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Abstract. The level question is, whether there exists a field F with
finite square class number q(F ) := |F×/F×2

| and finite level s(F )
greater than four. While an answer to this question is still not known,
one may ask for lower bounds for q(F ) when the level is given.

For a nonreal field F of level s(F ) = 2n, we consider the filtration of
the groups DF (2

i), 0 ≤ i ≤ n, consisting of all the nonzero sums of
2i squares in F . Developing further ideas of A. Pfister, P. L. Chang
and D. Z. Djoković and by the use of combinatorics, we obtain lower
bounds for the invariants qi := |DF (2

i)/DF (2
i−1)|, for 1 ≤ i ≤ n,

in terms of s(F ). As a consequence, a field with finite level ≥ 8 will
have at least 512 square classes. Further we give lower bounds on the
cardinalities of the Witt ring and of the 2-torsion part of the Brauer
group of such a field.

1 Introduction

Let F be a field. The level of F , denoted by s(F ), is defined as the least positive
integer m such that −1 is a sum of m squares in F whenever such an integer
exists and ∞ otherwise. For fields of positive characteristic this invariant can
take only the values 1 and 2, depending just on whether −1 is a square in F or
not. Fields of level ∞, i.e. in which −1 is not a sum of squares, are called real
fields and an equivalent condition to s(F ) = ∞ is the existence of an ordering
on F . Fields of finite level are also called nonreal fields.
For a long time it has been an open question which values exactly occur as
the level of some field. The complete solution to this problem was given by
A. Pfister in [10] and it inspired a big part of later advances in the theory
of quadratic forms, e.g. the development of the theory of Pfister forms and
the investigation of isotropy behaviors of quadratic forms under function field
extensions.
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Pfister proved that the level of a nonreal field is always a power of 2 [10, Satz
4] and further that, if F is any real field (e.g. Q or R) and n ≥ 0, then the
function field of the projective quadric X2

0 + · · ·+X2
2n = 0 over F has level 2n

[10, Satz 5]. These were the first examples of nonreal fields of level greater than
4 and, actually, still no examples of an essentially different kind are known.
In general it remains a difficult problem to determine the level of a given field of
characteristic zero. For an overview on what is known about levels of common
types of fields we refer to [8, Chap. XI, Section 2]. In the same book T. Y. Lam
also mentions the following question [8, p. 333]:

1.1. Level Question. Does there exist a field F such that 4 < s(F ) < ∞

and such that F×/F×2
is finite?

Here and in the sequel we denote by F× the multiplicative group of F and by
F×2

the subgroup of nonzero squares in F . The quotient F×/F×2
is called the

square class group of F . We call q(F ) := |F×/F×2
| the square class number

of F . Another subgroup of F× of importance is the group of nonzero sums of
squares in F , denoted as

∑

F×2
.

Further, for any m ∈ IN we denote by DF (m) the set of elements of F× which
can be written as a sum of m squares over F . Pfister has shown that DF (m)
is a group whenever m is a power of 2 [10, Satz 9]. We thus have the following

group filtration for
∑

F×2
:

F×2
( DF (2) ( DF (4) ( · · · ( DF (2

i−1) ( DF (2
i) ( · · · ⊂

∑

F×2
. (1.2)

If F is nonreal of level 2n then we actually have DF (2
n + 1) =

∑

F×2
= F×.

For i ≥ 1 we define q̄i(F ) := |DF (2
i)/DF (2

i−1)|. Note that the quotients

F×/F×2
and DF (2

i)/DF (2
i−1) are 2-elementary abelian groups. So q(F ) and

q̄i(F ) are each either a power of 2 or ∞.
From (1.2) we see that the inequality

q(F ) ≥ q̄1(F ) · · · q̄n(F ) (1.3)

holds for any n ≥ 1. We will use this in particular when s(F ) = 2n.

While an answer to the level question is still not known, one may look for lower
bounds on |F×/F×2

| in terms of s(F ).
One approach is to search for lower bounds on the invariants q̄i(F ) and to use
then (1.3) to obtain a bound for q(F ). Following this idea, A. Pfister obtained
in [11, Satz 18.d] the following estimate for a field F of level 2n:

q(F ) ≥ 2
n(n+1)

2 . (1.4)

His proof (see also [8, p. 325]) actually shows for 1≤ i≤n that

q̄i(F )≥2n+1−i. (1.5)
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Our standard examples of fields of level 1, 2 and 4, respectively, are the field
of complex numbers C, the finite field F3 and Q2, the field of dyadic numbers.
These examples show that (1.4) is best possible for n ≤ 2. For higher n,
however, P. L. Chang has improved the bound using combinatorics. In [1] he
shows that q(F ) ≥ 128 for a field F of level eight and further that q(F ) ≥ 16· 2

s

s2

for any nonreal field F of level s ≥ 16. His approach has been refined by D. Ž.
Djoković in [2], leading to the following estimate:

q(F ) ≥ 2 ·

s/2
∑

i=1

1

s+ 2− i

(

s+ 1
i

)

>
2s

s
. (1.6)

Their method does not provide any information about the invariants q̄i(F ).

The aim of the present work is to extend this method and to get lower bounds
for the invariants q̄i(F ) with respect to s(F ) which improve (1.5). The com-
binatorial aspect is postponed to the two appendices where a certain coloring
problem for (hyper-)graphs is considered.

We use common notations and results from quadratic form theory; the standard
references are [8] and [12]. (Note that the uncomfortable case of characteristic 2
is implicitly excluded whenever we deal with a field of level greater than 1.)
For isometry of quadratic forms we use the symbol ∼= . For a quadratic form ϕ
over F we denote by DF (ϕ) the set of nonzero elements of F represented by ϕ.
We sometimes say just “form” or “quadratic form” to mean “non-degenerate
quadratic form”.
A diagonalized quadratic form over F with coefficients a1, . . . , am ∈ F× is
denoted by 〈a1, . . . , am〉. An m-fold Pfister form is a quadratic form of the
shape 〈1, a1〉⊗ · · ·⊗ 〈1, am〉 and shortly written as 〈〈a1, . . . , am〉〉; its dimension
is 2m. A neighbor of an m-fold Pfister form π is a quadratic form ϕ which is
similar to a subform of π and of dimension greater than 2n−1. We know that
in this situation ϕ is isotropic if and only of π is hyperbolic.
By W (F ) we denote the Witt ring of F , further by Br(F ) the Brauer group and
by Br2(F ) its 2-torsion part. In (3.1), (5.4) and (5.5) we shall use Milnor K-
theory. For definitions and properties of the Milnor ring k∗F and its homgenous
components kmF (m ≥ 0) we refer to [9] and [3]. However, we use the notation
{a1, . . . , am} instead of ℓ(a1) · · · ℓ(am) for a symbol in kmF . We recall that
this symbol is zero in kmF if and only if the corresponding m-fold Pfister
form 〈〈−a1, . . . ,−am〉〉 over F is hyperbolic (see [3, Main Theorem 3.2]). In
particular, s(F ) = 2n is equivalent to {−1}n 6= 0 and {−1}n+1 = 0 in k∗F .
Everywhere else in the text, {x1, . . . , xn} stands simply for the set of elements
x1, . . . , x1.
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2 Sums of squares in fields

Let F be a field. For an element x ∈ F we define its length (over F ) to be
the least positive integer m such that x can be written as a sum of m nonzero
squares over F if such an integer exists and ∞ otherwise (i.e. if x is not a
nontrivial sum of nonzero squares over F ). We denote this value in IN ∪ {∞}
by ℓF (x), or just by ℓ(x) whenever the context makes clear over which field F
we are working. Obviously ℓF (x) depends on x only up to multiplication by a
nonzero square in F ; in other words, ℓF (x) is an invariant of the square class

xF×2
whenever x 6= 0.

