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Abstract. This paper is intended to give a survey in the algebraic
theory of quadratic forms over fields of characteristic two. The rela-
tionship between differential forms and quadratics and bilinear forms
over such fields discovered by Kato is used to reduced some problems
on quadratics forms to concrete questions about differential forms,
which in general are easier to handle.
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1 Introduction.

In his historical account on the algebraic theory of quadratic forms (s [Sch ]),
Scharlau remarks that fields of characteristic two have remained the pariahs of
the theory. Nevertheless, as he also mentions right before the above remark (s.
loc. cit.), some aspects of the theory over these fields are more interesting and
richer, because of the interplay of symmetric bilinear and quadratic forms, as
well as both separable and purely inseparable quadratic extensions have to be
considered. The purpose of this brief survey article is to show how these aspects
work, and how some questions related to Milnor’s conjecture for fields with
2 6= 0, can be answered in a more elementary way in the case of characteristic
two.

1Partially supported by Fondecyt 1000392 and Programa Formas Cuadraticas, Universi-

dad de Talca.
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We will focus our attention on the W (F )-module structure of Wq(F ), where
W (F ) is the Witt-ring of a field F with 2 = 0 and Wq(F ) is the Witt-group
of quadratic forms over F (s. [Mi]2, [Sa] and section 2). If I ⊂ W (F ) is the
maximal ideal of W (F ), then we have the graded Witt-ring

grIW (F ) =

∞
⊕

n=0

In/In+1

and the graded grIW (F )- module

grIWq(F ) =

∞
⊕

n=0

InWq(F )/I
n+1Wq(F ).

The structure of this module is explained in sections 3 and 4. Section 3 deals
with the relationship established by Kato between differential forms over F
and symmetric bilinear and quadratic forms. If k∗(F ) denotes Milnor’s graded
k-ring of F , we introduce in section 4 a graded k∗(F )-module, defined by gen-
erators and relations, which describes the graded grIW (F )-module grIWq(F ).
In section 5 we examine the behaviour of this module under certain field ex-
tensions, particularly function field extensions of quadrics defined by Pfister-
forms. As an application of these results we mention, how Knebusch’s degree
conjecture for fields with 2 = 0 follows from them. The results of section 5,
(c.f. (5.10), (5.11), (5.14), (5.16)), cited from [Ar-Ba]3 and [Ar-Ba]4 have not
been published yet, but these manuscripts can be found at the server ”Lin-
ear Algebraic Groups and Related Structures” http://www.mathematik.uni-
bielefeld.de/LAG/.

2 Basic definitions.

Let F be a field of characteristic two. A symmetric bilinear form b : V×V −→ F
defined on an n-dimensional F -vector space V is non-singular if b(x, y) = 0 for
all x ∈ V implies y = 0. (V, b) is anisotropic if b(x, x) 6= 0 for all x 6= 0,
and in this case it is easy to see that (V, b) admits an orthogonal basis (s.
[Mi]2 for example). If a ∈ F ∗ = F \ {0} we will denote by < a > the one
dimensional form axy, and by < a1, · · · , an > (ai ∈ F ∗) the orthogonal sum
< a1 >⊥ · · · ⊥< an > A non singular quadratic form on V is a map q : V −→ F
such that q(λx) = λ2q(x) and bq(x, y) = q(x+ y)− q(x)− q(y) is a symmetric
non singular bilinear form on V . Since bq(x, x) = 0, n must be even. The most
simple non singular quadratic forms over F are the forms ax2 + xy + by2 with
a, b ∈ F (i.e. q : Fe⊕ Ff −→ F, q(e) = a, q(f) = b, bq(e, f) = bq(f, e) =
1 ), which we will denote by [a, b]. Any non singular quadratic form over F is of
the form [a1, b1] ⊥ · · · ⊥ [am, bm]. Scaling a quadratic form q by a ∈ F ∗ means
(aq)(x) = aq(x). This extends to an operation of bilinear forms on quadratic
forms by < a1, · · · an > ·q = a1q ⊥ · · · ⊥ anq. Besides the dimension, the
most simple invariant of a symmetric bilinear form b =< a1, · · · an > is its
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discriminant d(b) = a1 · · · an ∈ F ∗/F ∗2

