f∗(N (1)) → N (1) is therefore an isomorphism. Taking
the tensor product of this isomorphism with ω and using R1f∗ on the resulting
isomorphism, noting that R1f∗(ω ⊗ f∗(f∗(N (1)))) is naturally isomorphic to
f∗(N (1)), we see that f∗(N (1)) is naturally isomorphic to R1f∗(ω ⊗N (1)) =
L⊗R1f∗(N (−1)). But we saw in the proof of Proposition 1 that R1f∗(N (−1))
is naturally isomorphic to f∗(E(−1)), so this means that f∗(N (1)) is naturally
isomorphic to L ⊗ f∗(E(−1)). But L ⊗ f∗(E(−1)) = f∗(f

∗(L) ⊗ E(−1)) =
f∗(ω(1)⊗ E). The proposition follows.
Proposition 2, cntd: Furthermore, if E is a vector bundle on Y then f∗(E)
and f∗(ω(1)⊗ E) are vector bundles on X.
Proof: Noting that f∗(ω(1) ⊗ E) = L ⊗ f∗(E(−1)), this follows as in the proof
of Proposition 1.

We shall, however, use the following corollary of Proposition 1.

Proposition 3: Let E be a coherent Y -module. If R1f∗(E) = 0 and
f∗(E(−1)) = 0 then there is a natural short exact sequence

0 → f∗(f∗(E)) → E → f∗(R1f∗(ω(1)⊗ E))(−1) → 0

Proof: We let C = f∗(E). From the canonical morphism f∗(f∗(E)) → E we
then get an exact sequence

0 → N → f∗(C) → E → Q → 0
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14 Jón Kr. Arason

of coherent Y -modules. As the direct image functor is left-exact and the in-
duced morphism f∗(f

∗(C)) → f∗(E) is an isomorphism, we see that f∗(N ) = 0.
We now break the exact sequence up into two short exact sequences

0 → N → f∗(C) → M → 0

and
0 → M → E → Q → 0

Using the hypothesis f∗(E(−1)) = 0, we get from the second short exact se-
quence that f∗(M(−1)) = 0. Using that and the fact that R1f∗(f

∗(C)(−1)) =
0, we get from the first one that R1f∗(N (−1)) = 0. As we already saw that
f∗(N ) = 0, it follows from Proposition 2 that N = 0. (Fact 3 in the proof of
Proposition 1 suffices.) So we have the short exact sequence

0 → f∗(C) → E → Q → 0

As R1f∗(E) = 0 and f∗(f
∗(C)) → f∗(E) is an isomorphism, we get, using that

R1f∗(f
∗(C)) = 0, that f∗(Q) = 0 and R1f∗(Q) = 0. By Proposition 1 this

means that the canonical morphism f∗(f∗(Q(1))) → Q(1) is an isomorphism.
Writing B = f∗(Q(1)), we therefore get that Q ∼= f∗(B)(−1).
Taking the tensor product of the short exact sequence

0 → f∗(C) → E → f∗(B)(−1) → 0

with ω(1) and then taking higher direct images, noting that R1f∗(ω(1) ⊗
f∗(C)) = 0, we get that R1f∗(ω(1)⊗E) → R1f∗(ω(1)⊗f

∗(B)(−1)) is an isomor-
phism. But R1f∗(ω(1)⊗ f∗(B)(−1)) = R1f∗(ω ⊗ f∗(B)), which is canonically
isomorphic to B. So we have a natural isomorphism B ∼= R1f∗(ω(1)⊗ E).
Note: If E is a vector bundle on Y then we see as before that f∗(E) is a vector
bundle on X. But we don’t know whether R1f∗(ω(1) ⊗ E) is also a vector
bundle on X.

There is, in fact, a natural exact sequence

0 → f∗(f∗(ω(1)⊗ E))(−1) → f∗(f∗(E)) → E

→ f∗(R1f∗(ω(1)⊗ E))(−1) → f∗(R1f∗(E)) → 0

for any coherent Y -module E . But we do not need that here. What we need is
the following bilinear version of Proposition 1.

Proposition 4: Let (E , χ) be a symmetric bilinear space over Y . If
R1f∗(E(−1)) = 0 then there is a symmetric bilinear space (G, ψ) over X such
that (E , χ) ∼= f∗(G, ψ).
Proof: For any morphism f : Y → X of schemes and any Y -module F and
any X-module G there is a canonical isomorphism f∗(HomY (f

∗(G),F)) ∼=
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Projective Line Bundles 15

HomX(G, f∗(F)). In our case f∗(OY ) = OX hence, in particular, there
is a canonical isomorphism f∗(f

∗(G)∨) ∼= G∨. It then follows that there
are canonical isomorphisms HomY (f

∗(G), f∗(G)∨) ∼= HomX(G, f∗(f
∗(G)∨)) ∼=

HomX(G,G∨).
In the case at hand we first note that as E is self dual, Serre duality shows that
R1f∗(E(−1)) = 0 implies that f∗(E(−1)) = 0. So we can use Proposition 1 to
write E ∼= f∗(G) with the vector bundle G = f∗(E) over X. The proposition
follows.

Section 1.2

In this section we shall prove a useful condition for the Witt class of a symmetric
bilinear space over Y to come from W (X).

Let (E , χ) be a symmetric bilinear space over Y and let U be a totally isotropic
subbundle of (E , χ). Denote by V the orthogonal subbundle to U in (E , χ) and
by F the quotient bundle of V by U . Then χ induces a symmetric bilinear form
ϕ on F and the symmetric bilinear space (F , ϕ) has the same class in W (Y )
as (E , χ). We also have the commutative diagram

0 0
↓ ↓

0 → U → V → F → 0
‖ ↓ ↓

0 → U → E → V∨ → 0
↓ ↓
U∨ = U∨

↓ ↓
0 0

with exact rows and columns. It is self-dual up to the isomorphisms χ and ϕ.
It is natural to say that (F , ϕ) is a quotient of (E , χ) by the totally isotropic
subbundle U . But then one can also say that (E , χ) is an extension of (F , ϕ)
by U . Extensions of symmetric bilinear spaces in this sense are studied in [A].
One of the main results there is that the set of equivalence classes of extensions
of (F , ϕ) by U is functorial in U .

Proposition 1: LetM be a metabolic space over Y . Then there is a metabolic
space N over X such that M is a quotient of f∗(N ).
Proof: M is clearly a quotient of M ⊕ −M. As 2 is invertible over Y , this
latter space is hyperbolic. Hence it suffices to prove the assertion for hyperbolic
spaces H(U) over Y .
By Serre’s Theorem (cf. [H], Theorem III.8.8) and the Theorem of Coho-
mology and Base Change ([H], Theorem III.12.11), we have for every suf-
ficiently large N that f∗(U(N)) is locally free and that the canonical mor-
phism f∗(f∗(U(N))) → U(N) is an epimorphism. This means that there
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16 Jón Kr. Arason

is a vector bundle A = f∗(U(N)) over X such that U is a quotient of
f∗(A)(−N). But then, clearly, H(U) is, as a symmetric bilinear space,
a quotient of H(f∗(A)(−N)). Now, if N is sufficiently large, f∗(OY (N))
is locally free and f∗(f∗(OY (N))) → OY (N) is an epimorphism, hence
f∗(A∨)(N) = OY (N) ⊗OY

f∗(A∨) is a quotient of f∗(B) for the vector bun-
dle B = f∗(OY (N)) ⊗OX

A∨ over X. It follows that H(f∗(A)(−N)) =
H((f∗(A)(−N))∨) = H(f∗(A∨)(N)) is, as a symmetric bilinear space, a quo-
tient of H(f∗(B)) = f∗(H(B)). But then also H(U) is a quotient of f∗(H(B)).

Corollary: Let F be a symmetric bilinear space over Y such that the class of
F inW (Y ) lies in the image of f∗ :W (X) →W (Y ). Then there is a symmetric
bilinear space G over X such that F is a quotient of f∗(G).

Proof: Write F ⊕M1
∼= f∗(G0)⊕M2 with a symmetric bilinear space G0 over

X and metabolic spaces M1 and M2 over Y . Using the proposition on M2, we
get that F ⊕M1 is a quotient of f∗(G), where G = G0⊕N2 for some metabolic
space N2 over X. Then also F is a quotient of f∗(G).

In fact, the same proofs show that Proposition 1 and its Corollary hold for
every projective scheme Y over X which is flat over X. But in the case at
hand we can make the Corollary more specific:

Theorem 2: Let F be a symmetric bilinear space over Y such that the class
of F in W (Y ) lies in the image of f∗ : W (X) → W (Y ). Then there is a
symmetric bilinear space G over X and a vector bundle Z over X such that F
is a quotient of f∗(G) by f∗(Z)(−1).

Proof: By the Corollary to Proposition 1, there is a symmetric bilinear space G
over X such that F is a quotient of f∗(G). Let the diagram at the beginning of
this section be a presentation of E := f∗(G) as an extension of F . As E comes
from X, we have R1f∗(E(−1)) = 0. It follows that also R1f∗(V

∨(−1)) = 0
and R1f∗(U∨(−1)) = 0. From the latter fact it follows that f∗(U∨(−1)) is a
vector bundle over X. We let Z be the dual bundle, so that Z∨ = f∗(U

∨(−1)).
From the canonical morphism f∗(f∗(U

∨(−1))) → U∨(−1) we get a morphism
f∗(Z∨)(1) → U∨. We let α : U → U1 := f∗(Z)(−1) be the dual morphism. By
[A], there is an extension E1 of F by U1 with a corresponding presentation

0 0
↓ ↓

0 → U1 → V1 → F → 0
‖ ↓ ↓

0 → U1 → E1 → V∨
1 → 0

↓ ↓
U∨
1 = U∨

1

↓ ↓
0 0
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Projective Line Bundles 17

a commutative diagram

0 → U → V → F → 0
↓ α ↓ ‖

0 → U1 → V1 → F → 0

a vector bundle W over Y and a commutative diagram

0 → U → E → V∨ → 0
‖ ↑ ↑

0 → U → W → V∨
1 → 0

↓ α ↓ ‖
0 → U1 → E1 → V∨

1 → 0

where the middle row is also exact. From the dual of the former diagram we
get, after taking the tensor product with OY (−1) and taking higher direct
images, the commutative diagram

0 → f∗(F(−1)) → f∗(V
∨(−1)) → f∗(U

∨(−1))
‖ ↑ ↑

0 → f∗(F(−1)) → f∗(V∨
1 (−1)) → f∗(U∨

1 (−1))

