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Abstract. We consider reduced Witt rings of finite chain length. We
show there is a bound, in terms of the chain length and maximal signature,
on the dimension of anisotropic, totally indefinite forms. From this we get
the ascending chain condition on principal ideals and hence factorization
of forms into products of irreducible forms.
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R will denote a (real) reduced Witt ring. A form q ∈ R is totally indefinite
if |sgnαq| < dim q for all orderings α of R. It is well-known that such a form
need not be isotropic. However, when R has finite chain length, cl(R), we
show there are restrictions on the possible dimensions of anisotropic, totally
indefinite forms. To be specific,

dim q ≤ 1
2cl(R)max

α
{| sgnαq|

2},

unless R = Z and q is one-dimensional. The proof depends on Marshall’s
classification of reduced Witt rings of finite chain length.
This bound allows us to show that R, of finite chain length, satisfies the as-
cending chain condition on principal ideals. One consequence of this result is
that chains of basic clopen sets H(a1, . . . , an), for fixed n, stabilize. Another
consequence is that non-zero, non-units of R factor into a finite product of ir-
reducible elements (in the sense of Anderson and Valdes-Leon). This had been
previously known only for odd dimensional forms in rings with only finitely
many orderings.
Conversely, we show, for a wide class of reduced Witt rings R, that the ascend-
ing chain condition on principal ideals implies R has finite chain length. The
proof relies on Marshall’s notion of a sheaf product. We close with examples of
factorization into irreducible elements. These illustrate how the factorization
of even dimensional forms is less well behaved than the factorization of odd
dimensional forms studied in [8].
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142 Robert W. Fitzgerald

We set some of the notation. R will be an abstract Witt ring, in the sense
of Marshall [11], and reduced. The main case of interest is the Witt ring of a
Pythagorean field. XR, or just X if the ring is understood, denotes the set of
orderings (equivalently, signatures) on R. We always assume X is non-empty.
For a form q ∈ R and ordering α ∈ X, the signature of q at α will be denoted
by either sgnαq or q̂(α).
We let GR, or just G when R is understood, denote the group of one-
dimensional forms of R. When R is the Witt ring of a field, G = F ∗/F ∗2.
Forms in R are written as 〈a1, . . . , an〉, with each ai ∈ G. An n-fold Pfister
form is a product 〈1, a1〉〈1, a2〉 · · · 〈1, an〉, denoted by 〈〈a1, a2, . . . , an〉〉. The
set of orderings X has a topology with basic clopen sets

H(a1, . . . , an) = {α ∈ X : ai >α 0 for all i},

where each ai ∈ G. The chain length of R, denoted by cl(R), is the supremum
of the set of integers k for which there is a chain

H(a0) ( H(a1) ( · · · ( H(ak)

of length k (each ai ∈ G).
A subgroup F ⊂ G is a fan if it satisfies : any subgroup P ⊃ F such that
−1 /∈ P and P has index 2 in G is an ordering. The index of the fan is [G : F ].
The set of orderings P that contain F is denotedX/F . Note that |X/F | = 2n−1

if F has index 2n. The stability index of R, denoted by st(R), is the supremum
of log2 |X/F | over all fans in G.
If R1 and R2 are reduced Witt rings then so is the product

R1 ⊓R2 = {(r1, r2) : r1 ∈ R1, r2 ∈ R2 and dim r1 ≡ dim r2 (mod 2)}.

E will always denote a group of exponent 2. If R is a reduced Witt ring then so
is the group ring generated by E, denoted by R[E]. Ek will denote the group
of exponent 2 and order 2k. We will always take t1, . . . , tk as generators of Ek

(except when k = 1 when we use just t). For an arbitrary E we use t1, t2, . . . as
generators. When E is uncountable we are assuming the use of infinite ordinals
as indices. Lastly, if S ⊂ G we write sp(S) for the subgroup generated by S.

1. Isotropy.

Over R a form q is hyperbolic iff sgn q = 0 and isotropic iff |sgn q| < dim q. The
first statement holds for any reduced Witt ring but not the second. Our goal is
to find a limit on the difference between |sgn q| and dim q for anisotropic forms.
We restrict ourselves to reduced Witt rings with a finite chain length. Recall
[12, 4.4.2] ([5] in the field case) that such rings are built up from copies of Z
by finite products and arbitrary group ring extensions. The decomposition is
unique except that Z ⊓ Z = Z[E1].
We introduce some notation. Recall that Ek is generated by t1, . . . , tk. We
fix a listing x1, . . . , x2k of the elements of Ek as follows. The list for E1 is
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Isotropy and Factorization 143

1, t1. The list for Ek+1 is the list of Ek followed by tk+1 times the list for Ek.
We also fix a listing α1, . . . , α2n of the orderings on Z[Ek]. For the k = 1 we
take α1 to be the ordering with t1 positive and α2 to be the ordering with t1
negative. The list for Z[Ek+1] consists of the orderings on Z[Ek] extended by
taking tk+1 positive, followed by the extensions with tk+1 negative. Lastly, we
define Pk to be the 2k × 2k-matrix whose (i, j) entry is the sign of xj at the αi

ordering. Thus P1 =
(

1 1

1 −1

)

.

Lemma 1.1. For each k ≥ 1

(1) Pk is symmetric.
(2) P 2

k = 2kI.
(3) For q =

∑

nixi ∈ Z[Ek] let si = q̂(αi). Set n̄ = (n1, . . . n2k)
T , where T

denotes the transpose, and s̄ = (s1, . . . , s2k)
T . Then Pkn̄ = s̄.

Proof. We use induction on k to prove (1) and (2). Both are clear for k = 1.
By our construction,

Pk+1 =

(

Pk Pk

Pk −Pk

)

.

Thus Pk symmetric implies Pk+1 is also. And

P 2
k+1 =

(

2P 2
k 0

0 2P 2
k

)

= 2k+1I.

Statement (3) is simple to check. �

The reader may notice that each Pk is a Hadamard matrix, indeed the sim-
plest examples of Hadamard matrices, namely Kronecker products of copies of
(

1 1

1 −1

)

.