If q = [a1, b1] ⊥ · · · ⊥ [an, bn] is a
quadratic form the analogue of the discriminant is its Arf-invariant A(q) =
a1b1 + · · ·+ anbn ∈ F/℘F , where ℘F = {a2 − a\a ∈ F}.
One can write [a, b] =< a > [1, ab] if a 6= 0, so that in general one usually
writes a quadratic form q as q =< a1 > [1, b1] ⊥ · · · ⊥< an > [1, bn], and
hence its Arf-invariant is A(q) = b1 + · · ·+ bn ∈ F/℘F (s. [A], [Ba]1, [Sa]). For
quadratic forms (V, q) we have also the Clifford - algebra C(q), which defines

an element w(q) ∈ Br(F ) = Brauer group of F . If q =
m

⊥
1
< ai > [1, bi],

then w(q) =
m
⊗
1

(ai, bi] ∈ Br(F ), where (a, b] denotes the quaternion algebra

F ⊕ Fe⊕ Ff ⊕ Fef with e2 = a, f2 + f = b, ef + fe = e.
A symmetric bilinear form (V, b) is called metabolic if V contains a subspace
W ⊆ V with W = W⊥ (dim W = 1

2 dim V ). Two bilinear forms b1, b2 are
Witt-equivalent if b1 ⊥ m1

∼= b2 ⊥ m2, where m1, m2 are metabolic. The set
of classes W (F ) of symmetric non singular bilinear forms is a ring, additively
generated by the classes < a >, a ∈ F ∗ with relations < a > + < b > =
< a + b > + < ab(a + b) > if a + b 6= 0, < a > + < a > = 0 and
< a > · < b > = < ab >. We denote by IF ⊂ W (F ) the maximal ideal of
even dimensional forms (s. [Mi]2, [Sa] for basic facts on W (F )). A quadratic
form (V, q) is hyperbolic if V contains a totally isotropic subspace W ⊂ V with
dim W = 1

2 dim V . The form [0, 0] = H is the hyperbolic plane and every
hyperbolic space is of the form H ⊥ . . . ⊥ H. The forms q1, q2 are Witt-
equivalent if q1 ⊥ r × H ∼= q2 ⊥ s × H (r, s ≥ 0) and we denote by Wq(F )
the Witt-group of such classes. The action defined above of bilinear forms on
quadratic forms induces a W (F )-module structure on Wq(F ).
IF is additively generated by the 1-fold Pfister forms < 1, a >, a ∈ F ∗,
so that for all n ≥ 1, InF is generated by the n-fold bilinear Pfister forms
≪ a1, · · · , an ≫ = < 1, a1 > ⊗ · · · ⊗ < 1, an >. These ideals define submodules
InF ·Wq(F ) of Wq(F ), which are additively generated by the n-fold quadratic
Pfister forms ≪ a1, · · · an, a |] = ≪ a1, · · · an ≫ ⊗[1, a], ai ∈ F ∗, a ∈ F (s.
[Ba]1, [Sa] for details on these forms).
Thus we have now two filtrations

W (F ) ⊇ IF ⊃ I2F ⊃ · · · ⊃ InF · · ·

Wq(F ) ⊇ IWq(F ) ⊃ I2Wq(F ) ⊃ · · · ⊃ InWq(F ) ⊃ · · ·

and we will be mainly concerned with the quotients InF /I
n+1
F and

InWq(F )/I
n+1Wq(F ) which we denote by I

n

F and InWq(F ) respectively.

One easily checks that dim : I
0

F
∼−→ Z/2Z, d : IF

∼−→ F ∗/F ∗2

and A : I0Wq(F )
∼−→ F/℘F . The main result of [Sa] states that

w : IWq(F )
∼−→ Br(F )2 = 2-torsion part of Br(F ). The surjectivity of

w is a consequence of well-known results on p-algebras for p = 2 (s. [Al]), and
the injectivity is shown in [Sa] by an elementary induction argument (notice
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that the isomorphism IWq(F )
∼→ Br(F )2 is the analogue of Merkurjev’s result

I2F /I
3
F

∼→ Br(F )2 for fields with 2 6= 0).

The higher groups I
n

F and InWq(F ) will be studied in the next section.