→ R1f∗(F(−1)) → R1f∗(V∨(−1)) → R1f∗(U∨(−1)) → 0
‖ ↑ ↑

→ R1f∗(F(−1)) → R1f∗(V
∨
1 (−1)) → R1f∗(U

∨
1 (−1)) → 0

with exact rows. As already mentioned, R1f∗(V
∨(−1)) = 0 and

R1f∗(U
∨(−1)) = 0. Also, R1f∗(U

∨
1 (−1)) = R1f∗(f

∗(Z∨)) = 0. Further-
more, the morphism f∗(U

∨
1 (−1)) → f∗(U

∨(−1)) is, by construction, an
isomorphism. We conclude that R1f∗(V∨

1 (−1)) = 0 and that the morphism
f∗(V

∨
1 (−1)) → f∗(V

∨(−1)) is an isomorphism.
Doing the same with the latter diagram we get the commutative diagram

0 → f∗(U(−1)) → f∗(E(−1)) → f∗(V
∨(−1))

‖ ↑ ↑
0 → f∗(U(−1)) → f∗(W(−1)) → f∗(V∨

1 (−1))
↓ ↓ ‖

0 → f∗(U1(−1)) → f∗(E1(−1)) → f∗(V
∨
1 (−1))

→ R1f∗(U(−1)) → R1f∗(E(−1)) → R1f∗(V
∨(−1)) → 0

‖ ↑ ↑
→ R1f∗(U(−1)) → R1f∗(W(−1)) → R1f∗(V

∨
1 (−1)) → 0

↓ ↓ ‖
→ R1f∗(U1(−1)) → R1f∗(E1(−1)) → R1f∗(V∨

1 (−1)) → 0
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18 Jón Kr. Arason

with exact rows. Using that R1f∗(E(−1)) = 0, R1f∗(V
∨
1 (−1)) = 0, and that

the morphism f∗(V∨
1 (−1)) → f∗(V∨(−1)) is an isomorphism, we see from the

upper half of this diagram that R1f∗(W(−1)) = 0.
The fact that R1f∗(U

∨(−1)) = 0, in particular locally free, implies that the
Serre duality morphism R1f∗(ω ⊗ U(1)) → f∗(U∨(−1))∨ is an isomorphism.
The same applies to U1 instead of U . As the morphism f∗(U

∨
1 (−1)) →

f∗(U
∨(−1)) is, by construction, an isomorphism, it follows that the induced

morphism R1f∗(ω ⊗ U(1)) → R1f∗(ω ⊗ U1(1)) is an isomorphism. But
ω ⊗ U(1) = f∗(L) ⊗ U(−1) and correspondingly for U1, and modulo the ten-
sor product with idf∗(L) the morphism R1f∗(ω ⊗ U(1)) → R1f∗(ω ⊗ U1(1))
is the morphism R1f∗(U(−1)) → R1f∗(U1(−1)) in the diagram. Hence
this is an isomorphism. Using that, and the fact that R1f∗(W(−1)) = 0
and R1f∗(V

∨
1 (−1)) = 0, we see from the lower half of the diagram that

R1f∗(E1(−1)) = 0. By Proposition 4 in Section 1.1, it follows that E1 = f∗(G1)
for some symmetric bilinear space G1 over X.

Section 1.3

In this section we shall show that every element in W (Y ) is represented by a
symmetric bilinear space over Y that has relatively simple higher direct images.

The natural short exact sequence 0 → ω → f∗(S)(−1) → OY → 0, representing
an extension of the trivial vector bundle OY by ω, played a major role in the
proof of Proposition 1 in Section 1.1. We next construct something similar for
symmetric bilinear spaces.
Using 1

2 times the natural morphism (S ⊗ S∨) × (S ⊗ S∨) → L ⊗ L∨ ∼= OX

induced by the exterior product, we get a regular symmetric bilinear form δ on
S ⊗ S∨. (The corresponding quadratic form on S ⊗ S∨ ∼= End(S) then is the
determinant.) In what follows S ⊗ S∨ carries this form.
We have natural morphisms ε : OX → S ⊗ S∨, mapping 1 to the element e
corresponding to the identity on S, and σ : S ⊗ S∨ → OX , the contraction
(corresponding to the trace). Furthermore, the composition σ ◦ ε is 2 times the
identity on OX . It follows that S ⊗S∨ is, as a vector bundle, the direct sum of
OXe and T , where T is the kernel of σ. Computations show that this is even a
decomposition of S ⊗ S∨ as a symmetric bilinear space (and that the induced
form on OX is the multiplication). We let −ψ0 be the induced form on T . In
what follows T carries the form ψ0.
From the dual morphism π∨ : OY → f∗(S∨)(1) to the morphism π :
f∗(S)(−1) → OY of the natural short exact sequence we get a morphism

f∗(S)(−1) = f∗(S)(−1)⊗OY →

f∗(S)(−1)⊗ f∗(S∨)(1) = f∗(S)⊗ f∗(S∨) = f∗(S ⊗ S∨)

(Easy computations show that this makes f∗(S)(−1) to a Lagrangian of
f∗(S ⊗ S∨).) This morphism, composed with the projection f∗(S ⊗ S∨) ∼=
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Projective Line Bundles 19

f∗(OXe) ⊕ f∗(T ) → f∗(T ), gives us a morphism κ : f∗(S)(−1) → f∗(T ).
Computations show that κ ◦ ι : ω → f∗(T ) makes ω a totally isotropic sub-
bundle of f∗(T ) and that κ : f∗(S)(−1) → f∗(T ) makes f∗(S)(−1) the cor-
responding orthogonal subbundle. (By the way, the image of ω under the
morphism f∗(S)(−1) → f∗(S ⊗ S∨) is, in fact, contained in f∗(T ).) Compu-
tations now show that the induced bilinearform on Coker(ι) ∼= OY is precisely
the multiplication. This mean that

0 0
↓ ↓

0 → ω
ι

−→ f∗(S)(−1)
π

−→ OY → 0

‖
yκ

yπ∨

0 → ω
κ◦ι
−→ f∗(T )

κ∨
◦ψ

−→ f∗(S∨)(1) → 0
yι∨◦κ∨

◦ψ

yι∨

ω∨ = ω∨

↓ ↓
0 0

is a presentation of the bilinear space f∗(T ) as an extension of the unit bilinear
space OY by ω. Here we have written ψ for the morphism f∗(ψ0).

For every symmetric bilinear space F over Y we get through the tensor product
a presentation

0 0
↓ ↓

0 → ω ⊗F → f∗(S)⊗F(−1) → F → 0
‖ ↓ ↓

0 → ω ⊗F → f∗(T )⊗F → f∗(S∨)⊗F∨(1) → 0
↓ ↓

ω∨ ⊗F∨ = ω∨ ⊗F∨

↓ ↓
0 0

of f∗(T )⊗F as an extension of F by ω ⊗F .

We now assume that k ≥ −1 and R1f∗(F(j)) = 0 for every j > k. We have
ω = f∗(L)(−2), hence

R1f∗(ω
∨ ⊗F∨(k)) = R1f∗(f

∗(L∨)⊗F∨(k + 2)) = L∨ ⊗R1f∗(F
∨(k + 2)) = 0

as F∨ ∼= F . With the Theorem on Cohomology and Base Change it follows that
the coherent OX -module W := f∗(ω

∨ ⊗ F∨(k)) is locally free. The canonical
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20 Jón Kr. Arason

morphism f∗(W) = f∗(f∗(ω
∨ ⊗ F∨(k))) → ω∨ ⊗ F∨(k) induces a morphism

f∗(W)(−k) → ω∨ ⊗ F∨. Using the dual morphism ω ⊗ F → f∗(W∨)(k) on
the extension of F by ω ⊗F described above, we get an extension

0 0
↓ ↓

0 → f∗(W∨)(k) → V1 → F → 0
‖ ↓ ↓

0 → f∗(W∨)(k) → E1 → V∨
1 → 0

↓ ↓
f∗(W)(−k) = f∗(W)(−k)

↓ ↓
0 0

of F by f∗(W∨)(k) and a commutative diagram

0 → F → V∨
1 → f∗(W)(−k) → 0

‖ ↓ ↓
0 → F → f∗(S∨)⊗F∨(1) → ω∨ ⊗F∨ → 0

Now, R1f∗(f
∗(W)(j − k)) = W ⊗R1f∗(OY (j − k)) = 0 for j − k ≥ −1. From

the exactness of the upper row of this diagram it therefore follows at once that
also R1f∗(V∨

1 (j)) = 0 for j > k. For j = k we get, as f∗(f
∗(W)) = W, the

commutative diagram

W → R1f∗(F(k)) → R1f∗(V
∨
1 (k)) → 0

↓ ‖ ↓
f∗(ω

∨ ⊗F∨(k)) → R1f∗(F(k)) → R1f∗(f
∗(S∨)⊗F(k + 1)) →

with exact rows. As R1f∗(f
∗(S∨)⊗F∨(k + 1)) = S∨ ⊗R1f∗(F

∨(k + 1)) = 0,
the connecting morphism f∗(ω

∨ ⊗ F∨(k)) → R1f∗(F(k)) is an epimorphism.
But, by construction, the morphism W → f∗(ω

∨ ⊗ F∨(k)) is the identity, so
the connecting morphism W → R1f∗(F(k)) must also be an epimorphism. It
follows that even R1f∗(V∨

1 (k)) = 0.
As R1f∗(f

∗(W∨)(k+ j)) = W∨ ⊗R1f∗(OY (k+ j)) = 0 for k+ j ≥ −1, it now
follows from the exactness of the sequence 0 → f∗(W∨)(k) → E1 → V∨

1 → 0
that R1f∗(E1(j)) = 0 for j > k and that also R1f∗(E1(k)) = 0 if k ≥ 0.
By induction on k downwards to k = 0 we get:

Theorem 1: Any symmetrical bilinear space F over Y is equivalent to a
symmetric bilinear space E over Y with R1f∗(E(j)) = 0 for every j ≥ 0
Remark: We know that it follows that f∗(E(j)) is locally free for every j ≥ 0.
Using the duality, it follows that f∗(E(j)) = 0 and R1f∗(E(j)) is locally free
for every j ≤ −2

In the case k = −1 also we had R1f∗(V
∨
1 (−1)) = 0 (but not necessar-

ily R1f∗(E1(−1)) = 0). But by the remark above we have in that case
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that f∗(ω ⊗F) = 0 and R1f∗(ω ⊗ F) is locally free. As ω(1)⊗ f∗(W) =
f∗(L⊗W)(−1), we have f∗(ω(1)⊗ f∗(W)) = 0 and R1f∗(ω(1)⊗ f∗(W)) = 0.
From the tensor product of the short exact sequence 0 → F → V∨

1 →
f∗(W)(1) → 0 and ω it therefore follows that also f∗(ω ⊗ V∨

1 ) = 0 and that
R1f∗(ω ⊗ V∨

1 ) is isomorphic to R1f∗(ω ⊗ F), hence locally free. We therefore
have:

Theorem 1, cntd.: Furthermore, E can be chosen to have a totally isotropic
subbundle U , isomorphic to f∗(A)(−1) for some vector bundle A over X, such
that R1f∗((E/U)(−1)) = 0 and f∗(ω ⊗ (E/U)) = 0 and such that R1f∗(ω ⊗
(E/U)) is locally free.
Remark: By Proposition 3 in Section 1.1 there is then a short exact sequence
0 → f∗(C)(1) → E/U → f∗(B) → 0 with vector bundles B and C over X. If X
is affine then it even follows that E/U ∼= f∗(B)⊕ f∗(C)(1).