Notation. Let M(q) = max{|q̂(α)| : α ∈ X}.

Proposition 1.2. Let R = Z[E], where E is an arbitrary group of exponent
two. Suppose q ∈ R is anisotropic. Then dim q ≤M(q)2.

Proof. We may assume q ∈ Z[Ek] for some k. Write q =
∑

nixi where ni ∈ Z

and the xi form the list of the elements of Ek described above. Let n̄ and s̄ be
as in (1.1). Then:

Pkn̄ = s̄

2kn̄ = P 2
k n̄ = Pks̄

∑

n2i = n̄T n̄ =
1

22k
s̄TPT

k Pks̄

=
1

2k
s̄T s̄ =

1

2k

∑

s2i .

Now for each i we have s2i ≤ M(q)2. So
∑

n2i ≤ M(q)2. Further, |ni| ≤ n2i so
dim q =

∑

|ni| ≤M(q)2. �
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144 Robert W. Fitzgerald

Remarks. (1) The bound in (1.2) is sharp infinitely often. Let ǫ = (ǫ1, . . . , ǫk)
be a choice of signs, that is, each ǫi = ±1. Pick a one-to-one correspondence
between the 2k many sign choices and the elements of sp{tk+1, . . . , t2k}, say
ǫ 7→ xǫ. Then consider

q =
∑

ǫ

xǫ〈〈ǫ1t1, . . . , ǫktk〉〉 ∈ Z[E2k],

where the sum is over all possible sign choices. At each ordering of Z[Ek]
exactly one of the Pfister forms has signature 2k, the others having signature
zero. In any extension of this ordering to Z[E2k] we get sgn q = ±2k. Thus q
is anisotropic, dim q = 22k and M(q) = 2k. Hence dim q =M(q)2.

(2) The bound of (1.2) is not sharp forM ’s that are not 2-powers. For instance,
suppose q is anisotropic and M(q) = 3. We may assume (see (2.6)) that q has
signature 3 or −1 at each ordering. Let q0 = (q − 1)an, the anisotropic part.
Then M(q0) = 2 and so dim q0 ≤ 4. Thus dim q ≤ 5 < M(q)2.

The bound of (1.2) can also be improved if k is fixed. For instance, one can
show for anisotropic q ∈ Z[E3] that dim q ≤ 5

2M(q).

Theorem 1.3. Suppose R is a reduced Witt ring of finite chain length. Let
q ∈ R be anisotropic. Then dim q ≤ 1

2cl(R)M(q)2, unless R = Z and q is
one-dimensional.

Proof. The result is clear if dim q = 1 so assume dim q ≥ 2. We may thus
ignore the exceptional case. We will prove the result for R = S[E], any E, by
induction on the chain length of S. Say cl(S) = 1 so that S = Z. If E = 1 then
dim q = M(q) ≤ 1

2M(q)2 as dim q ≥ 2. If E 6= 1 then we are done by (1.2) as
cl(Z[E]) = 2.

In the general case we may assume S = S1 ⊓ S2, with at least one of S1 or S2

not Z. Then both S1 and S2 have smaller chain length than S and so we are
assuming the result holds for Si[E], i = 1, 2 and any E.

First suppose E = 1. Write q = (a, b) with a ∈ S1 and b ∈ S2. We may assume
that dim a ≥ dim b. Then dim q = dim a. We have by induction

dim q = dim a ≤ 1
2cl(S1)M(a)2

≤ 1
2cl(R)M(a)2, since cl(R) = cl(S1) + cl(S2)

≤ 1
2cl(R)M(q)2,

as q̂(α) = â(α) or b̂(α) for every α ∈ X so that M(a) ≤M(q).

Next suppose E 6= 1. Since q has only finitely many entries we may assume
that q ∈ (S1 ⊓ S2)[Ek], for some k. Write q =

∑

(ai, bi)xi, where each ai ∈ S1

and bi ∈ S2 and the xi’s are our listing of the elements of Ek. Set

ϕ = (
∑

aixi, 0) + r(0,
∑

bixi) ∈ (S1[Ek] ⊓ S2[Ek])[E1].
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Now

dim q =
∑

i

max{dim ai, dim bi}

dimϕ =
∑

dim ai +
∑

dim bi ≥ dim q.

We check the signatures. If α ∈ XS1
and αǫ is an extension of α to R =

(S1 ⊓ S2)[Ek] then q̂(α
ǫ) =

∑

âi(α)ǫi (here ǫi = ±1 depending on the sign of
xi in the extension). Similarly, if β ∈ XS2

and βǫ is an extension to R then

q̂(βǫ) =
∑

b̂i(β)ǫi.
We may also view αǫ as an extension of α to S1[Ek] and hence to S1[Ek]⊓S2[Ek].
Let αǫ+ denote the further extension to (S1[Ek] ⊓ S2[Ek])[E1] with r positive.
We also have the other extensions αǫ−, βǫ+ and βǫ−. Then:

ϕ̂(αǫ+) =
∑

âi(α)ǫi

ϕ̂(αǫ−) =
∑

âi(α)ǫi

ϕ̂(βǫ+) =
∑

b̂i(β)ǫi

ϕ̂(βǫ−) = −
∑

b̂i(β)ǫi.

Thus M(ϕ) =M(q).
Set ϕ1 =

∑

aixi ∈ S1[Ek] and ϕ2 =
∑

bixi ∈ S2[Ek]. Then by induction we
have:

dimϕ1 ≤ 1
2cl(S1)M(ϕ1)

2

dimϕ2 ≤ 1
2cl(S2)M(ϕ2)

2.