For m ≥ 1, DF (m) is by definition the set {x ∈ F× | ℓ(x) ≤ m}. Our
investigation into lengths of field elements is based on the following famous
result [10, Satz 2]:

2.1. Theorem (Pfister). For any i ≥ 0, DF (2
i) is a subgroup of F×.

A simple proof within the theory of Pfister forms can be found in [12, 4.4.1.
Lemma]. As a consequence of this theorem one gets an inequality linking the
lengths of two elements to the length of their product. We include a proof of
this result, which is [10, Satz 3].

2.2. Lemma. For any x, y ∈ F we have the inequalities ℓ(x+ y) ≤ ℓ(x) + ℓ(y)
and ℓ(xy) ≤ ℓ(x) + ℓ(y)− 1.

Proof: The first inequality is obvious from the definition of the length.
The second inequality is trivial if xy is zero or if x or y is not a sum of squares.
So we may suppose that both x and y are nonzero sums of squares in F . Let
then r be the least nonnegative integer such that x, y ∈ DF (2

r). We will prove
ℓ(xy) < ℓ(x) + ℓ(y) by induction on r. If r = 0 then x, y and xy are squares
in F and the inequality is clear. Suppose now that r > 0. Since DF (2

r) is a
group we know that ℓ(xy) ≤ 2r. So the inequality is clear if 2r < ℓ(x) + ℓ(y).
Otherwise, we may suppose that ℓ(y) ≤ 2r−1. By the choice of r we then have
2r−1 < ℓ(x) ≤ 2r and may therefore write x = a + z with a, z ∈ F× such
that ℓ(a) = 2r−1 and ℓ(z) = ℓ(x) − 2r−1 ≤ 2r−1. By the induction hypothesis
we have ℓ(zy) < ℓ(y) + ℓ(z). As DF (2

r−1) is a group we have ℓ(ay) ≤ 2r−1.
Since xy = ay+zy, using the first inequality of the statement we obtain finally
ℓ(xy) ≤ ℓ(ay) + ℓ(zy) < 2r−1 + ℓ(y) + ℓ(z) = ℓ(x) + ℓ(y). �

According to the definition we gave in the introduction, the level of F is the
length of −1 in F . We may also conclude that ℓF (0) = s(F ) + 1. Therefore,
from any of the inequalities of the lemma we obtain immediately:

2.3. Corollary. For any x ∈ F we have ℓ(x) + ℓ(−x) ≥ s(F ) + 1. �

2.4. Corollary. Let a1, . . . , am∈F×. If the quadratic form 〈a1, . . . , am〉 over
F represents the element x ∈ F nontrivially then ℓ(a1) + · · ·+ ℓ(am) ≥ ℓ(x).
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Proof: If the form 〈a1, . . . , am〉 represents x ∈ F nontrivially, this means that
there are x1, . . . , xm ∈ F , not all zero, such that a1x

2
1 + · · · + amx2

m = x. We
may suppose that xi is nonzero for 1 ≤ i ≤ m′ and zero for m′ < i ≤ m. From
the first inequality of the lemma we obtain ℓ(x) ≤ ℓ(a1x

2
1) + · · ·+ ℓ(am′x2

m′) =
ℓ(a1) + · · ·+ ℓ(am′). �

For i ≥ 0, we say that the elements a1, . . . , am ∈ F× are independent modulo
DF (2

i) if in F×/DF (2
i), considered as an F2-vectorspace, the classes repre-

sented by a1, . . . , am are F2-linear independent.

2.5. Proposition. For i ≥ 2, let a, b ∈ DF (3·2
i−2)\DF (2

i−1) and c ∈ DF (2
i)

such that ℓ(a + b + c) > 2i+1. Then the elements a, b and c of DF (2
i) are

independent modulo DF (2
i−1).

Proof: We have to show that a, b, c, ab, ac, bc, abc /∈ DF (2
i−1). For a and b this

is already given. We put x := a + b + c. Each of the quadratic forms 〈a, b, c〉,
〈a, b, abc〉, 〈1, ab, ac〉 and 〈ac, bc, 1〉 over F represents one of the elements x,
abx, ax and cx and neither of these elements lies in the group DF (2

i+1). We
obtain from (2.4) that each of the numbers ℓ(a) + ℓ(b) + ℓ(c), ℓ(a) + ℓ(b) +
ℓ(abc), 1 + ℓ(ab) + ℓ(ac) and ℓ(ac) + ℓ(bc) + 1 is greater than 2i+1. Since
ℓ(a) + ℓ(b) ≤ 3 · 2i−1 and ab, ac, bc ∈ DF (2

i) we obtain ℓ(c), ℓ(abc) ≥ 2i−1 and
further ℓ(ab) = ℓ(ac) = ℓ(bc) = 2i. �

For the rest of this section we fix a sum of squares

x = x2
1 + · · ·+ x2

l (2.6)

with x1, . . . , xl ∈ F×, x ∈ F and l = ℓF (x). For a subset I ⊂ {1, . . . , l} we
denote xI :=

∑

i∈I x
2
i . If I is not empty then we have ℓ(xI) = |I|.

For a real number z we denote by ⌈z⌉ the least integer ≥ z.

2.7. Theorem. Let I and J be nonempty proper subsets of {1, . . . , l}. Let r
be a nonnegative integer such that xIxJ ∈ DF (2

r). Then the following hold:

(i)
⌈

|I|
2r

⌉

=
⌈

|J|
2r

⌉

, in particular | |I| − |J | | < 2r,

(ii) |I \ J | , |J \ I| ≤ 2 ℓ(xIxJ)− 1 < 2r+1,

(iii) |I ∪ J | − |I ∩ J | ≤ 2r+1 + ℓ(xIxJ)− 1 ≤ 3 · 2r − 1.

Proof: The hypothesis implies that xI and xJ are nonzero elements of F . We
set m := ℓ(xIxJ) and a := xJ

xI
. Then ℓ(a) = m ≤ 2r.

If ν is an integer such that |I| ≤ ν2r then we can write xI as a sum of ≤ ν
elements of DF (2

r). As DF (2
r) is a group, xJ = axI can also be written as

a sum of ≤ ν elements of DF (2
r) which means that |J | = ℓ(xJ) ≤ ν2r. By

symmetry we obtain for any ν ∈ IN that |I| ≤ ν2r if and only if |J | ≤ ν2r.
This shows (i).
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We compute xI∪J = xI\J + xJ = (1+a)xI\J + axI∩J and then substitute
y := (1+a)xI\J and z := axI∩J to have xI∪J = y + z.
If y 6= 0 then we have ℓ(y) ≤ m + |I \ J | by (2.2), but also ℓ(y) ≤ 2r+1

since DF (2
r+1) is a group. If z 6= 0 then (2.2) yields ℓ(z) ≤ m + |I ∩ J | − 1.

Therefore, if at least one of y and z is nonzero then we obtain the inequalities
ℓ(y+ z) ≤ |I|+2m− 1 and ℓ(y+ z) ≤ 2r+1+m+ |I ∩J | − 1. Both inequalities
remain valid in the case y = z = 0, since then necessarily a = −1, whence
ℓ(y+ z) = ℓ(0) = m+1. As |I ∪J | = ℓ(y+ z) we obtain (ii) by symmetry from
the first and (iii) from the second inequality. �

For m = 1 this leads to an observation made in the proof of [1, Theorem 1]:

2.8. Corollary (Chang). Let I and J be as in the theorem. If xI and xJ

lie in the same square class then both sets have the same cardinality and differ
by at most one element. �

2.9. Corollary. Let I and J be as in the theorem with |I| = |J | = 2i, i ≥ 2.
If xI and xJ represent the same class modulo DF (2

i−1) then |I ∩J | ≥ 2i−2+1.

Proof: If xI and xJ lie in the same class modulo DF (2
i−1) then ℓ(xIxJ)≤ 2i−1.