Section 1.4

In this section we study higher direct images of the special representatives of
elements in W (Y ) gotten in the last section. We also study what happens for
these under extensions like those considered in Theorem 2 in Section 1.2.

An NN-pair is a pair ((E , χ), (A, µ)), where (E , χ) is a symmetric bilinear space
over Y , A is a vector bundle over X, and µ : f∗(A)(−1) → E is an embedding
of f∗(A)(−1) in E as a totally isotropic subbundle of (E , χ) such that for the
cokernel ρ : E → E we have R1f∗(E(−1)) = 0, f∗(ω ⊗ E) = 0 and R1f∗(ω ⊗ E)
is locally free. Note that it follows that R1f∗(E) = 0, hence R1f∗(E(j)) = 0 for
every j ≥ 0.
There is an obvious notion of isomorphisms of NN-pairs. Furthermore, we can
define the direct sum of two NN-pairs in an obvious way. It follows that we
have the Grothendieck group of isomorphism classes of NN-pairs. We denote
it here simply by K(NN).
Forgetting the second object in an NN-pair we get a morphism K(NN) →
W (X) of groups. By Theorem 1 in Section 1.3 this is an epimorphism.

Let ((E , χ), (A, µ)) be an NN-pair and let ρ : E → E be a cokernel of µ. We write
C = f∗(E(−1)) and B = R1f∗(ω⊗E). Then C and B are vector bundles over X
and there is a natural short exact sequence 0 → f∗(C)(1) → E → f∗(B) → 0.
As f∗(A)(−1) is a totally isotropic subbundle of (E , χ), there is a unique mor-
phism τ : E → f∗(A∨)(1) making the diagram

E
ρ

−→ Eyχ
yτ

E∨ µ∨

−→ f∗(A∨)(1)
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commutative. Using also the dual diagram, we get the commutative diagram

0 → f∗(A)(−1)
µ

−→ E
ρ

−→ E → 0
yτ∨

yχ
yτ

0 → E
∨ ρ∨

−→ E∨ µ∨

−→ f∗(A∨)(1) → 0

with exact rows, the second row being the dual of the first one.

We have f∗(E(−1)) = C andR1f∗(E(−1)) = 0. Using the dual of the short exact

sequence 0 → f∗(C)(1) → E → f∗(B) → 0, we see that f∗(E
∨
(−1)) = 0 and

that we can write R1f∗(E
∨
(−1)) = L∨ ⊗ C∨. Twisting the last diagram above

and taking higher direct images, we therefore get the commutative diagram

0 → f∗(E(−1)) → C → L∨ ⊗A → R1f∗(E(−1)) → 0
y∼= ↓ ↓

y∼=

0 → f∗(E
∨(−1)) → A∨ → L∨ ⊗ C∨ → R1f∗(E

∨(−1)) → 0

with exact rows.

We denote by α : C → L∨ ⊗ A the connecting morphism in the upper row
and by ε : C → A∨ the second vertical morphism. Then, by Serre duality, the
connecting morphism in the lower row is −1L∨ ⊗ α∨ : A∨ → L∨ ⊗ C∨ and the
third vertical morphism is 1L∨ ⊗ ε∨ : L∨ ⊗ A → L∨ ⊗ C∨. The exactness of

the diagram is therefore seen to mean that
[
α
ε

]
: C → (L∨ ⊗ A) ⊕ A∨ is an

embedding of C in (L∨⊗A)⊕A∨ as a Lagrangian of the hyperbolic L∨-valued

symmetric bilinear space
(
(L∨ ⊗A)⊕A∨,

[
0
1

1
0

])
.

Let ((E , χ), (A, µ)) be an NN-pair and let Z be a vector bundle over X. Let
(E1, χ1) be an extension of (E , χ) by f∗(Z)(−1) with presentation

0 0
↓ ↓

0 → f∗(Z)(−1)
ι

−→ V
π

−→ E → 0

‖
yκ

yπ∨
◦χ

0 → f∗(Z)(−1) −→ E1
κ∨

◦χ1
−→ V∨ → 0

y
yι∨

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0
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From Proposition 1 in Section 1.1 it follows at once that any extension of
f∗(A)(−1) by f∗(Z)(−1) can be written as f∗(A1)(−1) for some vector bundle
A1 over X. It then comes from a unique extension

0 → Z
ιA−→ A1

πA−→ A → 0

of vector bundles over X. Taking the pull-back of

f∗(A)(−1)
yµ

V
π

−→ E

we therefore get an exact commutative diagram

0 0
↓ ↓

0 → f∗(Z)(−1)
f∗(ιA)(−1)

−→ f∗(A1)(−1)
f∗(πA)(−1)

−→ f∗(A)(−1) → 0

‖
yµV

yµ

0 → f∗(Z)(−1)
ι

−→ V
π

−→ E → 0
y

yρ

E = E
↓ ↓
0 0

uniquely determined up to an isomorphism of A1. As f∗(Z)(−1) is a totally
isotropic subbundle of (E1, χ1) and the quotient f∗(A)(−1) is a totally isotropic
subbundle of (E , χ), it is clear that the composition µ1 = κ◦µV : f∗(A1)(−1) →
E1 is an embedding of f∗(A1)(−1) in E1 as a totally isotropic subbundle of
(E1, χ1).

Taking the push-out of

V
ρ◦π
−→ Eyκ

E1
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we now get an exact commutative diagram

0 0
↓ ↓

0 → f∗(A1)(−1)
µV

−→ V
ρ◦π
−→ E → 0

‖
yκ

yλ

0 → f∗(A1)(−1)
µ1
−→ E1

ρ1
−→ E1 → 0

yι∨◦κ∨
◦χ1

yσ

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

From the right hand column in this diagram we get, using our hypotheses on
E , that R1f∗(E1(−1)) = 0, f∗(ω⊗E1) = 0 and R1f∗(ω⊗E1) is locally free. (In
fact, R1f∗(ω ⊗ E1) is isomorphic to R1f∗(ω ⊗ E).) So ((E1, χ1), (A1, µ1)) is an
NN-pair.

In this situation we say that the NN-pair ((E1, χ1), (A1, µ1)) is an extension of
the NN-pair ((E , χ), (A, µ)) by Z.

Let the NN-pair ((E1, χ1), (A1, µ1)) be an extension of the NN-pair
((E , χ), (A, µ)). We keep the notations from above and extend them in
the obvious way. In particular, we have the short exact sequence

0 → Z
ιA−→ A1

πA−→ A → 0

of vector bundles over X. Furthermore, by twisting and taking higher direct
images, the right hand column of the third big diagram induces a short exact
sequence

0 → C
ιC−→ C1

πC−→ Z∨ → 0

of vector bundles over X.

We have τ1◦λ◦ρ◦π = τ1◦ρ1◦κ = µ∨
1 ◦χ1◦κ = µ∨

V ◦κ
∨◦χ1◦κ = µ∨

V ◦π
∨◦χ◦π =

f∗(π∨
A)(1) ◦ µ

∨ ◦ χ ◦ π = f∗(π∨
A)(1) ◦ τ ◦ ρ ◦ π. As ρ ◦ π is an epimorphism,

it follows that τ1 ◦ λ = f∗(π∨
A)(1) ◦ τ . We also have f∗(ι∨A)(1) ◦ τ1 ◦ ρ1 =

f∗(ι∨A)(1)◦µ
∨
1 ◦χ1 = f∗(ι∨A)(1)◦µ

∨
V ◦κ∨ ◦χ1 = ι∨ ◦κ∨ ◦χ1 = σ ◦ρ1. As ρ1 is an

epimorphism, it follows that f∗(ι∨A)(1) ◦ τ1 = σ. This shows that the diagram

0 → E
λ

−→ E1
σ

−→ f∗(Z∨)(1) → 0
yτ

yτ1 ‖

0 → f∗(A∨)(1)
f∗(π∨

A
)(1)

−→ f∗(A∨
1 )(1)

f∗(ι∨
A
)(1)

−→ f∗(Z∨)(1) → 0
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is commutative. Twisting by −1 and taking higher direct images, we therefore
get the commutative diagram

0 → C
ιC−→ C1

πC−→ Z∨ → 0
yε

yε1 ‖

0 → A∨
π∨

A−→ A∨
1

ι∨
A−→ Z∨ → 0

with exact rows.
We have the commutative diagram

0 → f∗(A)(−1)
µ

−→ E
ρ

−→ E → 0
xf∗(πA)(−1)

xπ ‖

0 → f∗(A1)(−1)
µV

−→ V
ρ◦π
−→ E → 0

‖
yκ

yλ

0 → f∗(A1)(−1)
µ1
−→ E1

ρ1
−→ E1 → 0

with exact rows. Twisting it by −1 and looking at the connecting morphisms
for the higher direct images, we get the commutative diagram

C
α

−→ L∨ ⊗A

‖
x1L∨⊗πA

C −→ L∨ ⊗A1yιC ‖

C1
α1−→ L∨ ⊗A1

It follows that the diagram

C
α

−→ L∨ ⊗A
yιC

x1L∨⊗πA

C1
α1−→ L∨ ⊗A1

is commutative.