The previous computation shows that for any ordering γ of (S1[Ek]⊓S2[Ek])[E1]
that ϕ̂(γ) equals ϕ̂1(α) or ±ϕ̂2(β) where γ restricts to either α on S1[Ek] or β
on S2[Ek]. Thus M(ϕi) ≤M(ϕ) for i = 1, 2. We obtain

dimϕ = dimϕ1 + dimϕ2 ≤ 1
2 (cl(S1) + cl(S2))M(ϕ)2

= 1
2cl(R)M(ϕ)2,

using [12, 4.2.1]. Lastly, we have already checked that dim q ≤ dimϕ and
M(q) =M(ϕ), giving the desired bound. �

Remarks. (1) The bound of (1.3) is sometimes achieved. For example, in

R = (Z[E2] ⊓ Z[E2] ⊓ Z[E2])[E2],

where the last E2 is generated by s1, s2, let ϕ = 〈1, t1, t2,−t1t2〉 and set q =
(ϕ, 0, 0) + s1(0, ϕ, 0) + s2(0, 0, ϕ). Then q is anisotropic, dim q = 12, M(q) = 2
and cl(R) = 6. Thus dim q = 1

2cl(R)M(q)2.
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146 Robert W. Fitzgerald

(2) Bröcker [3] has a result that looks similar to (1.3) but is apparently unre-
lated. There, in the version of [12, 7.7.3], if q is anisotropic, q̂(α) = ±2k for
all α and Y = {α : q̂(α) = 2k} is the union of basic open sets each of stability
index at most k + 1, then dim q ≤ 22k =M(q)2.
(3) Bonnard [2] also has a result that looks like (1.3), which in fact uses
Bröcker’s result in the proof. In our notation, her result is: if R has finite
stability index s and q ∈ R is anisotropic then dim q ≤ 2s−1M(q). Her bound
is slightly better than this. Chain length and stability index are independent in-
variants so again there is no apparent connection between (1.3) and Bonnard’s
result.
Recall that a form q is weakly isotropic if mq is isotropic for some m ∈ N.

Corollary 1.4. Let R be a real Witt ring (not necessarily reduced) of fi-
nite chain length. Let q ∈ R be a form of dimension at least 2. If dim q >
1
2cl(R)M(q)2 then q is weakly isotropic.

Proof. Let qr = q + Rt ∈ Rred, the reduced Witt ring. Then qr is isotropic
by (1.3). Hence qr ≃ 〈1,−1〉 + ϕr, for some form ϕr = ϕ + Rt ∈ Rred. Then
2kq ≃ 2k〈1,−1〉+ 2kϕ, for some k, and so q is weakly isotropic. �

2. Chains of principal ideals.

We use the standard abbreviation ACC for ascending chain condition.

Proposition 2.1. If ACC holds for the principal ideals of R then R has finite
chain length.

Proof. Suppose we have a tower

H(a1) ⊇ H(a2) ⊇ · · · ⊇ H(an) ⊇ · · · .

Set qn = 〈1, 1, an〉. Then q̂n(α) is 1 or 3, with q̂n(α) = 3 iff α ∈ H(an). In
particular, for every n we have q̂n+1(α) divides q̂n(α), for every α ∈ X. Then
qn+1 divides qn by [7, 1.7]. Thus we have a tower of principal ideals :

(q1) ⊆ (q2) ⊆ · · · ⊆ (qn) ⊆ · · · .

The ACC implies there exists a N such that (qN ) = (qm) for all m > N . Then
q̂N (α) divides q̂m(α) for all α ∈ X and so H(aN ) = H(am), for all m > N . �

We need some technical terms for the next result.

Definitions. A fan tower is a strictly decreasing tower of fans F1 > F2 >
· · · > Fn > · · · , each of finite index plus a fixed choice of complements Cn

where G = Cn × Fn. We set F∞ = ∩Fn. A separating set of fan towers is a
finite set of fan towers s1, . . . , sℓ, with si = {Fin} such that

(1) Given any q ∈ R there exists m, possibly depending on q, such that all
entries of q are in CimFi∞, for each i between 1 and ℓ.
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(2) Given K ⊂ Z and forms q1, q2 ∈ R, there exists N , depending on q1
and q2 but not K, such that if for some n > N

q̂−1
1 (K) ∩ (X/Fin) = q̂−1

2 (K) ∩ (X/Fin)

for all i then q̂−1
1 (K) = q̂−1

2 (K).

Example. For a simple example, let R = Z[E] with E countably infinite. Let
Fi = sp{ti+1, ti+2, . . . } and Ci = sp{−1, t1, . . . , ti}. Then each Fi is a fan of
finite index, each Ci is a complement and the Fi are strictly decreasing. Hence
{Fi} is a fan tower. Note that here F∞ = 1. This fan tower is a separating
(singleton) set of fan towers. A given form q has entries involving only a finite
number of ti’s and so its entries lie in some Cm; this is the first condition. If we
are given two forms q1 and q2 then again all of their entries lie in some CN . So
the signatures of the qi depend only on the signs of t1, . . . tN in that ordering.
Hence if q̂1 and q̂2 agree on X/FN then they agree at every ordering. This is
the second condition.
Roughly, our fan towers will look like this example. When there is a product
we will need one tower in each coordinate, hence a separating set.

Lemma 2.2. If R has finite chain length then R has a separating set of fan
towers.

Proof. We prove this by induction on the chain length. When cl(R) = 1 then
R = Z and the result is clear. We first consider the case R = S1 ⊓ S2. Write
G1 and X1 for GS1

and XS1
and similarly for G2 and X2. Let {s11, . . . , s

1
ℓ1
}

be a separating set of fan towers for S1. Here s1k = {F 1
ki} with complements

C1
ki. Set Fki = F 1

ki × G2, which is a fan in G = G1 × G2 with complement
Cki = C1

ki × 1. Then for 1 ≤ k ≤ ℓ1, rk = {Fki} is a fan tower. Note that
Fk∞ = F 1

k∞ ×G2.
Similarly, let {s21, . . . , s

2
ℓ2
} be a separating set of fan towers for S2, with

s2k = {F 2
ki} and complements C2

ki. Set Fℓ1+k i = G1×F
2
ki and Cℓ1+k i = 1×C2

ki.
Then for 1 ≤ k ≤ ℓ2, rℓ1+k = {Fℓ1+k i} is a fan tower. We check that
r1, . . . , rℓ1 , rℓ1+1, . . . , rℓ1+ℓ2 is a separating set of fan towers for R.
We check the first condition. We are given a form q = 〈(a1, b1), . . . , (an, bn)〉 ∈
R. By induction, there exists a m1 such that a1, . . . , an ∈ C1

km1
F 1
k∞ for all k.