Applying part (iii) of the theorem for r = i − 1 we obtain |I ∪ J | − |I ∩ J | ≤
3 ·2i−1−1. But our hypothesis here gives |I∪J | = 2 ·2i−|I∩J |. This together
implies |I ∩ J | > 2i−2. �

3 The invariants q̄i

For a nonreal field F of level 2n we are going to study the invariants q̄i(F ) =
|DF (2

i)/DF (2
i−1)| for 1 ≤ i ≤ n. In particular, we are interested to know

whether Pfister’s bounds (1.5) can be improved.

First we note that the bound q̄n(F ) ≥ 2, obtained from (1.5) for i = n,
just takes into account that −1 represents a nontrivial class in the group
DF (2

n)/DF (2
n−1). In spite of the simple argument, this bound is optimal

for every n ≥ 1. More precisely, for any n ≥ 1 there is a field F of level 2n such
that F× = DF (2

n−1)∪−DF (2
n−1). The construction of such an example will

be included in a forthcoming paper of the author.
We now turn to consider q̄n−1(F ). For i = n− 1, (1.5) gives q̄n−1(F ) ≥ 4. The
example F = Q2 shows that this bound is optimal for n = 2.

3.1. Theorem. Let F be a field of level 2n with n ≥ 3. Then q̄n−1(F ) ≥ 16.

Proof: Since ℓ(0) = 2n+1 and n ≥ 3, we may choose elements a1, a2, a3 ∈ F×

such that a1 + a2 + a3 = 0 and 2n−2 + 1 ≤ ℓ(ai) ≤ 3 · 2n−3 for i = 1, 2, 3.
Then by (2.5), a1, a2 and a3 are independent modulo DF (2

n−2). Let H be the
subgroup of DF (2

n−1) generated by DF (2
n−2) and the elements a1, a2 and a3.

Since |H/DF (2
n−2)| = 8 it remains to show that H 6= DF (2

n−1).
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To this aim, we will calculate in the Milnor ring k∗F . For i = 1, 2, 3 we
fix the symbols βi := {a1a2a3, ai} and γi := {−a1a2a3,−ai} in k2F . Let
ε denote the element {−1} in k1F . Since s(F ) = 2n we have εn 6= 0. As
a1, a2, a3 ∈ DF (2

n−1) we observe that β1+β2+β3 = {−1, a1a2a3} is annihilated
by εn−2 and that εn−2(βi+γi) = εn−2({a1a2a3,−1}+{−1, ai}+{−1,−1}) = εn

for i = 1, 2, 3.

If εn−2βi 6= 0 in knF for some i then by the above relations we may suppose
that εn−2βi 6= 0 for i = 1, 2 and εn−2β3 6= εn, i.e. εn−2γ3 6= 0. Using
that a1 + a2 + a3 = 0 we compute {−a2,−a3} = {a1,−a2a3} = β1 and equally
{−a1,−a3} = β2. Since none of β1, β2 and γ3 is annihilated by εn−2, the
symbols εn−2{−a2,−a3}, ε

n−2{−a1,−a3} and εn−2{−a1a2,−a3} in knF are
all nonzero. Therefore the Pfister forms 2n−2×〈〈a2, a3〉〉, 2

n−2×〈〈a1, a3〉〉 and
2n−2×〈〈a1a2, a3〉〉 are anisotropic. Further, 2

n−2×〈〈1, a3〉〉 ∼= 2n×〈1〉 is anisotropic
since s(F ) = 2n. This shows that −1,−a1,−a2,−a1a2 /∈ DF (2

n−2×〈〈a3〉〉). As
the group DF (2

n−2×〈〈a3〉〉) contains the subgroup DF (2
n−2) and the element

a3 we conclude that DF (2
n−2×〈〈a3〉〉) ∩ −H = ∅. On the other hand, since

ℓ(−a3) ≤ ℓ(a1)+ℓ(a2) ≤ 3 ·2n−2 we can write −a3 = x+y with x ∈ DF (2
n−1),

y ∈ DF (2
n−2) and obtain −x = y + a3 ∈ DF (2

n−2×〈〈a3〉〉) ∩ −DF (2
n−1).

Now we study the case where εn−2βi = 0 for i = 1, 2, 3. As εn−2βi =
εn−2{−a1a2a3, ai}, this means that the Pfister form 2n−2 × 〈〈a1a2a3,−ai〉〉
is hyperbolic for i = 1, 2, 3. We conclude that H ⊂ DF (2

n−2 × 〈〈a1a2a3〉〉).
As the Pfister form 2n−1 × 〈〈a1a2a3〉〉 ∼= 2n × 〈1〉 is anisotropic we have
−1 /∈ DF (2

n−2 × 〈〈a1a2a3〉〉) and therefore DF (2
n−2 × 〈〈a1a2a3〉〉) ∩ −H = ∅.

Since −a1a2a3 = a21a2 + a22a1 we have ℓ(−a1a2a3) ≤ ℓ(a2) + ℓ(a1) ≤ 3 · 2n−2

and may therefore write −a1a2a3 = x+y with x ∈ DF (2
n−1) and y ∈ DF (2

n−2)
to obtain this time −x = y + a1a2a3 ∈ DF (2

n−2 × 〈〈a1a2a3〉〉) ∩ −DF (2
n−1).

In both cases we have found an element x ∈ DF (2
n−1) \H. �

While the lower bound on q̄n−1 of the last theorem is based upon several
algebraic arguments, the improvement (with respect to (1.5)) for the lower
bounds on q̄i(F ) for 2 ≤ i ≤ n− 2 which we present now, is obtained by
combinatorial reasoning, developed in appendix A.

For integers 0 ≤ k ≤ l we denote by P l
k the set of subsets of {1, . . . , l} with

exactly k elements.

3.2. Theorem. Let F be a field of level 2n. Then

q̄i(F ) ≥







27 for i = n−2 ≥ 3 ,

2(n−i)(2n−i+1)+1 for n+1
2 < i ≤ n−3 ,

2(n−i)(2i−2+1)+1 for 2 ≤ i ≤ n+1
2 .

Proof: We fix elements x1, . . . , x2n ∈ F× such that x2
1 + · · ·+ x2

2n = −1. For
a subset J ⊂ {1, . . . , 2n} we denote xJ :=

∑

j∈J x2
j .

Let 2 ≤ i ≤ n+1
2 . We consider the map f : P2n

2i −→ DF (2
i)/DF (2

i−1) which
sends a 2i-subset J ⊂ {1, . . . , 2n} to the class xJDF (2

i−1). By (2.9), if J1, J2 ∈
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P2n

2i are such that f(J1) = f(J2) then |J1 ∩ J2| ≥ 2i−2 + 1. Therefore (A.8) in
appendix A shows |DF (2

i)/DF (2
i−1)| ≥ |Im(f)| > 2r for r := (n− i)(2i−2+1).

Since DF (2
i)/DF (2

i−1) is a 2-elementary abelian group it must then have at
least 2r+1 elements. This establishes the third case in the statement.
In the remaining cases we cannot apply (A.8) directly for i and m := n. In the
case n+1

2 <i≤n−3 we have n ≥ 8 and i ≥ 5 and define n′ := 2(n− i+ 1) and

i′ := n− i+ 2 = n′

2 + 1. In the case i = n− 2 and n ≥ 5 we set instead n′ := 5

and i′ := 3 = n′+1
2 . Note that in both cases n′ − i′ = n− i.

For 1 ≤ ν ≤ 2n
′

let Jν := {(ν−1) ·2n−n′

+1, . . . , ν ·2n−n′

} and yν := xJν
. This

yields y1 + · · · + y2n′ = −1 and ℓ(yν) = |Jν | = 2n−n′

for 1 ≤ ν ≤ 2n
′

. Now

we consider the map f ′ : P2n
′

2i′
−→ DF (2

i)/DF (2
i−1) which sends a 2i

′

-subset

N ⊂ {1, . . . , 2n
′

} to the class (
∑

ν∈Nyν)DF (2
i−1).