3 Differential forms and its relationship to quadratic and bilin-
ear forms

The basic reference for what follows is Kato’s fundamental paper [Ka]1. Let
Ω1

F be the F -vector space generated (over F ) by the symbols da, a ∈ F , with
the relations d(ab) = bda + adb. In particular d(F 2) = 0, and hence the map
d : F −→ Ω1

F is F 2-linear. Let Ωn
F =

∧n
Ω1

F be the F -space of n-differential
forms over F . The map d : F −→ Ω1

F extends to d : Ωn
F −→ Ωn+1

F for all
n ≥ 1 by d(xdx1 ∧ · · · ∧ dxn) = dx∧ dx1 ∧ · · · ∧ dxn. Recall that a 2-basis of F

is a set {ai , i ∈ I} ⊂ F such that the elements {aε =
∏

i ∈ I
aεii , ε = (εi, i ∈

I), εi ∈ {0, 1} and almost all εi = 0} form a F 2-basis of F . If {a1, a2, . . . } is

a 2-basis of F , then the forms
dai1
ai1

∧ . . . ∧ dain
ain

1 ≤ i1 < · · · < in form

a F -basis of Ωn
F . Fixing such a 2-basis, we define

[Ωn
F ]

2 = {
∑

i1<···<in

c2i1···in
dai1
ai1

∧ · · · ∧ dain
ain

, ci1···in ∈ F}

which depends on the choice of the 2-basis. Then in [Ca] it is shown that
the space Zn

F = ker(d : Ωn
F −→ Ωn+1

F ) has a direct-sum decomposition
Zn
F = [Ωn

F ]
2 ⊕ dΩn−1

F .

One now defines a homomorphism
(3.1) C : Zn

F −→ Ωn
F

by

C(
∑

i1<···<in

c2i1···in
dai1
ai1

∧ · · · ∧ dain
ain

+ dη) =
∑

i1<···<in

ci1···in
dai1
ai1

∧ · · · ∧ dain
ain

C obviously does not depend on the choice of the 2-basis and induces an iso-
morphism C : Zn

F /dΩ
n−1
F

∼−→ Ωn
F of abelian groups.

We will call C the Cartier-operator. Let us define now the homomorphism

℘ = C
−1 − 1 : Ωn

F −→ Ωn
F /dΩ

n−1
F , which is given on generators by ℘(xdx1

x1
∧

· · · ∧ dxn

xn
) = (x2 − x)dx1

x1
∧ · · · ∧ dxn

xn
mod dΩn−1

F .
One can define a 2-basis dependent homomorphism ℘ : Ωn

F → Ωn
F as follows.

Fix a 2-basis B = {a1, a2, · · · } of F . Then we set

Documenta Mathematica · Quadratic Forms LSU 2001 · 49–63



Quadratic Forms in Characteristic Two 53

℘

(

∑

i1<···<in

ci1···in
dai1
ai1

∧ · · · ∧ dain
ain

)

=
∑

i1<···<in

(c2i1···in − ci1···in)
dai1
ai1

∧ · · · ∧ dain
ain

.

If for ω =
∑

i1<···<in

ci1···in
dai1
ai1

∧ · · · ∧ dain
ain

we set

ω[2] =
∑

i1<···<in

c2i1···in
dai1
ai1

∧ · · · ∧ dain
ain

,

then ℘ω = ω[2] − ω.
Obviously if we change the 2-basis, the image of ω ∈ Ωn

F under the new ℘-
operator differs from ℘ω by an exact form. We will use this type of operator
in section 5.
Let νF (n) = Ker(℘) and Hn+1(F ) = Coker(℘), so that 0 → νF (n) → Ωn

F

℘→
Ωn

F /dΩ
n−1
F → Hn+1(F ) → 0 is exact. An obvious characterization of νF (n) is

the following

(3.2) Lemma. νF (n) = {ω ∈ Ωn
F \dω = 0, C(ω) = ω}

In [Ka]1 it is shown that νF (n) is additively generated by the pure logarithmic
differentials dx1

x1
∧ · · · ∧ dxn

xn
, which is a direct consequence of lemma 2 in [Ka]2.