So
(a1, b1), . . . , (an, bn) ∈ Ckm1

Fk∞ = C1
km1

F 1
k∞G2,

for all k with 1 ≤ k ≤ ℓ1. Similarly, there exists a m2 such that b1, . . . , bn ∈
C2

km2
F 2
k∞, for all 1 ≤ k ≤ ℓ2. Hence (a1, b1), . . . , (an, bn) ∈ Ckm2

Fk∞ for all k
with ℓ1 < k ≤ ℓ1 + ℓ2. So take m to be the maximum of m1 and m2.
We next check the second condition. We are given K ⊂ Z and forms q1 =
(u1, v1) and q2 = (u2, v2). Note that q̂

−1
1 (K) = û−1

1 (K)∪ v̂−1
1 (K) ⊂ X1 ∪X2, a

disjoint union. By induction there exists a N1 satisfying the second condition
for K, u1 and u2 and a N2 satisfying the second condition for K, v1 and v2.
Let N be the maximum of N1 and N2. Suppose for some n > N we have

q̂−1
1 (K) ∩ (X/Fkn) = q̂−1

2 (K) ∩ (X/Fkn),
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for all 1 ≤ k ≤ ℓ1 + ℓ2. For 1 ≤ k ≤ ℓ1 we have:

q̂−1
1 (K) ∩ (X/Fkn) = q̂−1

1 (K) ∩ (X1/F
1
kn)

= û−1
1 (K) ∩ (X1/F

1
kn).

We thus obtain

û−1
1 (K) ∩ (X1/F

1
kn) = û−1

2 (K) ∩ (X1/F
1
kn),

for all 1 ≤ k ≤ ℓ1. By the second condition on S1 we have û−1
1 (K) = û−1

2 (K).
Similarly, v̂−1

1 (K) = v̂−1
2 (K) and so q̂−1

1 (K) = q̂−1
2 (K).

Now suppose R = S[E]. Set Ti = sp{ti+1, ti+2, . . . }. Let {s1, . . . , sℓ} be a
separating set of fan towers for S where sk = {F ′

ki} and the complements are
C ′

ki. Then Fki = F ′
kiTi is a fan of finite index in R with complement Cki =

C ′
kisp{t1, . . . , ti}. Then rk = {Fki} is a fan tower. Note that Fk∞ = F ′

k∞. We
show that {r1, . . . , rℓ} is a separating set of fan towers for R.
For the first condition we are given a form q ∈ R = S[E]. There exists a p such
that q ∈ S[Ep]. Write q =

∑

aixi where each ai ∈ S and the xi’s are some list
of the elements of Ep. By induction, for each i there exists a m(i) such that
every entry of ai is in C

′
km(i)F

′
k∞ for all k, 1 ≤ k ≤ ℓ. Let m be the maximum

of the m(i) and p. Then every entry of every ai lies in C ′
kmF

′
k∞ ⊂ CkmFk∞

and each xi lies in sp{t1, . . . , tp} ⊂ Ckm. So every entry of q lies in CkmFk∞,
for all k.
For the second condition we are given K ⊂ Z and two forms q1, q2 ∈ R. Again
there exists a p such that q1, q2 ∈ S[Ep]. Write q1 =

∑

aixi and q2 =
∑

bixi
with ai, bi ∈ S and the xi as before. Let ǫ ∈ {±1}p be a choice of sign for
t1, . . . , tp. Let ǫ(xi) be the resulting sign of xi. Set:

qǫ1 =
∑

aiǫ(xi) qǫ2 =
∑

biǫ(xi),

both forms in S. For each ǫ there exists a Nǫ so that condition 2 holds for qǫ1
and qǫ2. Let N be the maximum of the Nǫ and p.
If α ∈ XS we let αǫ be the extension of α to S[Ep] with ti > 0 iff ǫ(ti) = 1.
Then we claim that:

q̂−1
1 (K) ∩XS[Ep] =

⋃

ǫ

[(q̂ǫ1)
−1(K)]ǫ.

Namely if αǫ ∈ XS[Ep] and q̂1(α
ǫ) ∈ K then

q̂1(α
ǫ) =

∑

âi(α)ǫ(xi) = q̂ǫ1(α).

Hence αǫ ∈ (q̂ǫ1)
−1(K)ǫ. The reverse inclusion is similar.
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Isotropy and Factorization 149

Now let αǫe denote any extension of αǫ to R = S[E]. Then by the claim we
have:

(2.3) q̂−1
1 (K) =

⋃

e

(

⋃

ǫ

[(q̂ǫ1)
−1(K)]ǫ

)e

So q̂−1
1 (K) ∩ (X/Fkn) = q̂−1

2 (K) ∩ (X/Fkn) implies that

(q̂ǫ1)
−1(K) ∩ (Xs/F

′
kn) = (q̂ǫ2)

−1(K) ∩ (Xs/F
′
kn),

for all sign choices ǫ. Hence by condition 2 applied to S we obtain (q̂ǫ1)
−1(K) =

(q̂ǫ2)
−1(K) for all ǫ. Then (2.3) gives q̂−1

1 (K) = q̂−1
2 (K). �

Lemma 2.4. Suppose R has a separating set of fan towers {s1, . . . , sℓ}. Let
q ∈ R and K ⊂ Z. Let m be the index such that every entry of q lies in
CkmFk∞, for all 1 ≤ k ≤ ℓ. Let n > m. Then for each k we have:

|q̂−1(K) ∩ (X/Fkn)| =
|X/Fkn|

|X/Fkm|
|q̂−1(K) ∩ (X/Fkm)|.

Proof. Pick a k with 1 ≤ k ≤ ℓ. Fkn ⊂ Fkm are both fans of finite index
so we can write Fkm = H × Fkn with H spanned by h1, . . . , hp, where 2p =
|X/Fkn|/|X/Fkm|. Every α ∈ X/Fkm has 2p extensions to X/Fkn, one for each
choice of signs (±1) for the hi. Specifically, if ǫ is a sign choice for the hi and
h ∈ H, let ǫ(h) be the resulting sign of h. Since G = CkmHFkn, the extension
of α ∈ X/Fkm to X/Fkn via ǫ is: αǫ(chf) = α(c)ǫ(h), where c ∈ Ckm, h ∈ H
and f ∈ Fkn. We thus have

X/Fkn =
⋃

ǫ

(X/Fkm)ǫ.