Suppose that f ′(N1) = f ′(N2) for N1, N2 ∈ P2n
′

2i′
. For k = 1, 2 let Ik :=

⋃

ν∈Nk
Jν ∈ P2n

2i . Since by hypothesis
∑

ν∈N1
yν = xI1 and

∑

ν∈N2
yν = xI2 lie

in the same class of DF (2
i)/DF (2

i−1), (2.9) shows that |I1∩ I2| ≥ 2i−2+1 and
it follows that |N1 ∩N2| ≥ 2i−2−(n−n′) + 1 = 2i

′−2 + 1.
Having established this intersection property of f ′, we obtain from (A.8) that
|DF (2

i)/DF (2
i−1)| ≥ |Im(f ′)| > 2r

′

holds for r′ := (n′ − i′)(2i
′−2 + 1). As

before, we conclude that |DF (2
i)/DF (2

i−1)| ≥ 2r
′+1. This finishes the proof

since r′ = 6 in case i = n− 2 and r′ = (n− i)(2n−i + 1) otherwise. �

4 Nonreal fields with q̄1 equal to the level

From (1.5) we know that q̄1(F ) ≥ s(F ) holds for any nonreal field F . This
bound is optimal for fields of level 1, 2 and 4 as the standard examples show
(see introduction). For nonreal fields of higher level, however, there is still no
known example where q̄1(F ) < ∞.
We show that q̄1(F ) = s(F ) < ∞ is a rather strong condition, with several
consequences on the quadratic form structure of F . In particular, for s(F ) ≥ 8

it implies that q̄2(F ) ≥ s(F )2

2 (4.9).

Let ξ be an element of length l ≥ 3 of F . We fix a representation of ξ as a sum
of l squares

ξ = x2
1 + · · ·+ x2

l (4.1)

with x1, . . . , xl ∈ F×. Let f : P l
2 → DF (2)/F

×2
be the function which sends a

(nonordered) pair of distinct i, j ≤ l to the square class of x2
i +x2

j . Considering

the elements of DF (2)/F
×2

as a set of colors, we can interprete f as an edge-
coloring of a complete graph in l vertices v1, . . . , vl. We denote this graph
together with its edge-coloring f by G. If in this graph two edges [vi, vj ] and
[vi′ , vj′ ] are of the same color (with {i, j}, {i′, j′} ∈ P l

2) this means that x2
i +x2

j
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and x2
i′ + x2

j′ lie in the same square class of F , which by (2.8) implies that the
sets {i, j} and {i′, j′} intersect. In other words, two edges of the same color in
G need to have a vertex in common, i.e. G is a CC-graph in the terminology of
appendix B.

We get from (B.1) that at least l − 2 colors appear in G. Furthermore, since
x2
1 + · · · + x2

l is of length l, no sum x2
i + x2

j with i 6= j can be a square. This
gives a proof of [13, Theorem 1]:

4.2. Proposition (Tort). In (4.1), the partial sums x2
i +x2

j with 1≤ i<j≤ l

represent at least l − 2 different nontrivial classes of DF (2)/F
×2

. �

Let now F be a nonreal field of level s = 2n. We then can choose ξ := 0, which
is of length s+ 1 over F , and write (4.1) as

0 = x2
1 + · · ·+ x2

s+1 . (4.3)

By the above proposition the partial sums x2
i + x2

j (with 1 ≤ i < j ≤ s + 1)

represent at least s− 1 nontrivial classes of DF (2)/F
×2

. This shows:

4.4. Corollary. Let F be a nonreal field of level s. Then q̄1(F ) ≥ s. More-
over, if q̄1(F ) = s then, given any representation (4.3) of zero as a sum of s+1

nonzero squares over F , every nontrivial class of DF (2)/F
×2

is represented by
a partial sum x2

i + x2
j with 1≤ i<j≤s+1. �

Given a subgroup G ⊂ F×/F×2
of finite order 2m we may choose an irredun-

dant set of representatives a1, . . . , a2m ⊂ F× of the square classes in G and
define the quadratic form πG := 〈a1, . . . , a2m〉. Up to isometry, this form does
only depend on G and not on the particular choice of the ai. If we choose
the ai such that a1, . . . am are independent modulo F×2

then πG is equal to
〈〈a1, . . . , am〉〉, hence πG is an m-fold Pfister form. If q̄1(F ) is finite we write

πD(2) for πG with G := DF (2)/F
×2

.

4.5. Proposition. Let F be a nonreal field with s(F ) > 1 and q̄1(F ) < ∞.
Then πD(2) is hyperbolic.

Proof: Let s := s(F ). Given a representation (4.3) of zero as sum of s + 1
squares over F we define ai := x2

2i−1 + x2
2i for 1 ≤ i ≤ s/2. By (2.8) the ai lie

in distinct nontrivial square classes. Since a1 + · · ·+ as/2 + x2
s+1 = 0 the form

〈1, a1, . . . , as/2〉 is isotropic. On the other hand, this is a subform of the Pfister
form πD(2), which then must be hyperbolic. �

4.6. Lemma. Let H be a subgroup of F× containing F×2
such that H/F×2

is
of order 2m with m ≥ 2. If a, b, c, d ∈ H, lie in distinct square classes then
there are a3, . . . , am ∈ H such that πH = 〈a, b, c, d〉 ⊗ 〈〈a3, . . . , am〉〉.
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Proof: It is easy to verify that, given four distinct elements t, u, v, w in a
2-elementary abelian group G there exists a subgroup K of index 4 in G such
that t, u, v, w represent the four classes of G/K.

We apply this fact to the square classes aF×2
, bF×2

, cF×2
and dF×2

in G :=
H/F×2

. A subgroup K with the stated property must have order 2m−2. We
choose elements a3, . . . , am ∈ F× such that their square classes form an F2-basis
of K. The rest is clear. �

4.7. Proposition. Let F be a field with q̄1(F ) = s(F ) = 2n, n ≥ 2, and let
a, b, c, d be elements of DF (2) which lie in distinct square classes.

(a) If a /∈ F×2
then DF (〈1, 1〉) ∩DF (〈1, a〉) = {1, a}F×2

.

(b) If x ∈ DF (〈1, a〉) ∩DF (〈1, b〉) ∩DF (〈1, c〉) then ℓ(−x) = 2n.

(c) DF (〈a, b〉) ∩DF (〈c, d〉) = ∅.

(d) If n ≥ 3 then DF (〈a, b〉) ∩DF (〈a, c〉) ∩DF (〈b, c〉) = ∅.

(e) If x ∈ DF (〈1, a〉) ∩DF (〈1, b〉) then ℓ(cx) = 4 or ℓ(−x) ≥ 2n − 1.

Proof: (a) Given a and b lying in distinct nontrivial classes of DF (2)/F
×2

we may choose a3, . . . , a2n−1 ∈ DF (2) such that ϕ := 〈1, a, b, a3 . . . , a2n−1〉 is a
neighbor of the Pfister form πD(2) which is hyperbolic by the last proposition.
So ϕ is isotropic. Now b ∈ DF (〈1, a〉) would imply that ϕ is isometric to
〈1, 1, ab, a3 . . . , a2n−1〉 which is a subform of 2n × 〈1〉. This is impossible since
the latter form is anisotropic by the hypothesis that s(F ) = 2n.
(b) Let x ∈ DF (〈1, a〉)∩DF (〈1, b〉)∩DF (〈1, c〉) where a, b, c ∈ DF (2) are dis-
tinct modulo squares. Then clearly ℓ(x) ≤ 3 and we have also x ∈ DF (〈1, abc〉)
(with −a,−b and −c also −abc lies in DF (〈1,−x〉)). It follows from (a) that
ℓ(x) 6= 2. If x is a square then ℓ(−x) = ℓ(−1) = 2n. Otherwise we must have
ℓ(x) = 3. Then none of a, b, c, abc can be a square. Further ℓ(−x) ≥ 2n − 2 by
(2.3). Thus (4.2) shows that, in a representation of −x as sum of ℓ(−x) squares
over F , the partial sums of length two lie in at least 2n − 4 distinct nontriv-
ial square classes. As |DF (2)/F