Since we will refer frequently to this lemma, we will state it explicitly. Let
B = {ai, i ∈ I} be a 2-basis of F and endow I with a totally ordering. For
any j ∈ I set Fi resp. F≤j for the subfield of F generated over F 2 by the
elements ai with i < j resp. i ≤ j. Endow with the lexicographic ordering
the set

∑

n of functions α : {1, · · ·n} → I with α(i) < α(j) whenever i < j.
Then {daα(1) ∧ · · · ∧ daα(n), α ∈

∑

n} is a F -basis of Ωn
F and for any α ∈

∑

n set Ωn
F,α resp. Ωn

F,<α for the subspace of Ωn
F generated by the elements

daβ(1) ∧ · · · ∧ daβ(n) with β ≤ α resp. β < α. Then Kato’s lemma 2 in [Ka]2
asserts

(3.3) Lemma. Let y ∈ F, α ∈
∑

n and ωα =
daα(1)

aα(1)
∧ · · · ∧ daα(n)

aα(n)
∈ Ωn

F , be

such that

(y2 − y)ωα ∈ Ωn
F,<α + dΩn−1

F .

Then there exist v ∈ Ωn
F,<α and ai ∈ F ∗

α(i), 1 ≤ i ≤ n, with
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yωα = v +
da1
a1

∧ · · · ∧ dan
an

.

It is clear that the last remark above follows immediately from this result,
which we will quote as Kato’s lemma in what follows.

One of the main results of [Ka]1 is the fact that there exist two natural isomor-
phisms

(3.4) αF : νF (n) −→ I
n

F

(3.5) βF : Hn+1(F ) −→ InWq(F )

given on generators by

αF

(

dx1
x1

∧ · · · ∧ dxn
xn

)

= ≪ x1, · · ·xn ≫

βF

(

x
dx1
x1

∧ · · · ∧ dxn
xn

)

= ≪ x1, · · ·xn, x |]

Thus α and β translate many questions on bilinear and quadratic forms to
corresponding problems in differential forms, which some times are easier to
handle, in particular if one is able to choose a suitable 2-basis of the field F .
Nevertheless the use of the isomorphism α can be some times difficult, since
in order to compute α(ω) one must first write ω ∈ νF (n) as a sum of pure
logarithmic differential forms.

4 Milnor’s K-theory.

For any field F Milnor defined in [Mi]1 its K-groups Kn(F ) in a purely al-
gebraic manner as follows (s. also Pfister’s survey [Pf] for more details).
Let K1(F ) be the multiplicative group of F written additively, i.e. l :
F ∗ ∼→ K1(F ), l(ab) = l(a) + l(b) for a, b ∈ F ∗. Set K0(F ) = Z and
Kn(F ) = K1(F )

⊗n/In (n ≥ 2), where In is the subgroup of K1(F )
⊗n gen-

erated by elements of the form l(a1) ⊗ · · · ⊗ l(an) with ai + aj = 1 for some
i 6= j. Denote by l(x1) · · · l(xn) the image of l(x1)⊗· · ·⊗ l(xn). Thus the main
defining relation of these groups is l(a)l(1− a) = 0 in K2(F ) for a 6= 0, 1.

Let kn(F ) = Kn(F )/2Kn(F ) and form the commutative ring k∗(F ) = k0(F )⊕
k1(F ) ⊕ · · · with k0(F ) = Z/2Z, k1(F )

∼→ F ∗/F ∗2

. Milnor defines epimor-
phisms sn : kn(F ) → I

n

F by
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sn(l(a1) · · · l(an)) = ≪ a1, · · · an ≫

and conjectures that they are isomorphisms for all n. If 2=0 in F , then there
are also natural homomorphisms (s. [Ka]1)

d log : kn(F ) −→ νF (n)

given by d log(l(a1) · · · l(an)) =
da1
a1

∧ · · · ∧ dan
an

.

A consequence of Kato’s lemma is that d log is an epimorphism. In [Ka]1 it
is shown that d log is an isomorphism, which combined with the isomorphism
(3.3) gives us the following main result of [Ka]1
(4.1) Theorem (Kato) For any field F with 2=0 there is a commutative

diagram of isomorphisms

kn(F ) d log−−−−−→ νF (n)

�
sn ց

�
ւ αF

I
n

F

The defining relation l(a)l(a − 1) = 0 (a 6= 0, 1) of the groups kn(F ) corre-
sponds in the case 2 6= 0 to the basic fact that the quaternion algebra (a, 1−a)
splits. Here (x, y) denotes the quaternion algebra F ⊕ Fe ⊕ Ff ⊕ Fef, e2 =
x, f2 = y, ef = −fe.