We close this section with an example that we shall need later.

Let C be a vector bundle over X. We shall use the natural short exact sequence

0 → f∗(L ⊗ C)(−1)
ι

−→ f∗(S ⊗ C)
π

−→ f∗(C)(1) → 0
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of vector bundles over Y .

Let η : f∗(C)(1) → f∗(L∨ ⊗ C∨)(1) be a morphism. As morphisms from
f∗(S ⊗ C) are uniquely given by their direct images and as f∗(ι

∨) is an isomor-
phism, there is a unique morphism ξ : f∗(S ⊗ C) → f∗(S∨ ⊗ C∨) such that
ι∨ ◦ ξ = η ◦ π. Clearly, we then have ι∨ ◦ ξ ◦ ι = 0.
Conversely, if ξ : f∗(S⊗C) → f∗(S∨⊗C∨) is a morphism such that ι∨◦ξ◦ι = 0
then, by the exactness of the natural sequence, there is a unique morphism
η : f∗(C)(1) → f∗(L∨ ⊗ C∨)(1) such that ι∨ ◦ ξ = η ◦ π.

Let ξ : f∗(S ⊗ C) → f∗(S∨ ⊗ C∨) be given. Let η be the corresponding
morphism, so ι∨ ◦ ξ = η ◦ π. Also let η′ be the morphism corresponding to ξ∨,
so ι∨ ◦ ξ∨ = η′ ◦ π.
Write E = f∗(S ⊗ C)⊕ f∗(S∨ ⊗ C∨), A = L⊗ C, E = f∗(C)(1)⊕ f∗(S∨ ⊗ C∨),

µ =
[
ι
0

]
: f∗(A)(−1) → E , and ρ =

[
π
0

0
1

]
: E → E . Then the sequence

0 → f∗(A)(−1)
µ

−→ E
ρ

−→ E → 0

is exact. Furthermore, f∗(E(−1)) = C, R1f∗(f
∗(A)(−2)) = L∨ ⊗ A = C and

the connecting morphism for this sequence twisted by −1 is 1C .

Let χ =
[
ξ
1

1
0

]
: E → E∨. Then χ is an isomorphism. Let τ = [η ι∨] : E →

f∗(A∨)(1) and τ ′ =
[
(η′)∨

ι

]
: f∗(A)(−1) → E

∨
. Then we have the commutative

diagram

0 → f∗(A)(−1)
µ

−→ E
ρ

−→ E → 0
yτ ′

yχ
yτ

0 → E
∨ ρ∨

−→ E∨ µ∨

−→ f∗(A∨)(1) → 0

where the bottom row is the dual of the top one. Twisting by −1 and taking
higher direct images, we get the commutative diagram

C
1

−→ Cyf∗(η(−1))

yR1f∗((η
′)∨(−1))

L∨ ⊗ C∨ −1
−→ L∨ ⊗ C∨

for the connecting morphisms. This means that R1f∗((η
′)∨(−1)) =

−f∗(η(−1)).
There are unique morphisms ε, ε′ : C → L∨⊗C∨ such that η = f∗(ε)(1) and η′ =
f∗(ε′)(1). Then f∗(η(−1)) = ε and R1f∗((η

′)∨(−1)) = R1f∗(f
∗((ε′)∨)(−2)) =

1L∨⊗(ε′)∨. So we have 1L∨⊗(ε′)∨ = −ε, which is equivalent to ε′ = −1L∨⊗ε∨.
We have ξ∨ = ξ if and only if η′ = η. But η′ = η means exactly that ε′ = ε.
We conclude that ξ∨ = ξ if and only if 1L∨ ⊗ ε∨ = −ε. In that case the
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computations above show that ((E , χ), (L ⊗ C, µ)) is an NN-pair such that the
corresponding α is the identity on C and the corresponding ε is the given one.

Section 1.5

In this section we show how to construct extensions with given behaviour, as
in Section 1.4, for the higher direct images. (This turned out to be the hardest
part of all.)

Let ((E , χ), (A, µ)) be an NN-pair. We keep the notations from Section 1.4.

Let A1 and C1 be vector bundles over X and let
[
α1

ε1

]
: C1 → (L∨ ⊗A1)⊕A∨

1

be an embedding of C1 in (L∨ ⊗ A1) ⊕ A∨
1 as a Lagrangian of the hyperbolic

L∨-valued symmetric bilinear space
(
(L∨ ⊗A1)⊕A∨

1 ,
[
0
1

1
0

])
. Assume also

that there is a vector bundle Z over X and short exact sequences

0 → Z
ιA−→ A1

πA−→ A → 0

and
0 → C

ιC−→ C1
πC−→ Z∨ → 0

such that the diagrams

0 → C
ιC−→ C1

πC−→ Z∨ → 0
yε

yε1 ‖

0 → A∨
π∨

A−→ A∨
1

ι∨
A−→ Z∨ → 0

and
C

α
−→ L∨ ⊗A

yιC
x1L∨⊗πA

C1
α1−→ L∨ ⊗A1

are commutative.
We want to show that there is an extension ((E1, χ1), (A1, µ1)) of ((E , χ), (A, µ))
giving rise to this data as in Section 1.4.

As R1f∗(E(−1)) = 0, we have ExtY (f
∗(Z∨)(1), E) = ExtY (f

∗(Z∨), E(−1)) ∼=
ExtX(Z∨, f∗(E(−1))) = ExtX(Z∨, C). We therefore have a unique extension

0 → E
λ

−→ E1
σ

−→ f∗(Z∨)(1) → 0

such that f∗(E1(−1)) = C1 and such that the given sequence 0 → C → C1 →
Z∨ → 0 is precisely the sequence of direct images for the twisted sequence
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0 → E(−1) → E1(−1) → f∗(Z∨) → 0. It is clear that R1f∗(E(−1)) = 0 implies
that also R1f∗(E1(−1)) = 0. Looking at the tensor product 0 → ω ⊗ E →
ω⊗E1 → ω(1)⊗ f∗(Z∨) → 0, we also get at once that f∗(ω⊗E1) ∼= f∗(ω⊗E)
and R1f∗(ω⊗E1) ∼= R1f∗(ω⊗E). In particular, f∗(ω⊗E1) = 0 and R1f∗(ω⊗E1)
is locally free.
Instead of E and the given sequence 0 → C → C1 → Z∨ → 0 we could have
used f∗(A∨)(1) and the dual of the given sequence 0 → Z → A1 → A → 0
in the construction above. But we know that the resulting extension then
is represented by 0 → f∗(A∨)(1) → f∗(A∨

1 )(1) → f∗(Z∨)(1) → 0. By hy-
pothesis, ExtX(Z∨, ε) maps the class of 0 → C → C1 → Z∨ → 0 to the
class of 0 → A∨ → A∨

1 → Z∨ → 0. As f∗(τ(−1)) = ε, it follows that
ExtY (f

∗(Z∨(1), τ) maps the class of 0 → E → E1 → f∗(Z∨)(1) → 0 to the
class of 0 → f∗(A∨)(1) → f∗(A∨

1 )(1) → f∗(Z∨)(1) → 0. So we have a com-
mutative diagram

0 → E
λ

−→ E1
σ

−→ f∗(Z∨)(1) → 0
yτ

yτ1 ‖

0 → f∗(A∨)(1)
f∗(π∨

A
)(1)

−→ f∗(A∨
1 )(1)

f∗(ι∨
A
)(1)

−→ f∗(Z∨)(1) → 0

Here τ1 is not uniquely determined. But using that the diagram

0 → C
ιC−→ C1

πC−→ Z∨ → 0
yε

yε1 ‖

0 → A∨
π∨

A−→ A∨
1

ι∨
A−→ Z∨ → 0

is commutative and that HomY (f
∗(Z∨)(1), f∗(A∨)(1)) ∼= HomX(Z∨,A∨), we

see that we can choose τ1 uniquely in such a way that f∗(τ1(−1)) = ε1.

We now use the results on “Special extensions” in the appendix to this section.
By hypothesis,

0 → f∗(A)(−1)
µ

−→ E
ρ

−→ E → 0

corresponds to α : C → L∨ ⊗A. Of course, we let

0 → f∗(A1)(−1)
µ1
−→ E1

ρ1
−→ E1 → 0

correspond to α1 : C1 → L∨ ⊗A1. We also let

0 → f∗(A1)(−1)
µV

−→ V
ρV
−→ E → 0

correspond to α1 ◦ ιC : C → L∨ ⊗A1 and

0 → f∗(A)(−1)
µ̃V

−→ Ṽ
ρ̃V
−→ E1 → 0
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correspond to (1L∨ ⊗ πA) ◦ α1 : C1 → L∨ ⊗ A. Using λ and f∗(πA)(−1) we
then get the commutative diagrams

0 → f∗(A1)(−1)
µV

−→ V
ρV
−→ E → 0

‖
yκ

yλ

0 → f∗(A1)(−1)
µ1
−→ E1

ρ1
−→ E1 → 0

yf∗(πA)(−1)

yκ̃ ‖

0 → f∗(A)(−1)
µ̃V

−→ Ṽ
ρ̃V
−→ E1 → 0

and
0 → f∗(A1)(−1)

µV

−→ V
ρV
−→ E → 0

yf∗(πA)(−1)

yπ ‖

0 → f∗(A)(−1)
µ

−→ E
ρ

−→ E → 0

‖
yπ̃

yλ

0 → f∗(A)(−1)
µ̃V

−→ Ṽ
ρ̃V
−→ E1 → 0

We also get that the compositions κ̃ ◦ κ and π̃ ◦ π are equal.