×2
| = 2n by hypothesis, at least one of these

square classes must also be represented by one of a, b, c or abc. Without loss of
generality we may suppose that −x = y + at2 with ℓ(y) = ℓ(−x)− 2. Writing
x = u2 + av2 yields 0 = x − x = y + u2 + a(t2 + v2). Thus 2n + 1 ≤ ℓ(y) + 3
and 2n ≤ ℓ(y)+ 2 = ℓ(−x). Then −x = (−1) ·x ∈ DF (2

n) implies ℓ(−x) = 2n.
(c) By the above lemma there are a3, . . . , an ∈ DF (2) such that πD(2) is equal
to 〈a, b, c, d〉 ⊗ 〈〈a3, . . . , an〉〉.
Suppose now that there exists an x ∈ DF (〈a, b〉)∩DF (〈c, d〉). Then 〈a, b, c, d〉 ∼=
〈x, abx, x, cdx〉, which is similar to 〈1, 1, 1, abcd〉. Hence πD(2) is similar to
〈1, 1, 1, abcd〉 ⊗ 〈〈a3, . . . , an〉〉 ∼= 2n−1 × 〈1〉 ⊥ 〈〈abcd, a3, . . . , an〉〉. It follows that
the form (2n−1 + 1) × 〈1〉 is a Pfister neighbor of πD(2), hence isotropic since
πD(2) is hyperbolic. This is a contradiction to s(F ) = 2n.
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(d) After multiplying by a in the statement we may suppose that a = 1.
Suppose that there exists x ∈ DF (〈1, b〉) ∩ DF (〈1, c〉) ∩ DF (〈b, c〉). It fol-
lows −b,−c ∈ DF (〈1,−x〉), thus bc ∈ DF (〈1,−x〉) ∩DF (〈1, 1〉) ⊂ DF (〈1, x〉).
Therefore we have 〈1, b, c, bc〉 ∼= 〈1, x, bcx, bc〉 ∼= 〈bc, bcx, bcx, bc〉, whence
〈1, b, c, bc〉 ∼= 〈1, 1, x, x〉. Next we choose a3, . . . , an ∈ DF (2) such that
πD(2)

∼= 〈1, b, c, bc〉 ⊗ 〈〈a3, . . . , an〉〉 and obtain πD(2)
∼= 〈〈1, x, a3, . . . , an〉〉 ∼=

2n−1 × 〈〈x〉〉 ∼= 2n × 〈1〉, since a3, . . . , an ∈ DF (2), n ≥ 3 and x ∈ DF (4). This
is contradictory since πD(2) is hyperbolic but s(F ) = 2n.
(e) Let x ∈ DF (〈1, a〉) ∩ DF (〈1, b〉). Then, certainly, x and cx belong to
DF (4). If ℓ(cx) ≤ 2 then ℓ(x) ≤ 2 and (2.3) yields ℓ(−x) ≥ 2n − 1. Suppose
now ℓ(cx) = 3 and write cx = e + t2 with t ∈ F× and e ∈ DF (2). We
have cx ∈ DF (〈c, ac〉)∩DF (〈c, bc〉)∩DF (〈1, e〉). Since 1, c, ac and bc represent
distinct square classes, we conclude with (c) that e and c lie in the same square
class. Therefore x ∈ DF (〈1, a〉) ∩DF (〈1, b〉) ∩DF (〈1, c〉), which by (b) implies
ℓ(−x) = 2n. �

4.8. Theorem. Let F be a nonreal field of level s, equal to q̄1(F ). Any re-
presentation (4.3) of zero as a nontrivial sum of s+ 1 squares over F may be
reordered in such way that the following holds: for {i, j}, {i′, j′} ∈ Ps+1

2 the
partial sums x2

i + x2
j and x2

i′ + x2
j′ lie in the same square class if and only if

max{i, j, 3} = max{i′, j′, 3}.

Proof: Let G be a complete graph in s+ 1 vertices v1, . . . , vs+1 and with the

edge-coloring given by f : Ps+1
2 → DF (2)/F

×2
, {i, j} 7→ (x2

i + x2
j )F

×2
(see at

the beginning of this section). We know from (4.4) that exactly s − 1 colors
appear in G. Further, G does not contain any triangle with three different
colors; indeed, such a triangle would correspond to a partial sum of three
squares x := x2

i + x2
j + x2

k with 1 ≤ i < j < k ≤ s + 1 where a := x2
i + x2

j ,

b := x2
i + x2

k and c := x2
j + x2

k lie in three distinct square classes which is
impossible by part (b) of the last proposition since ℓ(−x) = s − 2. Therefore
by (B.3), G is a total CC-graph.
Since G has precisely (s+1)− 2 colors we obtain from the definition of a total
CC-graph in appendix B and the subsequent remarks: the vertices in G (and
at the same time the xi) may be renumbered in such way that for {i, j} ∈ Ps+1

2

the color of the edge between vi and vj (i.e. the square class of x
2
i +x2

j ) depends
precisely on max{i, j, 3}. �

4.9. Corollary. Let F be a nonreal field of level s = q̄1(F ) ≥ 8. Then

q̄2(F ) ≥ s2

2 .

Proof: Let 0 = x2
1 + · · ·+ x2

s+1 be a representation of zero as a nontrivial sum
of s+ 1 squares over F . By the theorem we may, after reordering the indices,
suppose that for {i, j} ∈ Ps+1

2 the square class of x2
i + x2

j depends precisely on
max{i, j, 3}.
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Defining ai := x2
i+1 + x2

i+2 for 1 ≤ i ≤ s−1, we get a system of representatives

a1, . . . , as−1 of the s − 1 nontrivial classes of DF (2)/F
×2

. Further we set
cjk := x2

1 + x2
j+2+ x2

k+2 for 1 ≤ j < k ≤ s− 1.
Suppose now that b cjk = cj′k′ for b ∈ DF (2) and 1 ≤ j′ < k′ ≤ s − 1. Then
cj′k′ ∈ DF (〈1, aj′〉) ∩ DF (〈1, ak′〉) ∩ DF (〈b, b aj〉) ∩ DF (〈b, b ak〉). In view of

(b), (c) and (d) of the proposition this is only possible if b ∈ F×2
, j = j′ and

k = k′.
This shows that the elements cjk for 1 ≤ j < k ≤ s − 1 represent distinct
nontrivial classes of DF (4)/DF (2). Therefore q̄2(F ) >

(

s−1
2

)

. Since s is a power

of 2, at least 8, and q̄2(F ) is a power of 2 or infinite we obtain q̄2(F ) ≥ s2

2 . �

5 Lower bounds for the square class number

We start this section with Djoković’s proof of his bound (1.6), rephrased in the
terminology of appendix A.

5.1. Theorem (Djoković). If F is a nonreal field of level s ≥ 8 then

q(F ) ≥ 2 · |DF (s/2)/F
×2

| ≥ 2 ·

s/2
∑

i=1

1

s+ 2− i

(

s+ 1
i

)

.