But if 2=0 we do not have such interpretation and the groups kn(F ) are suitable
only to describe symmetric bilinear forms and for quadratic forms, we need
another universal object, which we introduce now. Thus in order to obtain
groups which are appropriate to describe the quotients InWq(F ) by generators
and relations one is led to alter Milnor’s definition of kn taking into account
the basic relations of quaternion algebras over a field with 2=0. This has been
done in [Ar-Ba]1. Let a ∈ F ∗, b ∈ F . The quaternion algebra (a, b] is the
algebra F ⊕Fe⊕Ff ⊕Fef with e2 = a, f2 + f = b and ef + fe = e. It holds
(ax2, b+ y + y2] ∼= (a, b], and (a, b] splits if and only if
a ∈ DF ([1, b]) = {x2 + xy + by2/ x, y ∈ F}, and a 6= 0. Thus the bilinear map

φ : F ∗/F ∗2 × F/℘F −→ Br(F )2, φ(ā, b̄) = (a, b]

satisfies φ(ā, b̄) = 0 iff a ∈ DF ([1, b]). The universal symbol for φ can be

constructed as follows. Let k1(F ) = F ∗/F ∗2

, h1(F ) = F/℘F and set
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h2(F ) =
k1(F )⊗ h1(F )

< l(a)⊗ t(b) a ∈ DF [1, b], a 6= 0 >

(here t(b) is the image of b in h1(F ) = F/℘F ).
Thus one obtains a natural homomorphism

φF : h2(F ) −→ Br(F )2

which is in fact an isomorphism (s. [Ar-Ba]1,[Sa]). On the other hand we also
have a bilinear map

k1(F )× h1(F ) −→ H2(F )

given by (l(a), t(b)) −→ bdaa , which induce a natural homomorphism

d log : h2(F ) −→ H2(F ).

This homomorphism is also an isomorphism (s. loc. cit), so that the group
h2(F ), H

2(F ), Br(F )2, IW q(F ) are all isomorphic and we have a commuta-
tive diagram of isomorphisms

(4.2)

h2(F ) φF−→ Br(F )2

d log













y

x













ω

H2(F ) −→βF IW q(F )

Let now

hn(F ) = k1(F )
⊗(n−1) ⊗ h1(F )/Rn

where Rn is the subgroup generated by the elements l(a1)⊗· · ·⊗ l(an−1)⊗ t(b)
such that either ai + ai+1 = 1 for some i or ai ∈ DF [1, b]. We denote by
l(a1) · · · l(an−1)t(b) in hn(F ) the image of l(a1)⊗ · · · ⊗ l(an−1)⊗ t(b).
The natural product kr(F )× hs(F ) → hr+s(F ) induces a k∗(F )-module struc-
ture on h∗(F ) = h1(F )⊕ h2(F )⊕ · · · . There are natural epimorphisms

sn : hn(F ) −→ In−1W q(F )

d log : hn(F ) −→ Hn(F )
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given by

sn(l(a1) · · · l(an−1)t(b)) = ≪ a1, · · · an−1, b |]

d log(l(a1) · · · l(an−1)t(b)) = b
da1
a1

∧ · · · ∧ dan−1

an−1

In [Ar-Ba]1 it is shown that d log is an isomorphism, and combining it with
Kato’s isomorphism βF , we conclude also that sn is an isomorphism. Thus we
have (s. [Ar-Ba]1 and [Ka]1)

(4.3) Theorem. For all n there is a commutative diagram of isomorphisms

hn(F ) sn−−−−−→ In−1W qF (n)

�
d log ց

�
ւ βF

Hn(F )

Remark. The groups kn(F ) and hn(F ) are related through Galois cohomology.
If Fs is a separable closure of F and GF = Gal(Fs/F ) then kn(Fs) is a GF -
module and it holds (s. [Ar-Ba]1)

H0(GF , kn(Fs)) ∼= kn(F )

H1(GF , kn(Fs)) ∼= hn+1(F )

(s. [Ar]).