We know the kernel and cokernel of λ. Using that we can extend the bottom
half of the last diagram to the exact commutative diagram

0 0
↓ ↓

0 → f∗(A)(−1)
µ

−→ E
ρ

−→ E → 0

‖
yπ̃

yλ

0 → f∗(A)(−1)
µ̃V

−→ Ṽ
ρ̃V
−→ E1 → 0

yσ◦ρ̃V
yσ

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

Taking the composition of the right hand half of this diagram with the diagram
defining τ1 and using the exactness of the sequence

0 → E
∨ χ−1

◦ρ∨

−→ E
µ∨

◦χ
−→ f∗(A∨)(1) → 0
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noting that τ ◦ ρ = µ∨ ◦ χ, we get the exact commutative diagram

0 0
↓ ↓

0 → E
∨ χ−1

◦ρ∨

−→ E
τ◦ρ
−→ f∗(A∨)(1) τo 0

‖
yπ̃

yf∗(π∨

A
)(1)

0 → E
∨ π̃◦χ−1

◦ρ∨

−→ Ṽ
τ1◦ρ̃V
−→ f∗(A∨

1 )(1) → 0
yσ◦ρ̃V

yf∗(ι∨
A
)(1)

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

In particular, the middle row is exact. Using that χ−1 ◦ ρ∨ ◦ τ∨ = µ, we now
have the commutative diagram

0 → f∗(A)(−1)
µ̃V

−→ Ṽ
ρ̃V
−→ E1 → 0

yτ∨ ‖
yτ1

0 → E
∨ π̃◦χ−1

◦ρ∨

−→ Ṽ
τ1◦ρ̃V
−→ f∗(A∨

1 )(1) → 0

with exact rows. Twisting by −1 and taking higher direct images we get the
commutative diagram

C1
(1L∨⊗πA)◦α1

−→ L∨ ⊗A
yε1

y1L∨⊗ε∨

A∨
1

α′

−→ L∨ ⊗ C∨

where α′ is a connecting morphism. Now ε∨◦α1 = ι∨C ◦ε
∨
1 and (1L∨ ⊗ε∨1 )◦α1 =

−(1L∨ ⊗ α∨
1 ) ◦ ε1, so this commutativity means that α′ ◦ ε1 = −(1L∨ ⊗ (α1 ◦

ιC)
∨) ◦ ε1. Twisting the commutative diagram

0 → E
∨ χ−1

◦ρ∨

−→ E
τ◦ρ
−→ f∗(A∨)(1) τo 0

‖
yπ̃

yf∗(π∨

A
)(1)

0 → E
∨ π̃◦χ−1

◦ρ∨

−→ Ṽ
τ1◦ρ̃V
−→ f∗(A∨

1 )(1) → 0

by −1 and taking higher direct images, we get the commutative diagram

A∨
−1L∨⊗α∨

−→ L∨ ⊗ C∨

yπ∨

A ‖

A∨
1

α′

−→ L∨ ⊗ C∨
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for the connecting morphisms. As α = (1L∨ ⊗πA)◦α1 ◦ ιC , this commutativity
means that α′◦π∨

A = −(1L∨⊗(α1◦ιC)∨)◦π∨
A. It follows from the second diagram

in this section that [ε1 π∨

A
] is an epimorphism. From both these commutativity

relations for α′ we therefore get that α′ = −1L∨ ⊗ (α1 ◦ ιC)
∨.

We now look at the dual sequence

0 → f∗(A1)(−1)
ρ̃∨
V
◦τ∨

1−→ Ṽ∨ ρ◦χ−1
◦π̃∨

−→ E → 0

By Serre duality, the result just proved means that the connecting morphism
for this short exact sequence twisted by −1 equals α1 ◦ ιC . By our results on
“Special extensions” it follows that there is a unique isomorphism Ṽ∨ ∼= V such
that ρ̃∨V ◦ τ∨1 corresponds to µV and ρ ◦ χ−1 ◦ π̃∨ corresponds to ρV . Using the
commutativity of a diagram above, we also see that then χ−1 ◦ π̃∨ corresponds
to π.

We use this to identify Ṽ with V∨. Then τ1 ◦ ρ̃V = µ∨
V , π̃ ◦ χ−1 ◦ ρ∨ = ρ∨V and

π̃◦χ−1 = π∨. The last equation means that π̃ = π∨ ◦χ. Using that, the second
one reduces to π∨ ◦ ρ∨ = ρ∨V , which we already knew.

We next do something similar for E1. Using the diagram defining κ, instead of
the one defining π̃, we first get the exact commutative diagram

0 0
↓ ↓

0 → f∗(A1)(−1)
µV

−→ V
ρV
−→ E → 0

‖
yκ

yλ

0 → f∗(A1)(−1)
µ1
−→ E1

ρ1
−→ E1 → 0

yσ◦ρ1
yσ

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

Using the exactness of the sequence

0 → E
∨

1

ρ̃∨
V−→ V

µ̃∨

V−→ f∗(A∨)(1) → 0 cr

noting that τ ◦ ρV = τ ◦ ρ ◦ χ−1 ◦ π̃∨ = µ∨ ◦ π̃∨ = µ̃∨
V , we get the exact
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commutative diagram

0 0
↓ ↓

0 → E
∨

1

ρ̃∨
V−→ V

τ◦ρV
−→ f∗(A∨)(1) → 0

‖
yκ

yf∗(π∨

A
)(1)

0 → E
∨

1

κ◦ρ̃∨
V−→ E1

τ1◦ρ1
−→ f∗(A∨

1 )(1) → 0
yσ◦ρ1

yf∗(ι∨
A
)(1)

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

Using that κ ◦ ρ̃∨V ◦ τ∨1 = κ ◦ µV = µ1, we now have the commutative diagram

0 → f∗(A1)(−1)
µ1
−→ E1

ρ1
−→ E1 → 0

yτ∨

1 ‖
yτ1

0 → E
∨

1

κ◦ρ̃∨
V−→ E1

τ1◦ρ1
−→ f∗(A∨

1 )(1) → 0

with exact rows. Twisting and taking higher direct images we now get the
commutative diagram

C1
α1−→ L∨ ⊗A1yε1

y1L∨⊗ε∨1

A∨
1

α′

1−→ L∨ ⊗ C∨
1

where α′
1 is a connecting morphism. As (1L∨ ⊗ε∨1 )◦α1 = −(1L∨ ⊗α∨

1 )◦ε1, this
commutativity means that α′

1 ◦ ε1 = −(1L∨ ⊗α∨
1 ) ◦ ε1. Using the commutative

diagram
0 → E

∨

1

ρ̃∨
V−→ V

τ◦ρV
−→ f∗(A∨)(1) → 0

‖
yκ

yf∗(π∨

A
)(1)

0 → E
∨

1

κ◦ρ̃∨
V−→ Ṽ

τ1◦ρ1
−→ f∗(A⊤

1 l)(1) → 0

we get the commutative diagram

A∨
−(1L∨⊗α∨

1 )◦π∨

A−→ L∨ ⊗ C1 dualyπ∨

A ‖

A∨
1

α′

1−→ L∨ ⊗ C∨
1

for connecting morphisms. So α′
1 ◦ π

∨
A = −(1L∨ ⊗ α∨

1 ) ◦ π
∨
A. As before we get

from these two commutativity relations for α′
1 that α′

1 = −1L∨ ⊗ α∨
1 .
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We now look at the dual sequence

0 → f∗(A1)(−1)
ρ∨1 ◦τ∨

1−→ E∨
1

ρ̃V◦κ∨

−→ E1 → 0

By Serre duality, the result just proved means that the connecting morphism
for this short exact sequence twisted by −1 equals α1. It follows that there is
a unique isomorphism χ1 : E1 → E∨

1 making the diagram

0 → f∗(A1)(−1)
µ1
−→ E1

ρ1
−→ E1 → 0

‖
yχ1 ‖

0 → f∗(A1)(−1)
ρ∨1 ◦τ∨

1−→ E∨
1

ρ̃V◦κ∨

−→ E1 → 0

commutative.
We have κ̃∨◦µV = κ̃∨◦ ρ̃∨V ◦τ

∨
1 = ρ∨1 ◦τ

∨
1 . Furthermore, κ̃◦κ = π̃◦π = π∨◦χ◦π

is symmetric, hence ρ̃V ◦κ∨ ◦ κ̃∨ = ρ̃V ◦ κ̃ ◦κ = ρ1 ◦κ = λ ◦ ρV . So the diagram

0 → f∗(A1)(−1)
µV

−→ V
ρV
−→ E → 0

‖
yκ̃∨

yλ

0 → f∗(A1)(−1)
ρ∨1 ◦τ∨

1−→ E∨
1

ρ̃V◦κ∨

−→ E1 → 0

is commutative. Because of the uniqueness of κ it follows that χ−1
1 ◦ κ̃∨ = κ,

i.e., κ̃ = κ∨ ◦ χ∨
1 . We then get ρ̃V ◦ κ∨ ◦ χ∨

1 = ρ̃V ◦ κ̃ = ρ1. We also have
χ∨
1 ◦µ1 = χ∨

1 ◦κ◦µV = χ∨
1 ◦κ◦ρ̃

∨
V ◦τ

∨
1 = (ρ̃V ◦κ∨◦χ1)

∨◦τ∨1 . As ρ̃V ◦κ
∨◦χ1 = ρ1

by the above, we get χ∨
1 ◦ µ1 = ρ∨1 ◦ τ∨1 . This shows that the diagram defining

χ1 remains commutative if we replace χ1 by χ∨
1 . As χ1 is uniquely determined,

this means that χ∨
1 = χ1. So (E1, χ1) is a symmetric bilinear space. Also note

that we can now write the identity κ̃ = κ∨ ◦ χ∨
1 as κ̃ = κ∨ ◦ χ1.

It is now easy to check that ((E1, χ1), (A1, µ1)) is an NN-pair extending
((E , χ), (A, µ)) in the way we wanted.

Appendix on Special Extensions

Let X be a vector bundle over Y such that R1f∗(X (−1)) = 0. Let M be a
vector bundle over X. Then HomY (X , f

∗(M)(−1)) = 0 and there is a nat-
ural isomorphism ExtY (X , f

∗(M)(−1)) ∼= HomX(f∗(X (−1)),L∨ ⊗M). This
isomorphism maps the class of a short exact sequence

0 → f∗(M)(−1) → Y → X → 0

to the connecting morphism

f∗(X (−1)) → R1f∗(f
∗(M)(−2)) = L∨ ⊗M
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for the short exact sequence twisted by −1.
There are various ways to prove this. One way is to use the natural short exact
sequence

0 → ω(1)⊗ f∗(f∗(X (−1))) → f∗(f∗(X )) → X → 0

given by Proposition 2 in Section 1.1 and the corresponding long exact sequence
of higher Ext groups.
Note that HomY (X , f

∗(M)(−1)) = 0 implies that a short exact sequence as
above, representing a given element in ExtY (X , f

∗(M)(−1)), is determined up
to a unique isomorphism of Y.