Proof: The first inequality is clear since |F×/DF (s/2)| ≥ 2.
Next we consider a representation 0 = x2

1 + · · · + x2
s+1 of zero as a sum of

s+1 nonzero squares over F . We denote by P the set of nonempty subsets
of {1, . . . , s + 1} of cardinality not greater than s/2. We define f : P →

DF (s/2)/F
×2

, J 7→ (
∑

j∈J x2
j )F

×2
. For 1 ≤ k ≤ s/2 we write fk for the

restriction of f to Ps+1
k . By (2.8), for k 6= k′ the images of fk and fk′ are

disjoint. Also by (2.8), fk is (k−1)-connected for any k ≤ s/2 and therefore
|Im(fk)| ≥

1
(s+1)−k+1

(

s+1
k

)

by (A.4, c). All together we obtain

|DF (s/2)/F
×2

| ≥

s/2
∑

k=1

|Im(fk)| ≥

s/2
∑

k=1

1

s− k + 2

(

s+ 1

k

)

which shows the second inequality. �

5.2. Remark. For an integer s ≥ 8, let
∑

(s) denote the term on the right
hand side in the inequality of the above theorem. Djoković showed by an
elementary counting argument that

∑

(s) > 2s

s [2]. As was pointed out by
David B. Leep, the argument may be improved to obtain the bound

∑

(s) >
2s+1

s for every even s ≥ 8. Under the hypothesis of the last theorem one has

thus q(F ) > 2s+1

s ; further, since s = s(F ) is a power of 2 and q(F ) is also a

power of 2 or infinite, it follows that q(F ) ≥ 2s+2

s .
Our calculations have shown that, at least for s a power of 2 in the range

between 8 and 213, actually one has 2s+1

s <
∑

(s) ≤ 2s+2

s .
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However, for level 8 and 16 we get stronger bounds on q(F ).

5.3. Theorem. Let F be a field. If s(F ) = 8 then q(F ) ≥ 512. If s(F ) = 16
then q(F ) ≥ 215.

Proof: Under the hypothesis s(F ) = 8 we have q̄3(F ) ≥ 2, q̄2(F ) ≥ 16 (3.1)
and q̄1(F ) ≥ 8 (1.5). Moreover, by (4.9) one of the last two inequalities must

be proper. From |F×/F×2
| ≥ q̄1(F ) · q̄2(F ) · q̄3(F ) we get therefore q(F ) ≥ 512,

since F×/F×2
is an elementary abelian 2-group.

For s(F ) = 16 we have by the previous sections q̄4(F ) ≥ 2, q̄3(F ) ≥ 16,
q̄2(F ) ≥ 32 and q̄1(F ) ≥ 16 and one of the last two inequalities must be

proper. As |F×/F×2
| ≥ q̄1(F ) · · · q̄4(F ) this leads to q(F ) ≥ 215. �

For s(F ) = 2n with n ≥ 5 the analogous arguments are not sufficient to improve
Djoković’s result. For s(F ) = 32, for example, we may get in this way q(F ) ≥
225 while (5.1) yields q(F ) ≥ 229.

5.4. Theorem. Let F be a field of level 2n with n ≥ 3. Then |kn−1F | ≥ 128.
More precisely, the subgroup {−1}n−2k1F of kn−1F is of index at least 4 and
order at least 32.

Proof: Again, we use the notation ε := {−1} ∈ k1F . The homomor-
phism F× → {−1}n−2k1F which maps x ∈ F× to the symbol εn−2 · {x},
has kernel DF (2

n−2). Since q̄n(F ) ≥ 2 and q̄n−1(F ) ≥ 16 by (3.1), we have
|F×/DF (2

n−2)| ≥ q̄n(F ) · q̄n−1(F ) ≥ 32. Therefore {−1}n−2k1F has at least
32 elements.
To show that the index of this group in kn−1F is at least 4 we just need to find
α, β, γ ∈ kn−1F \ {−1}n−2k1F such that α+ β + γ ∈ {−1}n−2k1F .
By the hypothesis there are a, b, c ∈ DF (3 · 2n−3) \ DF (2

n−2) such that
a + b + c = 0. In k2F we compute {−a,−b} + {−a,−c} + {−b,−c} =
{−a, bc} + {a,−bc} = {−1, abc}. Therefore we are finished if we show that
none of the symbols εn−3{−a,−b}, εn−3{−a,−c} and εn−3{−b,−c} in kn−1F
lies actually in {−1}n−2k1F .
If this is not true we may by case symmetry suppose that εn−3{−a,−b} =
εn−2{−x} for some x ∈ F×. Then the (n−1)-fold Pfister forms 2n−3 × 〈〈a, b〉〉
and 2n−2 × 〈〈x〉〉 over F are isometric, i.e. the quadratic form ϕ := 2n−3 ×
〈1, x, x,−a,−b,−ab〉 over F is hyperbolic. It follows that any subform of ϕ
of dimension greater than 1

2 dim(ϕ) = 3 · 2n−3 is isotropic. In particular, the
form 2n−2×〈−ax〉 ⊥ 2n−3×〈1〉 ⊥ 〈b〉, similar to a subform of ϕ, must be
isotropic. It follows that ax ∈ DF (2

n−2) · DF (2
n−3×〈1〉 ⊥ 〈b〉) ⊂ DF (2

n−1)
whence x ∈ DF (2

n−1). On the other hand, ϕ ∼= 2n−3 × 〈1, x, x, c, abc,−ab〉
shows that 2n−2×〈x〉⊥ 2n−3×〈1〉⊥ 〈c〉 is isotropic. This in turn implies that
−x ∈ DF (2

n−2) · DF (2
n−3×〈1〉 ⊥ 〈c〉) ⊂ DF (2

n−1). Together this leads to
−1 ∈ DF (2

n−1) which contradicts s(F ) = 2n. �
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5.5. Corollary. Let F be a nonreal field with s(F )≥8. Then |Br2(F )| ≥ 128
and |W (F )| ≥ 218.

Proof: If s(F ) = 8 then the theorem shows |k2F | ≥ 128. But this is also
true if s(F ) = 2n > 8 since then already the subgroup {−1}k1F , isomorphic
to F×/DF (2), has order at least q̄n(F ) · q̄n−1(F ) · q̄n−2(F ) which is sufficiently
large by the results of section 3. By Merkuriev’s theorem, Br2(F ) is isomorphic
to k2F , so in particular we have |Br2(F )| ≥ 128. (In fact, the arguments to
estimate the size of k2F work similarly for Br2(F ), so it is not necessary to
invoke Merkuriev’s theorem here.)
Let I denote the fundamental ideal of W (F ) and let Īi := Ii/Ii+1 for i ≥ 0. For
i = 0, 1, 2 it follows from [9] that Īi ∼= kiF . Thus |Ī0| = 2, |Ī1| = q(F ) ≥ 512
and |Ī2| ≥ 128. Moreover, s(F ) ≥ 8 implies |Ī3| ≥ 2. Therefore |W (F )| ≥
|Ī0| · |Ī1| · |Ī2| · |Ī3| ≥ 218. �

A Hypergraphs with connected colorings

In this appendix t, k and n denote nonnegative integers with t ≤ k ≤ n. We
briefly say k-set for a set of cardinality k. A k-hypergraph is a systemH = (V, E)
where V is a set whose elements are called vertices and E a collection of distinct
k-subsets of V called edges. A graph in the usual sense is then just a 2-
hypergraph.
Let H = (V, E) be a k-hypergraph. Its number of vertices |V | is called the order
of H . We say that H is complete if each k-subset of V is actually an edge,
i.e. if E = {E ⊂ V | |E| = k}. By an edge-coloring of H we mean a function
f : E → C. We consider the elements of C as colors and for E ∈ E we call f(E)
the color of E. For t > 0 we say that the edge-coloring f is t-connected if any
two edges of the same color meet in at least t vertices, i.e. if for any E,E′ ∈ E
with f(E) = f(E′) we have |E ∩ E′| ≥ t.

A.1. Problem. Let t, k, n be nonnegative integers with t ≤ k ≤ n. Let H =
(V, E) be a complete k-hypergraph of order n. What is the least integer m such
that there exists a t-connected edge-coloring f : E → C on H with |C| = m ?