5 Behaviour of quadratic and bilinear forms under field exten-
sions.

A natural question is the behaviour of the groups Ωn
F , νF (n), H

n+1(F ) resp

I
n

F , I
nWq(F ) under field extensions. Since the isomorphisms αF , βF (s. (3.4)

and (3.5)) are functorial, we only need to study the behaviour of the groups
νF (n), H

n+1(F ), to get information about I
n

F and InWq(F ) (but, as men-
tioned before, care must be taken with the use of αF ). If L/F is a field
extension, we denote by Ωn

L/F the kernel Ker(Ωn
F → Ωn

L), and similarly we

define νL/F (n), H
n+1(L/F ), I

n

L/F and InWq(L/F ). By the remark above
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αF : νL/F (n)
∼→ I

n

L/F and βF : Hn+1(L/F )
∼→ InWq(L/F ). The easiest group

to handle is Ωn
L/F because a suitable choice (if possible!) of a 2-basis of F and

L gives quickly the answer. Since

(5.1) νL/F (n) = νF (n) ∩ Ωn
L/F

one also gets information about νL/F (n) knowing Ωn
L/F . Let us now review

what we know about these kernels for some field extensions.

(i) Purely Transcendental extensions. If L = F (X), X any set of
variables over F , and B is a 2-basis of F , then B∪{X} is a 2-basis of F (X). In
particular Ωn

F → Ωn
F (X) is injective and Ωn

F (X)/F = 0. Hence νF (X)/F (n) = 0.

Using Kato’s lemma (3.3) one can also show Hn+1(F (X)/F ) = 0 (s. [Ar-Ba]3)

(ii) Quadratic extensions. Let L = F (
√
b), b ∈ F\F 2 be a purely insepa-

rable quadratic extension of F . Choose a 2-basis B = {bi, i ∈ I} with b = bi0 ,
some i0 ∈ I. Then {bi, i ∈ I −{i0},

√
b } is a 2-basis of F (

√
b) and it is easy to

check that

(5.2) Ωn
F (

√
b)/F

= Ωn−1
F ∧ db

b

Hence νF (
√
b)/F (n) = {ω ∧ db

b / ω ∈ Ωn−1
F , ω ∧ db

b ∈ νF (n)}. It follows from

(5.11) below that

(5.3) νF (
√
b)/F (n) = {ω ∧ db

b
/ ω ∈ Ωn−1

F and ℘ω ∈ a[Ωn−1
F ]2+

dΩn−2
F +Ωn−2

F ∧ da}

(s. section 3 for the definition of ℘ω).

The corresponding result for I
n
is now (s. (5.12) below for a more general

statement)

(5.4) I
n

F (
√
b)/F =

∑

x∈F 2(b)∗

I
n−1

F < 1, x >

Let us now examine the kernel Hn+1(F (
√
b)/F ).

We have (s.[Ar-Ba]3)

(5.5) Hn+1(F (
√
b)/F ) = Ωn−1

F ∧ db

b

The proof of this fact is again based on Kato’s lemma and runs briefly as
follows. Take B = {b1 = b, b2, · · · } a 2-basis of F (one can assume w.l.o.g.
that B is enumerable or even finite), so that B′ = {

√
b1, b2, · · · } is a 2-basis
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of F (
√
b). ω ∈ Hn+1(F (

√
b)/F ) means ω ∈ Ωn

F and ω = ℘u + dv with

u ∈ Ωn
F (

√
b)
, v ∈ Ωn−1

F (
√
b)
. Order B′ such that

√
b > bi, i = 2, 3 · · · . Since

Ωn−1
F ∧ db

b ⊆ Hn+1(F (
√
b)/F ) we may assume that db does not appear in the

2-basis expansion of ω and let α ∈∑n be the leading index of ω (notice α(i) > 1
for all i = 1, · · ·n), and let β ∈ ∑n be the leading index of u. Using Kato’s
lemma one may assume β ≤ α, and we obtain

(℘uα + ωα)
dbα
bα

≡ dv mod Ωn
F (

√
b),<α

(here dbα
bα

means
dbα(1)

bα(1)
∧ · · · ∧ dbα(n)

bα(n)
)

with v ∈ Ωn−1

F (
√
b)
. Since bα(i) <

√
b for all i, we conclude comparing coefficients

that the leading coefficient of dv is in F , so that uα is defined over F . Thus v
may be taken also in Ωn−1