Write q = 〈a1, a2, . . . 〉. By assumption, each ai is in CkmFk∞ ⊂ CkmFkn.
Hence αǫ(ai) = α(ai). Thus :

q̂−1(K) ∩ (X/Fkn) =
⋃

ǫ

(

q̂−1(K) ∩ (X/Fkm)
)ǫ
.

So |q̂−1(K) ∩ (X/Fkn) = 2p|q̂−1(K) ∩ (X/Fkm)|, and the result follows. �

Lemma 2.5. Let q ∈ R be a form of dimension n. Let F be a fan of finite
index and let K ⊂ Z. Then :

|q̂−1(K) ∩ (X/F )| =
k

2n
|X/F |,
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for some integer k, 0 ≤ k ≤ 2n.

Proof. Write q = 〈a1, . . . , an〉. Then q̂−1(K) is a disjoint union of
H(ǫ1a1, . . . , ǫnan) for various choices of ǫ = (ǫ1, . . . , ǫn) ∈ {±1}n. Set
ρǫ = 〈〈ǫ1a1, . . . , ǫnan〉〉. Then by the easy half of the representation theorem

∑

α∈X/F

ρ̂ǫ(α) ≡ 0 (mod |X/F |)

2n|H(ǫ1a1, . . . , ǫnan) ∩ (X/F )| = kǫ|X/F |,

for some non-negative integer kǫ. Then :

|q̂−1(K) ∩ (X/F )| =
∑

ǫ

kǫ
2n

|X/F | =
k

2n
|X/F |,

for some non-negative integer k. �

The following is essentially from [9]. For a form q = 〈a1, . . . , an〉 the dis-
criminant is dis q = (−1)n(n−1)/2a1 · · · an. This is sometimes called the signed
discriminant.

Lemma 2.6. Let q be an odd dimensional form.

(1) dis q >α 0 iff q̂(α) ≡ 1 (mod 4).
(2) sgnαdis(q)q ≡ 1 (mod 4) for all α ∈ X.

(3) If 0 6= a = bc and â(α) = ±b̂(α) for all α ∈ X with â(α) 6= 0 then there
exists d ∈ G such that 〈d〉a = b.

Proof. (1) Suppose n = dim q. Let s = q̂(α). If r is the number of α-negative
entries in q then

sgnαdis q = (−1)n(n−1)/2(−1)r = (−1)
n(n−1)

2 +
n−s
2 = (−1)(n

2−s)/2.

This is positive iff n2−s ≡ 0 (mod 4). As n is odd we get that the discriminant
is positive iff q̂(α) = s ≡ n2 ≡ 1 (mod 4).
(2) is easy to check. For (3), let A = {α ∈ X : â(α) 6= 0}. Then ĉ(α) = ±1

for all α ∈ A. In particular c is odd dimensional and â(α) = 0 iff b̂(α) = 0.Let
d = dis c. Then 〈d〉c has signature 1 for all α ∈ A by (2). Hence 〈d〉bc and b
have the same signature at each α ∈ B, and also at each α /∈ A (as both have
signature 0 there). Thus 〈d〉a = 〈d〉bc = b. �

Theorem 2.7. Let R be a reduced Witt ring. Then ACC holds for principal
ideals iff the chain length of R is finite.

Proof. (2.1) gives (−→). For the converse, let (q) ⊂ (q1) ⊂ (q2) ⊂ · · · be an
ascending chain of principal ideals in R. Note that as each qi divides q we have
M(qi) ≤ M(q). Let M = M(q). Then (1.3) gives dim qi ≤

1
2cl(R)M

2 for all i
(note q is not one-dimensional else all (qi) = R).
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We begin with some simple reductions. If all qi are 0 then the result is clear. If
some qi is not zero then all the later qi’s are not zero. We may start our tower
there, that is, we may assume q 6= 0. For a non-zero form ϕ define degϕ to be
the largest d such that 2d divides ϕ̂(α) for all α ∈ X. Since qi+1 divides qi we
have deg qi+1 ≤ deg qi. Let d0 be the minimum of the degrees of the qi. We
may start our tower at a qj of minimal degree, that is, we may assume that
deg q = deg qi for all i. Now we may write q = qiϕi for some form ϕi. We check
that ϕi is odd dimensional. If instead ϕi is even dimensional then 2 divides
ϕ̂i(α) for all α and so 2d+1 divides q̂(α) for all α, contradicting our reduction
to a tower of uniform degree. Hence ϕi is odd dimensional. In particular,
q̂(α) = 0 iff q̂i(α) = 0.

Let D be the set of integers d > 1 that divide some non-zero q̂(α), α ∈ X.
Write D = {d1, . . . , dz} with d1 < d2 < · · · < dz. Set A(i, dj) = q̂−1

i (±dj).
Let dk be the largest element of D (if any) for which {A(i, dk) : i ≥ 1} is not
finite. Our goal is to show that there is in fact no such dk. Our assumption on
dk means that for each j > k we have a tj such that A(t, dj) = A(tj , dj) for all
t ≥ tj . Let T be the maximum of the tj , j > k. Then by starting our tower of
ideals with qT , we may assume A(i, dj) = A(1, dj) for all j > k and all i ≥ 1.

We first check that A(i + 1, dk) ⊂ A(i, dk) for any i. Namely, qi = qi+1ϕ for
some form ϕ. So if α ∈ A(i+ 1, dk) then ±dk divides q̂(α). Also |q̂i(α)| is not
of the dj with j > k else α ∈ A(i, dj) = A(i + 1, dj), which is impossible as
α ∈ A(i+ 1, dk). Thus |q̂i(α)| ≤ dk and is divisible by dk. Hence q̂i(α) = ±dk
and α ∈ A(i, dk) as desired.