The integer m which meets the condition in the problem depends only on the
values of t, k and n and will be denoted by M(t, k, n). We recall our notation
Pn
k for the set of all k-subsets of {1, . . . , n}. A complete k-hypergraph of order

n is then given by Kn
k := ({1, . . . , n},Pn

k ). So M(t, k, n) is just the least integer
m such that there exists a function f : Pn

k → C where |C| = m and such
that f(X) = f(X ′) implies |X ∩ X ′| ≥ t for any X,X ′ ∈ Pn

k . To study
M(t, k, n) as a function in t, k and n we use the theory of intersecting families
in combinatorics.
Let F be a family of sets. We write

⋃

F (resp.
⋂

F) for the union (resp. the
intersection) of all sets belonging to F . If |U ∩V | ≥ t holds for every U, V ∈ F
then we say that the family F is t-intersecting (just intersecting for t=1). A
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coloring f : E → C of a k-hypergraph H = (V, E) is thus t-connected if and
only if f−1({c}) is a t-intersecting family for every c ∈ C.
The crucial result on intersecting families is the Erdös-Ko-Rado theorem [4]
which we state in the slightly stronger version of [14]:

A.2. Theorem (Erdös-Ko-Rado). Let n ≥ (k − t + 1)(t + 1). If F is a

t-intersecting family of k-subsets of an n-set then |F| ≤
(

n−t
k−t

)

.

This theorem gives the optimal bound. Indeed, if N is an n-set and T a t-subset
then F := {U ⊂ N | |U | = k, T ⊂ U} is a t-intersecting family with precisely
(

n−t
k−t

)

elements. However, under the additional condition |
⋂

F| < t, better

bounds on |F| can be given. In the case t = 1 this is the following main result
of [6]. (A short proof of this can be found in [5] where the case t > 1 is also
treated.)

A.3. Theorem (Hilton-Milner). Let F be a family of pairwise intersecting

k-subsets of an n-set such that
⋂

F = ∅. Then |F| ≤
(

n−1
k−1

)

−
(

n−k−1
k−1

)

+ 1.

Now we begin with the investigation M(t, k, n) as a function in t, k and n with
0<t≤k≤n. We first treat the easy cases when t and k take extremal values.
Part (c) is implicitly shown in [2].

A.4. Proposition. (a) M(t, k, n) = 1 is equivalent to n ≤ 2k − t.

(b) M(t, k, n) =
(

n
k

)

is equivalent to k = t.

(c) M(k−1, k, n) = M(n−k−1, n−k, n) ≥ 1
n−k+1

(

n
k

)

for 1 ≤ k ≤ n/2.

Proof: (a) M(t, k, n) is equal to 1 if and only if Pn
k is t-intersecting; this is

the case if and only if n ≤ 2k − t.
(b) Each condition holds if and only if any nonempty t-intersecting family of
k-subsets of {1, . . . , n} consists of just one k-set.
(c) It is quite obvious that a family F ⊂ Pn

k is (k− 1)-intersecting if and
only if the family of complement sets {{1, . . . , n} \ U | U ∈ F} is (n−k−1)-
intersecting. So f : Pn

k → C is (k−1)-connected if and only if f ′ : Pn
n−k →

C, V 7→ f({1, . . . , n} \ V ) is (n−k−1)-connected. This shows in particular
M(k−1, k, n) = M(n−k−1, n−k, n).
For a (k−1)-intersecting family F ⊂ Pn

k it is easy to check that either |
⋂

F| ≥
k−1 or |

⋃

F| ≤ k+1. In the first case we conclude |F| ≤ n− k + 1 and in the
second case |F| ≤ k + 1 ≤ n − k + 1. If now f : Pn

k → C is (k−1)-connected
then Pn

k is covered by the (k−1)-intersecting families f−1({c}) for c ∈ C, which
implies that

(

n
k

)

= |Pn
k | ≤ (n− k + 1) · |C|. �

A.5. Examples. (1) The function f : Pn
k → Pn−k+t

t which associates to X ∈
Pn
k the set of the t smallest numbers in X is a t-connected edge-coloring of Kn

k .
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(2) If n≥2k−1 then a 1-connected edge-coloring of Kn
k is given by

f : Pn
k −→ {1, . . . , n−2k+2} , X 7−→ max (X ∪ {2k−1})− 2k + 2 .

(3) Let t < k < n. If f : Pn
k → C be a t-connected edge-coloring of Kn

k and
g : Pn

k+1 → C ′ is a (t+1)-connected edge-coloring of Kn
k+1, where C and C ′ are

disjoint sets, then a (t+1)-connected edge-coloring of Kn+1
k+1 is defined by

h : Pn+1
k+1 −→ C ∪ C ′ , X 7−→

{

f (X\{n+1}) if n+1 ∈ X,
g (X) otherwise.

From these examples we conclude:

A.6. Proposition. (a) M(t, k, n) ≤
(

n−k+t
t

)

.

(b) If n ≥ 2k − 1 then M(1, k, n) ≤ n− 2k + 2.

(c) If t<k<n then M(t+1, k+1, n+1) ≤ M(t, k, n)+M(t+1, k+1, n).
�

For lower bounds on M(t, k, n) we first consider the case t ≥ 2.

A.7. Theorem. Let 2 ≤ t < k. Then for n ≥ (k − t+ 1)(t+ 1) we have

M(t, k, n) ≥
t−1
∏

i=0

n− i

k − i
>
(n

k

)t

.

Proof: Let f : Pn
k → C be a t-connected edge-coloring of Kn

k with n ≥
(k− t+1)(t+1). For each c ∈ C we have then by the Erdös-Ko-Rado theorem

|f−1({c})| ≤
(

n−t
k−t

)

. As Pn
k =

⋃

c∈C f−1({c}) we get
(

n
k

)

≤ |C| ·
(

n−t
k−t

)

.

Therefore |C| ≥ n
k · n−1

k−1 · · ·
n−t+1
k−t+1 and an easy computation shows the second

inequality. �

For the purposes of section 3 we state the following particular case:

A.8. Corollary. Let i and m be positive integers satisfying either 2≤ i≤ m
2

or 3≤ i= m+1
2 or 5≤ i= m

2 +1. Then M(2i−2+1, 2i, 2m) > 2(m−i)(2i−2+1). �

Now we come to the case t = 1.

A.9. Lemma. For k > 1 we define the polynomial

Fk(X) : =

k−1
∏

i=0

(X−i)− k (X−2k+1)

(

k−1
∏

i=1

(X−i)−
k−1
∏

i=1

(X−k−i) + (k−1)!

)

.

If k ≤ n and f : Pn
k → C is such that

⋂

f−1({c}) = ∅ for every c ∈ C then
either |C| ≥ n− 2k + 2 or Fk(n) ≤ 0.
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Proof: Suppose that f has the stated property. Then the Hilton-Milner

theorem implies
(

n
k

)

≤ |C| · [
(

n−1
k−1

)

−
(

n−k−1
k−1

)

+ 1]. On the other hand,

(k!)−1 · Fk(n) =
(

n
k

)

− (n− 2k + 1) · [
(

n−1
k−1

)

−
(

n−k−1
k−1

)

+ 1]. Thus Fk(n) > 0

implies |C| > (n− 2k + 1). �

A.10. Remark. The polynomial Fk defined in the lemma is monic of degree k.
In particular, we have Fk(n) > 0 for all n sufficiently large. Computation for
small values of k yields: F2(X) = X2 − 7X + 18, F3(X) = X3 − 21X2 +
140X − 240 and F4(X) = X4 − 54X3 +731X2 − 3534X +5880. Thus we have
F2(n) > 0 for any n ∈ IN, F3(n) > 0 for n ≥ 3 and F4(n) > 0 for n ≥ 37
whereas F4(36) < 0.

A.11. Theorem. For any k ≥ 1 there is a constant ck ≥ 2k − 2 such that for
all n ∈ IN sufficiently large we have

M(1, k, n) = n− ck.

For k ≤ 3 we have, more precisely, M(1, k, n) = n− 2k + 2 for n ≥ 2k − 1.