Let X1 and M1 be another pair satisfying the hypotheses above. Let the short
exact sequence

0 → f∗(M)(−1) → Y → X → 0

correspond to α : f∗(X (−1)) → L∨ ⊗M and let

0 → f∗(M1)(−1) → Y1 → X1 → 0

correspond to α1 : f∗(X1(−1)) → L∨ ⊗M1. Let ξ : X → X1 and µ : M → M1

be morphisms making the diagram

f∗(X (−1))
α

−→ L∨ ⊗M
yf∗(ξ(−1))

y1⊗µ

f∗(X1(−1))
α1−→ L∨ ⊗M1

commutative. Then there is a unique morphism η : Y → Y1 making the
diagram

0 → f∗(M)(−1) → Y → X → 0
yf∗(µ)(−1)

yη
yξ

0 → f∗(M1)(−1) → Y1 → X1 → 0

commutative.
Indeed, the uniqueness follows from the fact that HomY (X , f

∗(M1)(−1)) = 0.
The existence follows from the following commutative diagram.

0 → f∗(M)(−1) → Y → X → 0
yf∗(µ)(−1) ↓ ‖

0 → f∗(M1)(−1) → Z → X → 0

‖
y∼= ‖

0 → f∗(M1)(−1) → Z1 → X → 0

‖ ↓
yξ

0 → f∗(M1)(−1) → Y1 → X1 → 0
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Here the top part is gotten by a push-out and the bottom one by pull-back.
The middle part comes from the fact that both short exact sequences have the
same image in HomX(f∗(X (−1)),L∨ ⊗M1).

Section 2.1

In the affine case, Ranicki has defined the Witt group of formations and proved
that it is isomorphic to his group L1. (Cf [R].) Here we shall extend his defini-
tion to our case.

We shall use the duality functor ⊤ on vector bundles on X given by E⊤ =
L∨ ⊗ E∨. But, in fact, what we do makes sense in any exact category with
duality.

A (non-singular) formation is a triple ((F , ϕ), (A, α), (C, γ)), where (F , ϕ) is a
symmetric bilinear space and α : A → F and γ : C → F are lagrangians of
(F , ϕ). Sometimes we simply say that (F , α, γ) is a formation.
There is an obvious notion of isomorphisms of formations. Furthermore, we
can define the direct sum of two formations in an obvious way. It follows that
we have the Grothendieck group of isomorphism classes of formations.

For any vector bundle Z we have the formation (H⊤(Z), (Z,
[
1
0

]
), (Z⊤,

[
0
1

]
)).

Ranicki uses direct sums of formations with these special formations to define
when the formations are stably isomorphic. As short exact sequences are not
necessarily split in our case, we have to use something more general than direct
sums.

Let ((F , ϕ), (A, α), (C, γ)) be a formation and let Z be a vector bundle. We
shall define what it means that a formation ((F1, ϕ1), (A1, α1), (C1, γ1)) is an
extension of ((F , ϕ), (A, α), (C, γ)) by Z.
The first condition is that (F1, ϕ1) is an extension of (F , ϕ) by Z. This means
that there is a commutative diagram

0 0
↓ ↓

0 → Z
ι

−→ V
π

−→ F → 0

‖
yκ

yπ⊤
◦ϕ

0 → Z
κ◦ι
−→ F1

κ⊤
◦ϕ1

−→ V⊤ → 0
yι⊤◦κ⊤

◦ϕ1

yι⊤

Z⊤ = Z⊤

↓ ↓
0 0
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with exact rows and columns. In a relaxed language this says that Z is a totally
isotropic subbundle of F1 with the orthogonal subbundle V and that F is the
quotient of V by Z with the induced form.

The second condition is thatA1 is an extension ofA by Z and C1 is an extension
of Z⊤ by C. So we have short exact sequences

0 → Z
ιA−→ A1

πA−→ A → 0

and

0 → C
ιC−→ C1

πC−→ Z⊤ → 0

Finally, these extensions are to be compatible in the following sense. The
embedding A1 → F1 factors as α1 = κ ◦ α with a morphism α : A1 → V such
that the diagram

0 → Z
ιA−→ A1

πA−→ A → 0

‖
yα

yα

0 → Z
ι

−→ V
π

−→ F → 0

is commutative. Also, the embedding C → F factors as γ = π ◦ γ with a
morphism γ : C → V such that the diagram

0 → C
ιC−→ C1

πC−→ Z⊤ → 0
yγ

yγ1 ‖

0 → V
κ

−→ F1
ι⊤◦κ⊤

◦ϕ1
−→ Z⊤ → 0

is commutative.

As we know the cokernels of α and γ1, we can, if the conditions above hold,
extend the last two diagrams to the commutative diagrams

0 0
↓ ↓

0 → Z
ιA−→ A1

πA−→ A → 0

‖
yα

yα

0 → Z
ι

−→ V
π

−→ F → 0yα⊤
◦ϕ◦π

yα⊤
◦ϕ

A⊤ = A⊤

↓ ↓
0 0
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and

0 0
↓ ↓

0 → C
ιC−→ C1

πC−→ Z⊤ → 0
yγ

yγ1 ‖

0 → V
κ

−→ F1
ι⊤◦κ⊤

◦ϕ1
−→ Z⊤ → 0

yγ⊤

1 ◦ϕ1◦κ

yγ⊤

1 ◦ϕ1

C⊤
1 = C⊤

1

↓ ↓
0 0

with exact rows and columns. It then follows that we also have the commutative
diagrams

0 → A1
α1−→ F1

α⊤

1 ◦ϕ1

−→ A⊤
1 → 0

‖
xκ

xπ⊤

A

0 → A1
α

−→ V
α⊤

◦ϕ◦π
−→ A⊤ → 0

yπA

yπ ‖

0 → A
α

−→ F
α⊤

◦ϕ
−→ A⊤ → 0

and

0 → C
γ

−→ F
γ⊤

◦ϕ
−→ C⊤ → 0

‖
xπ

xι⊤C

0 → C
γ

−→ V
γ⊤

1 ◦ϕ1◦κ
−→ C⊤

1 → 0
yιC

yκ ‖

0 → C1
γ1
−→ F1

γ⊤

1 ◦ϕ1

−→ C⊤
1 → 0

with exact rows.

Let (F , ϕ) be a symmetric bilinear space and let γ : C → F be a lagrangian of
(F , ϕ). We then might say that ((F , ϕ), (C, γ)) is a metabolic pair. Now let C1
be a vector bundle and let ιC : C → C1 be a morphism. Then there is, by [A], a
metabolic pair ((F1, ϕ1), (C1, γ1)), uniquely determined up to an isomorphism
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by the conditions that there is a commutative diagram

0 → C
γ

−→ F
γ⊤

◦ϕ
−→ C⊤ → 0

‖
xπ

xι⊤C

0 → C
γ

−→ V
γ⊤

1 ◦ϕ1◦κ
−→ C⊤

1 → 0
yιC

yκ ‖

0 → C1
γ1
−→ F1

γ⊤

1 ◦ϕ1

−→ C⊤
1 → 0

with exact rows and that κ⊤ ◦ ϕ1 ◦ κ = π⊤ ◦ ϕ ◦ π.
Now assume that we have a short exact sequence

0 → C
ιC−→ C1

πC−→ Z⊤ → 0

Then we can compute the kernels and cokernels of the vertical morphisms in
the double diagram above. It easily follows that (F1, ϕ1) is an extension of
(F , ϕ) by Z as in the definition above.
Now assume that α : A → F is also a lagrangian of (F , ϕ). Taking the “inverse
image” in V of the subbundle A of F we get a commutative diagram

0 → Z
ιA−→ A1

πA−→ A → 0

‖
yα

yα

0 → Z
ι

−→ V
π

−→ F → 0

with exact rows. Letting α1 = κ ◦ α, one then checks that α1 : A1 → F1 is a
lagrangian of (F1, ϕ1). It then easily follows that by this we have constructed
an extension ((F1, ϕ1), (A1, α1), (C1, γ1)) of ((F , ϕ), (A, α), (C, γ)) by Z.
We conclude that there is a natural bijective correspondence between isomor-
phism classes of extensions of ((F , ϕ), (A, α), (C, γ)) by Z and isomorphism
classes of extensions of Z⊤ by C. Of course, the latter correspond to isomor-
phism classes of extensions of C⊤ by Z.
This makes it rather easy to work with extensions of formations. For exam-
ple, if C1 is the trivial extension of Z⊤ by C, then ((F1, ϕ1), (A1, α1), (C1, γ1))
is the trivial extension of ((F , ϕ), (A, α), (C, γ)) by Z, i.e., the direct sum of

((F , ϕ), (A, α), (C, γ)) and (H⊤(Z), (Z,
[
1
0

]
), (Z⊤,

[
0
1

]
)). In particular, we get

nothing new in the affine case.
Using the concept of the direct sum of two extensions of C⊤, we get the following
lemma as another application.

Lemma 1: Let ((F1, ϕ1), (A1, α1), (C1, γ1)) be an extension of of
((F , ϕ), (A, α), (C, γ)) by Z1 and let ((F2, ϕ2), (A2, α2), (C2, γ2)) be an ex-
tension of of ((F , ϕ), (A, α), (C, γ)) by Z2. Then there is an extension
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((F3, ϕ3), (A3, α3), (C3, γ3)) of ((F , ϕ), (A, α), (C, γ)) by Z1 ⊕Z2 such that the
original extension of ((F , ϕ), (A, α), (C, γ)) are intermediate extensions in the
natural way.

We shall say that two formations are stably isomorphic if they have a common
extension. From the lemma it follows that this induces an equivalence relation
on the set of isomorphism classes of formations. This equivalence relation is
clearly compatible with direct sums.
By a remark above this coincides with Ranicki’s definition in the affine case.

We now say, as Ranicki, that two formations (F1, α1, γ1) and (F2, α2, γ2) are
equivalent if there is a space M1 with lagrangians u1, v1 and w1 and a space
M2 with lagrangians u2, v2 and w2 such that the direct sum

(F1, α1, γ1)⊕ (M1, u1, v1)⊕ (M1, v1, w1)⊕ (M2, u2, w2)

is stably isomorphic to the direct sum

(F2, α2, γ2)⊕ (M2, u2, v2)⊕ (M2, v2, w2)⊕ (M1, u1, w1)

It is easy to check that this is an equivalence relation on formations. The direct
sum induces a group structure on the set of equivalence classes. (We shall see,
in a moment, how additive inverses are found.) The resulting group is called
the Witt group of formations and is denoted M(X) or, if we want to stress the
duality functor used, M⊤(X).
In the affine case Ranicki shows that M(X) is isomorphic to L1(X), so we
might as well have used the notation L1(X) in our case.