F . Since Ωn
F (

√
b)/F

= Ωn−1
F ∧ db

b , we conclude in Ωn
F

ωα
dbα
bα

≡ ℘(uα)
dbα
bα

+ dv mod Ωn
F,<α +Ωn−1

F ∧ db

b

Inserting this relation in ω, we can lower the highest index in ω. This concludes
the proof of the claim.
The corresponding kernel for InWq is now

(5.6) InWq(F (
√
b)/F ) = ≪ b≫ In−1Wq(F )

For quadratic separable extensions of F the corresponding kernels are much
easier to compute. Let L = F (z), z2 + z = b (b /∈ ℘F ) be a quadratic
separable extension of F . Since we can alter b by elements of ℘F , we can
assume b ∈ F 2. Thus z ∈ L2 and we see that any 2-basis of F remains a 2-
basis of L. In particular Ωn

L = Ωn
F ⊕ z · Ωn

F . Thus Ω
n
L/F = 0 and also νL/F = 0.

The computation of Hn+1(L/F ) is in this case also very easy. We claim

(5.7) Hn+1(L/F ) = bνF (n)

For the proof, take ω ∈ Hn+1(F ) with ω = ℘u+dv, u ∈ Ωn
L, v ∈ Ωn−1

L and set
u = u1 + zu2, v = v1 + zv2 with ui ∈ Ωn

F , vi ∈ Ωn−1
F . Inserting in the above

equation it follows ℘u2 = dv2 ∈ dΩn−1
F , and this means u2 ∈ νF (n). Moreover

ω = bu
[2]
2 +℘u1 + dv1 in Ωn

F . But u2 ∈ νF (n) implies u
[2]
2 ≡ u2 ( mod dΩn−1

F )
and since b ∈ F 2, it follows ω ≡ bu2 mod (℘Ωn

F + dΩn−1
F ), ie ω = bu2. This

proves (5.7). The corresponding result for quadratic forms is

(5.8) InWq(L/F ) = InF · [1, b]

(iii) Function fields of Pfister forms. Let us fix an anisotropic bilin-
ear n-fold Pfister-form φ =≪ a1, · · · , an ≫. This means that {a1, · · · , an}
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are part of 2-basis of F . Let L = F (φ) be the function field of the quadric

{φ(x, x) = 0}. Thus L = F (X)(
√
T ), where X = {Xµ, µ ∈ Sn} and T =

∑

µ

aµX2
µ, aµ =

n

Π
i = 1

a
µ(i)
i , for all µ ∈ Sn where Sn denotes the set of maps

µ : {1, · · · , n} → {0, 1} whith some µ(i) = 1
In [Ar-Ba]3 it is shown that

(5.9) Ωm
L/F = 0 if m < n

(5.10) Ωm
L/F = Ωm−n

F ∧ da1
a1

∧ · · · ∧ dan
an

if m ≥ n

In particular νL/F (m) = 0 if m < n. The case m ≥ n has been considered in
[Ar-Ba]4 and the result is:

(5.11) νL/F (m) = {ω ∧ da1

a1
∧ · · · ∧ dan

an
/ ω ∈ Ωm−n

F , ℘ω ∈
∑

ε 6= 0 aε[Ωm−n
F ]2+

dΩm−n−1
F +

n
∑

i = 1
Ωm−n−1

F ∧ dai}

If m = n, this result looks nicer, namely

νL/F (n) = {ada1
a1

∧ · · · ∧ dan
an

/ a2 − a ∈ F 2(a1, · · · an)′ }

where F 2(a1, · · · , an)′ ⊂ F 2(a1, · · · an) is the subgroup consisting in the ele-

ments
∑

ε 6= 0 c2εa
ε1
1 · · · aεnn , ε = (ε1, · · · εn) ∈ {0, 1}n.