Let s = {Fm} be one fan tower in a separating set of fan towers for R (which
exists by (2.2)). The first condition for a separating set, plus a simple induction
argument, shows that for each i there exists a least m(i) with every entry of
q1, . . . , qi in Cm(i)F∞. Note that m(i + 1) ≥ m(i). Let p(i) be the number of
distinct values of

|A(j, dk) ∩ (X/Fm(i))|

|X/Fm(i)|
≡ γ(i, j),

over j with 1 ≤ j ≤ i. Now, by (2.4)

γ(i+ 1, j) =
|A(j, dk) ∩ (X/Fm(i+1))|

|X/Fm(i+1)|

=
|X/Fm(i+1)|

|X/Fm(i)|

|A(j, dk) ∩ (X/Fm(i))|

|X/Fm(i+1)|

= γ(i, j).

Hence p(i+ 1) ≥ p(i), with only γ(i+ 1, i+ 1) possibly being a new value.

Since every dim qi ≤
1
2cl(R)M

2, (2.5) implies each p(i) ≤ 2cl(R)M2/2+1. Hence
there is a t0 such that p(t) = p(t0) for all t ≥ t0. Let p = p(t0) and m = m(t0).
Say γ(t0, j1), . . . , γ(t0, jp) are the distinct γ-values over 1 ≤ j ≤ t0. Let t > t0
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and set n = m(t). Then γ(t, t) = γ(t0, js) for some js. That is,

|A(t, dk) ∩ (X/Fn)|

|X/Fn|
=

|A(js, dk) ∩ (X/Fm)|

|X/Fm|

=
|A(js, dk) ∩ (X/Fn)|

|X/Fn|
,

using (2.4) again. Further, A(t, dk) ⊂ A(t0, dk) ⊂ A(js, dk) so that we have

|A(t, dk) ∩ (X/Fn)| = |A(t0, dk) ∩ (X/Fn)|,

and this holds for all t ≥ t0.
We can repeat this argument for each fan tower in the separating set. Let
{s1, . . . , sℓ} be the separating set and let si = {Fin}. Hence there exist an N
and a T such that |A(t, dk) ∩ (X/Fin)| = |A(T, dk) ∩ (X/Fin)| for all 1 ≤ i ≤ ℓ
and all t ≥ T . By the second property of a separating set we have A(t, dk) =
A(T, dk) for all t ≥ T . This contradicts our choice of dk.
Hence we have a T such that A(t, dj) = A(T, dj) for all t ≥ T and all dj ∈ D.
Thus q̂t(α) = ±q̂T (α) for all α in the union of the A(T, dj), that is, for all
α with q̂(α) 6= 0. By our early reduction, q̂(α) 6= 0 iff q̂T (α) 6= 0. Thus
q̂t(α) = ±q̂T (α) for all α with q̂T (α) 6= 0 and also qt divides qT . By (2.6) we
obtain (qt) = (qT ), for all t ≥ T . �

Corollary 2.8. Let R be a real (but necessarily reduced) Witt ring. If R
has finite chain length then ACC holds for principal ideals generated by odd
dimensional forms.

Proof. Every ideal containing an odd dimensional form contains the torsion
ideal Rt by [7, 1.5]. Hence passing to the reduced Witt ring maintains a tower
of principal ideals generated by odd dimensional forms. This reduced tower
stabilizes by (2.7). Hence the original tower stabilizes. �

Corollary 2.9. Let (G,X) be a space of orderings. Let S denote the collec-
tion of subsets of G of order n. If X has finite chain length then any tower

H(S1) ⊂ H(S2) ⊂ · · ·H(Sk) ⊂ · · · .

with each S ∈ S, stabilizes.

Proof. Suppose Si = {ai1, . . . , ain}. Set qi = 〈〈ai1, . . . , ain〉〉 + 1. Then
q̂i(X) = {1, 2n + 1} and q̂−1

i (2n + 1) = H(Si). Thus q̂i+1(α) divides q̂i(α)
for all α ∈ X. So qi+1 divides qi by [7, 1.7]. We thus have a tower of principal
ideals (q1) ⊂ (q2) ⊂ · · · . This stabilizes by (2.7) and so the tower of H(Si)’s
also stabilizes. �
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3. Factorization.

Anderson and Valdes-Leon [1] have several notions of an associate in a commu-
tative ring R. We need three of these. Two elements a and b are associates if
their principal ideals are equal, (a) = (b). They are strong associates if a = bu,
for some unit u ∈ R. Lastly, a and b are very strong associates if (a) = (b) and
either a = b = 0 or a 6= 0 and a = br implies r is a unit.
An non-unit a is irreducible if a = bc implies either b or c is an associate
of a. Similarly, a is strongly irreducible (very strongly irreducible) if a = bc
implies either b or c is a strong associate (respectively, very strong associate)
of a. Lastly, R is atomic if every non-zero non-unit of R can be written as a
finite product of irreducible elements. Define strongly atomic and very strongly
atomic similarly.

Proposition 3.1. Let R be a reduced Witt ring and let a, b ∈ R. Then a, b
are associates iff a, b are strong associates. In particular, R is atomic iff R is
strongly atomic.

Proof. Strong associates are always associates so we check the converse. Sup-
pose (a) = (b). Write a = bx and b = ay. Then a = axy and a(1 − xy) = 0.
Let Z = {α ∈ X : â(α) = 0}. Then for all α /∈ Z we have x̂(α) = ±1. From
a = bx and (2.6) we get 〈d〉a = b for some d ∈ G. Clearly 〈d〉 is a unit. �

Strong associates need not be very strong associates in a reduced Witt ring. If
±1 6= g ∈ G then 〈1, g〉 is not even a very strong associate of itself. Namely,
〈1, g〉 = 〈1, g〉〈1, 1,−g〉 and 〈1, g〉 6= 0 and 〈1, 1,−g〉 is not a unit. So, except
for R = Z, R will not be very strongly atomic.

Corollary 3.2. Let R be a real Witt ring (not necessarily reduced) and sup-
pose R has finite chain length.

(1) Every odd dimensional form can be written as a finite product of irre-
ducible forms.

(2) If R is reduced then R is atomic.