An equivalent way to defineM(X) is to consider first the Grothendieck group of
isomorphism classes of formations and then to consider M(X) as the qoutiont
group gotten by demanding two formations to have the same class if one is
an extension of the other and that the direct sum (F , α, β)⊕ (F , β, γ) has the
same class as (F , α, γ).
In this formulation it is clear that the class of (F , α, α) is trivial and then that
the class of (F , γ, α) is the inverse of the class of (F , α, γ).

Section 2.2

A formation is said to be split if it is isomorphic to a formation of the type

(
(A⊕A⊤,

[
0

1

1

0

]
), (A,

[
1

0

]
), (C,

[
α

ε

]
)

)

In this section we study split formation and define a Witt group of these.
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A split-formation (over X) is a quadruple (A, C, α, ε), where A and C are vector

bundles over X and α : C → A and ε : C → A⊤ are morphisms such that
[
α
ε

]
is

an embedding of C in A⊕A⊤ as a Lagrangian of the hyperbolic ⊤-symmetric
bilinear space H⊤(A). This means that

0 → C

[
α
ε

]

−→ A⊕A⊤
[ε⊤ α⊤]
−→ C⊤ → 0

is a short exact sequence.
There is an obvious notion of isomorphisms of split-formations. Furthermore,
we can define the direct sum of two formations in an obvious way. It follows
that we have the Grothendieck group of isomorphism classes of split-formations.

Let (A, C, α, ε) and (A1, C1, α1, ε1) be split-formations. We say that
(A1, C1, α1, ε1) is an extension of (A, C, α, ε) (by Z) and that (A, C, α, ε)
is a quotient of (A1, C1, α1, ε1) if there is a vector bundle Z over X and short
exact sequences

0 → Z
ιA−→ A1

πA−→ A → 0

and
0 → C

ιC−→ C1
πC−→ Z⊤ → 0

such that the diagrams

0 → C
ιC−→ C1

πC−→ Z⊤ → 0
yε

yε1 ‖

0 → A⊤
π⊤

A−→ A⊤
1

ι⊤
A−→ Z⊤ → 0

and
C

α
−→ AyιC

xπA

C1
α1−→ A1

are commutative.

We say that a split-formation (A, C, α, ε) is elementary if α is an isomorphism.
Indeed, we then may (up to an isomorphism of split-formations) assume that
C = A and α = 1A. The fact that (A, C, α, ε) is a split-formation then sim-
ply means that ε⊤ = −ε, i.e., ε is ⊤-skew-symmetric. It follows that the

“elementary” automorphism
[
1
ε

0
1

]
of H⊤(A) takes the canonical lagrangian

[
1
0

]
: A → A⊕A⊤ to

[
α
ε

]
.

We say that a split-formation (A, C, α, ε) is metabolic if it has an elementary ex-
tension. It is clear that a direct sum of metabolic split-formations is metabolic.
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We define the Witt group M spl(X) of split-formations as the Grothendieck
group of split-formations modulo the subgroup generated by metabolic split-
formations.

Proposition 1: If the split-formation (A1, C1, α1, ε1) is an extension of the
split-formation (A, C, α, ε) then the direct sum (A1, C1, α1, ε1)⊕ (A, C, α,−ε) is
metabolic.

Proof: We shall use the notations used in the definition to describe
(A1, C1, α1, ε1) as an extension of (A, C, α, ε). We let Z̃ = A⊤ ⊕ C1 and let

Ã = A1 ⊕A⊕A⊤ ⊕ C1 be the direct sum of A1 ⊕A and Z̃. So ι̃A =

[
0
0

0
0

1
0

0
1

]

and π̃A =
[
1
0

0
1

0
0

0
0

]
. We also let C̃ = Ã and α̃ = 1. We now let

ε̃ =




0 0 −π⊤
A ε1

0 0 −1 0
πA 1 0 −πA ◦ α1

−ε⊤1 0 α⊤
1 ◦ π⊤

A ε⊤1 ◦ α1




Then ε̃ is clearly ⊤-skew-symmetric. (Recall that ε⊤1 ◦ α1 + α⊤
1 ◦ ε1 = 0.) Also

ι̃C =




α1 0
0 α
0 ε
1 ιC




and

π̃C = ι̃⊤A ◦ ε̃ =

[
πA 1 0 −πA ◦ α1

−ε⊤1 0 α⊤
1 ◦ π⊤

A ε⊤1 ◦ α1

]

Easy computations then show that

ε̃ ◦ ι̃C =




ε1 0
0 −ε
0 0
0 0


 = π̃⊤

A ◦

[
ε1 0
0 −ε

]

and, clearly, π̃A ◦ α̃ ◦ ι̃γ = π̃A ◦ ι̃γ =
[
α1

0
0
α

]
. To show that (Ã, C̃, α̃, ε̃) is an

extension of (A1, C1, α1, ε1)⊕ (A, C, α,−ε) there remains only to show that the
sequence

0 → C1 ⊕ C
ι̃C−→ C̃

π̃C−→ Z̃⊤ → 0

is exact. From the definition of π̃C and the fact that ε̃ ◦ ι̃C equals π̃⊤
A ◦

[
ε1
0

0
−ε

]
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it follows that it is a zero sequence. We now use the commutative diagram

0 0 0
↓ ↓ ↓

0 → C1

[
α1

1

]

−→ A1 ⊕ C1
[1 −α1]
−→ A1 τo 0

ynat.incl.

ynat.incl.

y
[
πA

−ε⊤1

]

0 → C1 ⊕ C
ι̃C−→ C̃

π̃C−→ Z̃⊤ → 0
ynat.proj.

ynat.proj.

y[ε⊤ −ι⊤
C ]

0 → C

[
α
ε

]

−→ A⊕A⊤
[ε⊤ α⊤]
−→ Cδua → 0

↓ ↓ ↓
0 0 0

Obviously, the left hand column and the middle column are exact. Using the
dual of the commutative diagram connecting ε and ε1, one sees that the right
hand column is exact. The top row is clearly exact and the bottom one is exact
by the definition of a split-formation. As the middle row is a zero sequence, it
follows that it is exact too.

As any split-formation is trivially an extension of itself, we have the following
corollary.

Corollary 2: For any split-formation (A, C, α, ε) the direct sum (A, C, α, ε)⊕
(A, C, α,−ε) is metabolic.

It follows that any element in M spl(X) is represented by a split-formation.
It also follows that a split-formation (A, C, α, ε) has trivial class in M spl(X)
if and only if there is a metabolic split-formation (A0, C0, α0, ε0) such that
(A, C, α, ε) ⊕ (A0, C0, α0, ε0) is metabolic. (In fact, it can be shown that
(A, C, α, ε) is metabolic itself.)

Section 2.3

In this section we prove that there is a natural isomorphism from the Witt
group of split-formations to the Witt group of formations. For the proof we
need that 2 is invertible.

A split-formation (A, C, γ+, γ−) gives rise to the formation

(
(A⊕A⊤,

[
0

1

1

0

]
), (A,

[
1

0

]
), (C,

[
γ+

γ−

]
)

)

Going from split-formations to formations in this way clearly induces a mor-
phism of Grothendieck groups of isomorphism classes. It is also trivial to check
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that extensions of split-formations go to extension of formations. If a split-
formation is elementary then we may assume that it is of the type (A,A, 1, γ−)
with a skew-symmetric γ− : A → A⊤. The class of the corresponding formation

(
(A⊕A⊤,

[
0

1

1

0

]
), (A,

[
1

0

]
), (A,

[
1

γ−

]
)

)

is then the difference of the classes of the formations
(
(A⊕A⊤,

[
0

1

1

0

]
), (A,

[
1

0

]
), (A⊤,

[
0

1

]
)

)

and (
(A⊕A⊤,

[
0

1

1

0

]
), (A,

[
1

γ−

]
), (A⊤,

[
0

1

]
)

)

But the automorphism
[

1
γ−

0
1

]
of (A ⊕ A⊤,

[
0
1

1
0

]
) induces an isomorphism

from the former formation to the latter, so the difference of the classes is 0. It
follows that we get a natural morphism M spl(X) →M(X) of Witt groups.

Let ((F , ϕ), (A, α), (C, γ)) be a formation. Then the formation

(
(F ⊕ F ,

[
ϕ

0

0

−ϕ

]
), (C ⊕ A,

[
γ

0

0

α

]
), (F ,

[
1

1

]
)

)

is an extension of ((F , ϕ), (C, γ), (A, α)) by A. Indeed, the quotient of (F ⊕

F ,
[
ϕ
0

0
−ϕ

]
) by the sublagrangian

[
0
α

]
: A → F ⊕F is isomorphic to (F , ϕ) in

an obvious way. We also have the extensions

0 → A

[
0
1

]

−→ C ⊕A
[1 0]
−→ A → 0

and
0 → A

α
−→ F

−α⊤
◦ϕ

−→ A⊤ → 0

of vector bundles and it is trivial check that all this fits together. It follows
that the formation

(
(F ⊕ F ,

[
ϕ

0

0

−ϕ

]
), (F ,

[
1

1

]
), (C ⊕ A,

[
γ

0

0

α

]
)

)

has the same class as ((F , ϕ), (A, α), (C, γ)). As we are assuming that 2 is

invertible, we have the isomorphism
[

1
2

ϕ

1
2

−ϕ

]
from (F ⊕ F ,

[
ϕ
0

0
−ϕ

]
) to (F ⊕

F⊤,
[
0
1

1
0

]
). It follows that the former formation is isomorphic to

(
(F ⊕ F⊤,

[
0

1

1

0

]
), (F ,

[
1

0

]
), (C ⊕ A,

[
1
2
γ

ϕ◦γ

1
2
α

−ϕ◦α

]
)

)
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This is the formation arising from the split-formation

(F , C ⊕ A, [ 1
2
γ 1

2
α] , [ϕ◦γ −ϕ◦α])

It follows that our morphism M spl(X) → M(X) of Witt groups is an epimor-
phism.