Proof: For k = 1 there is nothing to show since M(1, 1, n) = n. For k ≥ 2 let
Fk(X) be defined as in the lemma. By the above remark we may choose the
least integer nk ≥ 2k − 1 such that Fk(n) > 0 for all n ≥ nk − 1. In particular
we have n2 = 3 and n3 = 5. Let ck := nk −M(1, k, nk). Then (A.6, b) implies
ck ≥ 2k − 2 and we check that equality holds for k = 2, 3.
We want to prove by induction that M(1, k, n) = n − ck for n ≥ nk. For
n = nk this is trivial statement. Suppose it is true for n − 1 ≥ nk. Let
f : Pn

k → C be a 1-connected edge-coloring of Kn
k . If

⋂

f−1({c}) = ∅ for each
c ∈ C then by the lemma we have |C| ≥ n − 2k + 2 ≥ n − ck. On the other
hand, if there is c ∈ C such that the intersection

⋂

f−1({c}) is not empty
then we may suppose that it contains the element n. Then the restriction
f ′ : Pn−1

k → C \ {c} of f to Pn−1
k is a 1-connected edge-coloring of Kn−1

k . By
the induction hypothesis we have |C \ {c}| ≥ M(1, k, n − 1) = (n − 1) − ck
and thus |C| ≥ n − ck. This implies M(1, k, n) ≥ n − ck. But (A.6, c) shows
M(1, k, n) ≤ M(1, k, n−1)+M(0, k−1, n−1) = n−ck sinceM(0, k−1, n−1) =
1. Hence M(1, k, n) ≥ n− ck which finishes the induction step. �

A.12. Question. Does M(1, k, n) = n− 2k + 2 hold for all n ≥ 2k − 1, even
if k > 3 ?

B CC-Graphs

In this appendix we study connected edge-colorings for usual complete graphs.
Here we are not only interested in the minimal number of colors but also in the
distribution of the colors in the graph.
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Let G denote a complete graph of order n with vertices v1, . . . , vn and colored
edges. The distribution of colors in G can be equivalently represented by an
edge-coloring of Kn

2 (see appendix A), i.e. by a function f : Pn
2 → C, where C

stands for the set of colors in G and f associates to {i, j} ∈ Pn
2 the color of the

edge between the vertices vi and vj .
A set of all the edges of a certain color shall be called a color-component. If
such a color-component consists of r ≥ 3 edges all together having a vertex x
in common we call it an r-star and x its center. By a triangle in G we mean a
complete subgraph of order 3 of G. A triangle is said to be monochrome (resp.
three-colored) if the three edges are of the same color (resp. of three different
colors). A second complete colored graph G′ of order n is said to be equivalent
to G if there is a bijection between the sets of vertices of G and G′ such that
the induced bijection on the sets of edges preserves the color-components (in
both directions).
We call G color-connected or a CC-graph if in G any two edges of the same color
are adjacent. This is equivalent to the edge-coloring f being 1-connected. The
only possible color-components in G are then single edges, pairs of edges with
a vertex in common, stars and monochrome triangles.
Theorem (A.11) says that M(1, 2, n) = n− 2 for n ≥ 3. This corresponds to a
result of [13]. We rephrase it as follows and give a direct proof.

B.1. Proposition (Tort). A CC-graph of order n ≥ 3 has at least n − 2
colors.

Proof: For n = 3 the statement is trivial. If n > 3 and G has less than n
colors then one of its color-components must be a star. Deleting the center of
this star yields a CC-graph G′ of order n − 1 with less colors. By induction
hypothesis G′ has at least n− 3 and therefore G at least n− 2 colors. �

For any n ≥ 3 the complete graph Kn
2 , whose vertices are the integers

1, . . . , n, together with the 1-connected coloring fn : Pn
2 → {1, . . . , n − 2},

{i, j} 7→ max{i, j, 3}−2 defines a particular CC-graph Gn of order n with n−2
colors (compare with example (A.5, 2)). The color-components of Gn are one
monochrome triangle and one i-star for each 3 ≤ i ≤ n−1. For 3 ≤ n ≤ 5,
every CC-graph with n−2 colors is equivalent to Gn. This is not true for n = 6,
since there is a CC-graph of order 6 with color-components a triangle and three
4-stars.

B.2. Proposition. Let G be a CC-graph with n ≥ 3 vertices and n−2 colors.
Then G has as color-components one monochrome triangle and n − 3 stars.
Moreover, each vertex of G lies either on the monochrome triangle or is the
center of exactly one star.

Proof: Let G′ be the complete subgraph spanned by all vertices of G which
are not the center of a star in G. We want to show that G′ is a monochrome
triangle. Then the vertices of G outside of G′ will be the centers of n− 3 stars
and as G has just n− 2 colors the entire statement follows.
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Let n′ be the order of G′. The n− n′ vertices of G outside of G′ are all centers
of stars whose colors do not appear in G′. As a consequence, G′ has at least
n− n′ colors less than G. Then by (B.1), G′ has exactly n′ − 2 colors. Since G′

is a graph without stars each color appears at most three times, counting the

edges yields 3(n′ − 2) ≥ n′(n′−1)
2 whence n′ ≤ 5. As G′ has n′ − 2 colors and

contains no star, we have n′ = 3 and G′ is a monochrome triangle. �

A CC-graph G will be called total if there is a permutation σ ∈ Sn such that
for any {i, j} ∈ Pn

2 the color of the edge between vi and vj depends only on
max{σ(i), σ(j)}. After renumbering the vertices G we may then suppose that
the permutation σ is the identity on {1, . . . , n}.
Let G be a total CC-graph of order n with vertices v1, . . . , vn enumerated in such
a way that the color of any edge linking vi and vj depends only on max{i, j}.
Then G has at most n−1 different colors. From (B.1) it follows that the number
of colors in G is either n − 2 or n − 1. Further, by (B.2) the number of colors
is n − 2 if and only if v1, v2 and v3 form a monochrome triangle and then the
color of the edge between vi and vj depends precisely on max{i, j, 3}. In both
cases the enumeration of the vertices is unique up to changing the first three
respectively the first two indices. Moreover, G contains exactly n − 3 stars.
More precisely, for each 4 ≤ i ≤ n there is exactly one (i−1)-star in G whose
center is vi. It is clear from the definition that a complete subgraph of a total
CC-graph is also a total CC-graph.

B.3. Proposition. A CC-graph G is total if and only if it contains no three-
colored triangle.

Proof: The necessity of the condition follows from the definition of a total
CC-graph. Suppose now that G is a CC-graph with n vertices with no three-
colored triangle. We show by induction on n that G is total. For n ≤ 3 this is
evident. If n ≥ 4 then any complete subgraph with 4 vertices contains a star
since otherwise it would contain a three-colored triangle. So we can choose an
r-star in G where r is as large as possible. For the ease of imagination say, it
is of red color. We may suppose that vn is the center of this star. Let G′ be
the complete subgraph of G with all the vertices of G except vn. Then G′ is
also a CC-graph with n− 1 vertices and contains no three-colored triangle. So,
by the induction hypothesis, G′ is total, i.e. its vertices can be enumerated as
v1, . . . , vn−1 in such a way that the color of an edge connecting vertices vi and
vj depends just on max{i, j}. This would still be true for the enumeration of
the vertices v1, . . . , vn of G, if vn is connected with each of the v1, . . . , vn−1 by
an edge of red color. So we just have to show that r = n − 1. Suppose that
r < n− 1. Then certainly n > 4 since r ≥ 3 by the definition of an r-star. But
vn−1 is the center of an n−2-star in G′, say of blue color. By the maximality of
r we see that the edge between vn−1 and vn cannot be blue and that r = n−2.
So there must be exactly one vertex vk with 1 ≤ k ≤ n− 1 which is connected
with vn with an edge of color different from red. It cannot be of blue color
either so say that its color is green. Now we see that there is a triangle of colors
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red, blue and green contained in G, formed by vk, vn−1, vn if k < n− 1 and by
v1, vn−1, vn if k = n− 1, which gives the desired contradiction. �
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