Proof. These are standard consequences of (2.8) and (2.7), see [1, 3.2]. �

We are unable to prove the converse to (3.2)(2) for all reduced Witt rings R.
However, we can prove the converse for a wide class of rings. For this we need
Marshall’s notion of a sheaf product [11]. Start with a non-empty Boolean
space I, a collection of reduced Witt rings RC , one for each clopen C ⊂ I
and a collection of ring homomorphisms resC.D : RC → RD, defined whenever
D ⊂ C are clopen in I. We assume the usual sheaf properties, namely,

(1) R∅ = Z/2Z and RC 6= Z/2Z if C 6= ∅.
(2) resC,C is the identity map on C.
(3) If E ⊂ D ⊂ C then resC,E = resD,EresC,D.
(4) If C = ∪jCj and if rj ∈ Rj are given such that

resCj ,Cj∩Ck
(rj) = resCk,Cj∩Ck

(rk),
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for all j, k, then there exists a unique r ∈ RC such that resC,Cj
(r) = rj ,

for all j.

For fixed i ∈ I we form the stalk

Ri = lim−→
i∈C

RC .

Each Ri is a reduced Witt ring. We call the reduced Witt ring RI the sheaf
product of the Ri’s and write RI =

∏

i∈I Ri. When I is finite and discrete this
is the usual product of Witt rings.
We next define a sequence of classes of reduced Witt rings (which is slightly
different from the sequence of Marshall [11, p. 219]). Let C1 denote the class
of finitely generated reduced Witt rings. Inductively define Cn to be sheaf
products of Ri[E

i], where Ei is a group of exponent two (not necessarily finite)
and Ri ∈ Cm for some m < n. Lastly, let Cω be the union of all Cn. This is a
large class. Already C2 contains all SAP reduced Witt rings and Cω contains all
reduced Witt rings where X has only a finite number of accumulation points
[11, 8.17].
We will prove that R ∈ Cω atomic implies R has finite chain length. We begin
with a lemma.

Lemma 3.3. Let S = R[E] and let T ⊂ GS be a fan of finite index. Set
T0 = T ∩GR.

(1) T0 is a fan in GR.
(2) Suppose XR/T0 = {P,Q}. Then XS/T consists of extensions of P,Q to

S. If x ∈ GS \GR then either none, exactly half or all of the extensions
of P that lie in XS/T make x positive.

Proof. (1) Write T = T0H for some subgroup H of GS with H ∩ GR = 1.
Extend H to subgroup L of GS such that GS = GR × L. Suppose P ⊂ GR is
a subgroup of index 2, containing T0 but not −1. Then PL is a subgroup of
index at most 2 containing T . If −1 ∈ PL then for some p ∈ P and y ∈ L we
have −p = y ∈ P ∩ L = 1. But then −1 = p ∈ P , a contradiction. Thus PL is
an ordering in GS . It is easy to check that P is then an ordering in GR. This
shows T0 is a fan.
(2) The first statement is clear. Suppose P1, . . . Pm, Q1, . . . , Qm are the exten-
sions of P,Q that lie in XS/T . Pick a ∈ GR with â(P ) = 1 and â(Q) = −1.
Let k be the number of Pi for which x is positive. From the easy half of the
Representation Theorem [11, 7.13]

∑

α∈XS/T

sgnα〈〈a, x〉〉 ≡ 0 (mod 2m)

4k ≡ 0 (mod 2m).

So m divides 2k and clearly k ≤ m. Hence k = 0, 12m or m. �
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Our proof that R ∈ Cω atomic implies finite chain length is not the usual
induction argument since we are unable to show R[E] atomic implies R atomic.
Instead we explicitly construct a form which does not factor into a finite product
of irreducibles. Unfortunately, the construction requires considerable notation.
We introduce this notation by first looking at a special case. Let ∗ denote a
group ring extension. A ring in Cn looks like

R =
∏

α∈A1

W (α)∗

=
∏

α∈A1

(

∏

β∈A2(α)

W (α, β)∗
)∗

=
∏

α∈A1

(

∏

β∈A2(α)

(

∏

γ∈A3(α,β)

W (α, β, γ)∗
)∗)∗

,

where each A1, A2(α) and A3(α, β) is a Boolean space and each W (α, β, γ) is
in Cm, for some m ≤ n− 3.
Suppose we want to single out the product over A3(α0, β0), for some particular
α0 and β0. We set :

R1 =
∏

γ∈A3(α0,β0)

W (α0, β0, γ)
∗

R2 =
∏

β∈A2(α0)
β 6=β0

(

∏

γ∈A3(α0,β)

W (α0, β, γ)
∗

)∗

R3 =
∏

α∈A1

α6=α0

(

∏

β∈A2(α)

(

∏

γ∈A3(α,β)

W (α, β, γ)∗
)∗)∗

.

Then R = ((R∗
1 ⊓R

∗
2)

∗ ⊓R∗
3)

∗.
We will want to single out the first infinite sheaf product. We have:

R = ((. . . ((R∗
1 ⊓R

∗
2)

∗ ⊓R∗
3)

∗ ⊓ . . . )∗ ⊓R∗
s)

∗,

with R1 an infinite sheaf product, say

R1 =
∏

δ∈A

W (δ)∗,

and each W (δ) in some Cm, m ≤ n− s. We will need explicit extension groups.
We use the notation

R = (. . . ((R1[E
1] ⊓R2[F

1])[E2] ⊓R3[F
2])[E3] ⊓ . . . ⊓Rs[F

s−1])[Es].

We further take {tij} as generators of Ei.
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Lastly, we need notation to express the orderings on R. Let Xi denote XRi
.

Let X1(ǫ1) denote the extensions of X1 to R1[E
1]. Here ǫ1 is an arbitrary

choice of signs. The extension is determined by the values ǫ1(t
1
j ) ∈ {±1}.