We want to show that M spl(X) →M(X) is an isomorphism. By mapping the
formation ((F , ϕ), (A, α), (C, γ)) to the split-formation

(F , C ⊕ A, [ 1
2
γ 1

2
α] , [ϕ◦γ −ϕ◦α])

we clearly get a morphism of Grothendieck groups of isomorphism classes. We
have to check that the defining relations for M(X) map to valid relations in
M spl(X).
We first look at extensions. So let ((F1, ϕ1), (A1, α1), (C1, γ1)) be an extension
of ((F , ϕ), (A, α), (C, γ)) by Z. We use the notations from the definition of such
an extension. Using the short exact sequences

0 → Z
κ◦ι
−→ F1

κ⊤
◦ϕ1

−→ V⊤ → 0

and
0 → C ⊕A1

[
ιC
0

0
1

]

−→ C ⊕A
[πC 0]
−→ Z⊤ → 0

one can see that

(V⊤, C ⊕ A1, [ 12κ
⊤
◦ϕ1◦γ1ιC

1
2
κ⊤

◦ϕ1◦α1] ,
[
γ −α

]
)

is a quotient of
(F1, C1 ⊕A1, [ 12γ1

1
2
α1] , [ϕ1◦γ1 −ϕ1◦α1])

Using the short exact sequence

0 → C

[
γ
ιC

]

−→ F ⊕ C1
[π⊤

◦ϕ −κ⊤
◦ϕ1◦γ1]

−→ V⊤ → 0

and the short exact sequence that we get by adding C to the left hand part of
the short exact sequence

0 → A1

[
πA

γ⊤

1 ◦ϕ1◦α1

]

−→ A⊕ C⊤
1

[−γ⊤
◦ϕ◦α ι⊤

C ]
−→ C⊤ → 0

one can see that the direct sum

(F , C ⊕ A, [ 1
2
γ 1

2
α] , [ϕ◦γ −ϕ◦α])⊕

(
C1, C

⊤
1 , 0, 1

)

is an extension of

(V⊤, C ⊕ A1, [ 12κ
⊤
◦ϕ1◦γ1◦ιC

1
2
κ⊤

◦ϕ1◦α1] ,
[
γ −α

]
)
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As (C1, C
⊤
1 , 0, 1) clearly is an extension of the zero split-formation, we conclude

that
(F1, C1 ⊕A1, [ 12γ1

1
2
α1] , [ϕ1◦γ1 −ϕ1◦α1])

and
(F , C ⊕ A, [ 1

2
γ 1

2
α] , [ϕ◦γ −ϕ◦α])

have the same class in M spl(X).
We now consider the additivity relations which we write as

[(F , ϕ), (A, α), (B, β)] + [(F , ϕ), (B, β), (C, γ)] = [(F , ϕ), (A, α), (C, γ)]

It is easy to see that these are equivalent to the relations

[(F , ϕ), (A, α), (B, β)] + [(F , ϕ), (B, β), (C, γ)] + [(F , ϕ), (C, γ), (A, α)] = 0

and
[(F , ϕ), (A, α), (A, α)] = 0

Writing (G, χ) = (F , ϕ)⊕ (F , ϕ)⊕ (F , ϕ), D = A⊕ B ⊕ C and δ = α⊕ β ⊕ γ,
the left hand side of the former relation is the class of ((G, χ), (D, δ), (D, σ ◦δ)),
where

σ =




0 1F 0
0 0 1F
1F 0 0




In fact, σ is an automorphism of (G, χ). Furthermore, σ3 = 1, hence (σ + 1) ◦
(σ2 − σ + 1) = 1 + 1. As 2 is invertible, it follows that σ + 1 is invertible. The
left hand side of the second relation is of the same type with the automorphism
of (F , ϕ) being the identity.
From these considerations it follows that it now suffices to prove that if α :
A → F is a lagrangian of (F , ϕ) and σ is an automorphism of (F , ϕ) such that
σ + 1 is invertible then the split-formation

(F ,A⊕A, [ 1
2
σ◦α 1

2
α] , [ϕ◦σ◦α −ϕ◦α])

is metabolic. Indeed, it is not too difficult to check that the elementary split-
formation

(
F ⊕A,F ⊕A,

[
1

0

0

1

]
,

[
2ϕ◦(σ−1)◦(σ+1)−1

α⊤
◦ϕ

−ϕ◦α

0

])

is an extension. The corresponding short exact sequences are

0 → A

[
− 1

2
α

1

]

−→ F ⊕A
[1 1

2
α]

−→ F → 0

and

0 → A⊕A

[
1
2
(σ+1)◦α

−1
0
1

]

−→ F ⊕A
[2α⊤

◦ϕ◦(σ+1)−1 0]
−→ A⊤ → 0
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So we now also have a morphism M(X) → M spl(X). By construction, the
composition M(X) → M spl(X) → M(X) is the identity. To show that the
other composition is also the identity it suffices to show that for any split-
formation (A, C, α, ε) the split-formation

(
A⊕A⊤, C ⊕ A,

[
1
2
α

1
2
γ

1
2

0

]
,

[
γ

α

0

−1

])

is an extension. But that is easy.

0 → A⊤

[
0
−1

]

−→ A⊕A⊤ [1 0]
−→ F → 0

and
0 → C

[
1
α

]

−→ C ⊕A
[−α 1]
−→ A → 0

are corresponding short exact sequences.
This all proves that the natural morphism M spl(X) → M(X) of Witt groups
is an isomorphism.

We saw that the formation ((F , ϕ), (C, γ), (A, α)) has the same class as

(
(F ⊕ F ,

[
ϕ

0

0

−ϕ

]
), (C ⊕ A,

[
γ

0

0

α

]
), (F ,

[
1

1

]
)

)

(and this did not depend on 2 being invertible). Changing the order of the
summands in the first two components, we see that this formation is isomorphic
to (

(F ⊕ F ,

[
−ϕ

0

0

ϕ

]
), (A⊕ C,

[
α

0

0

γ

]
), (F ,

[
1

1

]
)

)

But, by the same argument as before, this last formation has the same class
as ((F ,−ϕ), (A, α), (C, γ)). This shows that we can also describe the inverse of
the class of ((F , ϕ), (A, α), (C, γ)) as the class of ((F ,−ϕ), (A, α), (C, γ)).

Conclusion and Remarks

In this concluding section we prove the main result of the paper, the following
theorem.

Theorem: There is a natural exact sequence

W (X) →W (Y ) →M⊤(X)

of Witt groups.
Proof: Because of the results of Section 2.3 we may use M spl

⊤
(X) instead of

M⊤(X).
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Computations in Section 1.4 show that to any NN-pair ((E , χ), (L ⊗ A, µ))
there is associated a split-formation (A, C, α, ε). This clearly gives rise to a
morphism from the Grothendieck group K(NN) of isomorphism classes of NN-
pairs to the Grothendieck group of isomorphism classes of split-formations.
Composing with the natural projection we get a natural morphism K(NN) →

M spl
⊤

(X). The results in Section 1.4 also show that extensions of NN-pairs map
to extensions of split-formations (with the same vector bundle Z).

Now let ((E , χ), (L ⊗ A, µ)) be an NN-pair such that the corresponding split-
formation (A, C, α, ε) is metabolic. Then there is an extension (A1, C1, α1, ε1)
of (A, C, α, ε) with an isomorphism α1. By the result of Section 1.5 there is a
corresponding extension ((E1, χ1), (L⊗A1, µ1)) of ((E , χ), (L⊗A, µ)). But α1

being an isomorphism means exactly that f∗(E1(−1)) = 0 and R1f∗(E1(−1)) =
0. So, by Section 1.1, the space (E1, χ1) comes from X. As (E1, χ1) and (E , χ)
have the same class in W (Y ), it follows that the class of (E , χ) also lies in the
image of W (X) in W (Y ).

Assume now only that the split-formation (A, C, α, ε) corresponding to

((E , χ), (L⊗A, µ)) has trivial class inM spl
⊤

(X). Then there is a metabolic split-
formation (A0, C0, α0, ε0) such that (A, C, α, ε) ⊕ (A0, C0, α0, ε0) is metabolic.
In an example at the end of Section 1.4 we saw, in the present parlance, that
any elementary split-formation is the formation corresponding to an NN-pair.
As quotients of split-formations correspond to quotients of NN-pairs, we con-
clude that any metabolic split-formation comes from an NN-pair. In partic-
ular, there is an NN-pair ((E0, χ0), (L ⊗ A0, µ0)) such that the corresponding
split-formation is (A0, C0, α0, ε0). Then our hypothesis says that the formation
corresponding to ((E , χ), (L⊗A, µ))⊕ ((E0, χ0), (L⊗A0, µ0)) is metabolic. By
the above, it follows that the classes of (E0, χ0) and (E , χ)⊕ (E0, χ0) in W (Y )
both come from W (X). We conclude that the class of (E , χ) in W (Y ) also
comes from W (X).

Now assume, conversely, that ((E , χ), (L ⊗ A, µ)) is an NN-pair such that the
class of (E , χ) inW (Y ) comes fromW (X). Let (A, C, α, ε) be the corresponding
split-formation. From Theorem 2 in Section 1.2 and results in Section 1.4
it follows that there is an extension ((E1, χ1), (L ⊗ A1, µ1)) of ((E , χ), (L ⊗
A, µ)) such that the symmetric bilinear space (E1, χ1) comes from X. Then
the corresponding split-formation is elementary. But that split-formation then
is an extension of (A, C, α, ε) so it follows that (A, C, α, ε) is metabolic.

We have now seen that the natural epimorphism K(NN) → W (Y ) maps the

kernel of our natural morphism K(NN) → M spl
⊤

(X) onto the image of W (X)
in W (Y ). This means that the morphisms K(NN) → W (Y ) and K(NN) →

M spl
⊤

(X) induce a morphismW (Y ) →M spl
⊤

(X) making the sequenceW (X) →

W (Y ) →M spl
⊤

(X) exact.

This finishes the proof of the theorem. Note that we get, as a side result, that
if the formation (A, C, α, ε) has trivial class in M spl

⊤
(X) then it is metabolic.

If the rank 2 vector bundle S over X has a quotient bundle of rank 1 then there
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is a section X → Y . It follows that W (X) → W (Y ) is a monomorphism. In
particular, this holds if Y = P

1
X , the trivial projective line bundle over X.

According to Walter, [W], the natural morphism W (Y ) → M⊤(X) is an epi-
morphism in the case that S has a quotient bundle of rank 1. So in this case
there is a natural short exact sequence

0 →W (X) →W (Y ) →M⊤(X) → 0

We have not yet been able to prove that with the methods of this paper. But
we can handle a special case, the case that X is affine and Y is the trivial
projective line bundle over X. In fact, this was one of our original result, back
in the early 1980’s. As the terminology of that proof is different from what has
been used here, we shall refrain from giving it.
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