The corresponding result for bilinear forms is

(5.12) ImL/F =
〈

ψ ≪ x1, · · ·xn ≫/ ψ ∈ I
m−n

F , x1, · · · , xn ∈ F 2(a1, · · · an)∗
〉

The case m = n is particularly interesting, because

I
n

L/F = {≪ x1, · · ·xn ≫/ xi ∈ F 2(a1, · · · an)∗}

implies the following corollary

(5.13) Corollary. Given x1, · · ·xn, y1, · · · yn ∈ F 2(a1, · · · an)∗, then there

exist z1, · · · zn ∈ F 2(a1, · · · an)∗ such that

≪ x1, · · · , xn ≫ + ≪ y1, · · · , yn ≫ ≡≪ z1, · · · zn ≫ mod In+1
F

This is a kind of relative n-linkage property of the subfields F 2(a1, · · · , an)
of F .
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Let us now turn our attention to Hn+1. The main result of [Ar-Ba]3 is

(5.14) Theorem. If φ =≪ a1, · · · an ≫ is anisotropic over F , then

Hn+1(F (φ)/F ) = F
da1
a1

∧ · · · ∧ dan
an

The proof of this fact, although elementary, is rather long. For ω ∈
Hn+1(F (φ)/F ) we get an equation ω = ℘u+dv with u ∈ Ωn

F (φ) and v ∈ Ωn−1
F (φ).

Writing F (φ) = L(y), L = F (Xµ, µ ∈ Sn), y
2 = T =

∑

µ∈Sn

aµX2
µ, aµ =

a
µ(1)
1 · · · aµ(n)n , we choose a 2-basis B = {ai, i ∈ I} of F containing a1, · · · an,

so that B ∪ {Xµ, µ ∈ Sn} is a 2-basis of L and then we fix a 2-basis
B′ = B \ {a1} ∪ {Xµ, µ ∈ Sn} ∪ {y} of F (φ). We order the elements of
this basis such that all Xµ > B \ {a1} and y > Xµ for all µ (i.e. y is maximal).
Using these choices, and Kato’s lemma, one sees that u and v can be chosen free
of differentials of the form dXµ or dy, and moreover that the scalar coefficients
of u and v do not contain y in the 2-basis expansion. Thus u and v are defined

over L = F (Xµ). But since H
n+1(F (φ)/L) = Ωn−1

L ∧ dT by (5.5),we have

(5.15) ω = ℘u+ dv + λ ∧ dT

in Ωn
L, with some λ ∈ Ωn−1

L . Expanding with respect to the 2-basis B∪{Xµ, µ ∈
Sn} and comparing coefficients, one can show that u, v, λ can be taken in
Ωn

F ⊗M and Ωn−1
F ⊗M respectively, where M = F (X2

µ, µ ∈ Sn). This is the
start for long descent argument which leads to an equation ω = ℘u0 + dv0 +
bda1 ∧ · · · ∧ dan whith b ∈ F and u0, v0 defined over F
The corresponding result for quadratic forms is

(5.16) Theorem

InWq(F (φ)/F ) = {≪ a1, · · · , an, a |] / a ∈ F}

As it is shown in [Ar-Ba]2, this result implies the following one. Let
p =≪ a1, · · · , an, a |] be now an anisotropic quadratic n-fold Pfister form and
let F (p) be the function field of the quadric {p(x) = 0}. Then

(5.17) Theorem

Hn+1(F (p)/F ) = {0, p̄}

Remark. One may expect that (5.14) generalizes to the following assertion

Hm+1(F (φ)/F ) = Ωm−n
F ∧ da1

a1
∧ · · · ∧ dan

an
,m ≥ n.
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6 An application:

generic splitting of quadratic forms.
One can develop a generic splitting theory for non singular quadratic forms
over a field with 2 = 0 in the same way as it has been done for the case 2 6= 0
in [Kn]1,2, because in the case 2 = 0 one has:

(i) the analogue of Pfister’s subform theorem (s. [Am], [Ba]3 and [Le])

(ii) The analogue of Knebusch’s norm theorem (s. [Ba]2).

With these tools one defines a generic splitting tower of a non singular quadratic
form q over F and obtains a leading form, which is similar to a Pfister form.
The degree of this form is called the degree of q. Now define I(n) = {q̄ ∈
Wq(F ) /deg q ≥ n}. Then I(n) is a W (F )-submodule of Wq(F ) and one
easily sees that InWq(F ) ⊆ I(n). In [Ar-Ba]3 it is shown that the equality
I(n) = InWq(F ) for all n (over a field of any characteristic) is equivalent with
the statement of theorem (5.17) above for any n. Thus we have

(6.1) Theorem For any field F with 2 = 0, it holds

I(n) = InWq(F )

Remark. The corresponding result for (5.17) over fields with 2 6= 0 has been
announced by Orlov-Vishik-Voevodsky (s. [Pf]).
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