To save on indices we will write ǫ1(j) for ǫ1(t
1
j ). Next, X2(η1) denotes the

extensions from R2 to R2[F
1]. X1(ǫ1, ǫ2) denotes the extensions from R1 to

(R1[E
1]⊓R1[F

1])[E2], with ǫ2 a sign choice for E2. Continue with this pattern.
We obtain for XR

⋃

ǫ,η

[X1(ǫ1, . . . , ǫs) ∪X2(η1, ǫ2, . . . , ǫs) ∪X3(η2, ǫ3, . . . , ǫs) ∪ . . . ∪Xs(ηs−1, ǫs)].

Theorem 3.4. Suppose R ∈ Cω. The following are equivalent:

(1) R has finite chain length.
(2) R has ACC on principal ideals.
(3) R is atomic.

Proof. We need only show R atomic implies R has finite chain length, by (2.7)
and (3.2). Suppose R ∈ Cn and let s be the first level (if any) with an infinite
sheaf product. We follow the above notation. Fix some δ0 ∈ A and define
a ∈ GR1

with −1 in the δ0 coordinate and 1 in the other coordinates. Set

b = ((. . . (a,−1),−1), . . . ),−1) ∈ GR,

and set q = 〈b, t11, bt
1
1〉.

Let Xδ be the orderings on W (δ)∗ so that X1 = ∪Xδ. Set C = q̂−1(3). Then:

C =
⋃

ǫ,η
ǫ1(1)=1





(

⋃

δ 6=δ0

Xδ

)

(ǫ1, . . . , ǫs) ∪X2(η1, ǫ2, . . . , ǫs) ∪ . . . ∪Xs(ηs−1, ǫs))



 .

We are assuming R is atomic, so let q = ϕ1 · · ·ϕr with each ϕi irreducible. We
may assume ϕ̂i(X) = {3,−1} by (2.6). Set Di = ϕ̂−1

i (3). Note Di ⊂ C. We
will show that in fact one of the ϕi factors and hence that no sheaf product in
R is infinite.
Our first goal is to show that each Di consists of all extensions, with t

1
1 positive,

of some subset of X1. Pick P ∈ Xδ0 and Q ∈ Xδ with δ 6= δ0. Fix some k and
j. Let

ek = sp{tk1 , . . . , t
k
j−1, t

k
j+1, . . . }

e1 = sp{t12, t
1
3, . . . }.

Let T be the fan

(. . . (((P ∩Q)[e1] ⊓GR2
[F 1])[E2] . . . )[ek] ⊓ . . . ⊓GRs

[F s−1])[Es].
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ThenX/T has 8 orderings, namely the extensions of P andQ with all tiℓ positive

except possibly t11 and tjk. Write these orderings as P (±1,±1) and Q(±1,±1),
where the first coordinate gives the sign of t11 and the second gives the sign of
tkj .
C ∩ (X/T ) = {Q(1,±1)} so that |C ∩ (X/T )| = 2. To ease notation slightly,
write D for one of the Di. Let w = |D ∩ (X/T )|. Then by the easy part of the
Representation Theorem we have:

∑

γ∈X/T

ϕ̂(γ) ≡ 0 (mod |X/T |)

3w − (8− w) ≡ 0 (mod 8)

w ≡ 0 (mod 2).

As D ∩ (X/T ) ⊂ C ∩ (X/T ) we have D ∩ (X/T ) is either empty or all of
C ∩ (X/T ).
Suppose for some k and j we are in the second case, D ∩ (X/T ) = C ∩ (X/T ).
Choose another pair g, h. Pick the fan T ′ generated over P ∩ Q by Ei for
i 6= 1, k, g, the same e1 as before and

ek
′

= sp{tk1 , . . . , t
k
j−1,−t

k
j , t

k
j+1 . . . }

eg
′

= sp{tg1, . . . , t
g
h−1, t

g
h+1, . . . }.

Then X/T ′ has 8 orderings, namely the extensions of P and Q with all tiℓ
positive except tkj negative and t11, t

g
h arbitrary. Write these as P (±1,−1,±1)

andQ(±1,−1,±1) with the first coordinate the sign of t11, the second coordinate
indicating that tkj is negative and the third coordinate the sign of tgh.
Again C ∩ (X/T ′) consists of two orderings, Q(1,−1,±1). And as before we
get that D∩ (X/T ′) is either empty or all of C ∩ (X/T ′). But Q(1,−1, 1) is the
same ordering that was denoted by Q(1,−1) before (that is, with t11 positive, tkj
negative and all other t’s positive). Hence we have D ∩ (X/T ′) = C ∩ (X/T ′).
We continue to assume D ∩ (X/T ) = C ∩ (X/T ). If we repeat this argument
( first with a fan having tkj and tgh negative) we get that any extension Q with

t11 positive and only a finite number of tiℓ negative is in D. Now D = ϕ̂−1(3)
and the entries of ϕ involve only a finite number of tiℓ. Hence we have that any
extension of Q with t11 positive is in D.
The assumption that D ∩ (X/T ) 6= ∅ means we are assuming some extension
of Q with t11 positive is in D. From this we conclude that all such extensions
are in D.
Let X∗

1 denote the orderings on R1[E
1], namely the extensions ǫ1 of X1. Write

D|X∗
1 for the orderings in D restricted to R1[E

1]. We have shown that D|X∗
1

consists of all extensions, with t11 positive, of some subset (call it D|X1) of X1.
Each factor ϕi of q has its set Di. We have C = ∪Di and

∪(Di|X1) = C|X1 =
⋃

δ∈A
δ 6=δ0

Xδ.
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A is infinite so some Di|X1 meets at least two Xδ’s. For simplicity, call this Di

simply D and the corresponding form ϕ. Suppose D|X1 meets Xδ1 and Xδ2 ,
δ1 6= δ2. Set

D0 =
⋃

ǫ(1)=1

[(D|X1) ∩Xδ1 ](ǫ1) ⊂ X∗
1 .

In words, D0 consists of the extensions for Xδ1 that lie in D|X∗
1 . We will use

D0 to construct a factor of ϕ.
Let f : X∗

1 → Z by f(P ) = 3 if P ∈ D0 and f(P ) = −1 if P /∈ D0. We want to
use the Representation Theorem [11,7.13] to show f is represented by a form
in R1[E

1]. Let T ⊂ GR1
E1 be a fan of finite index. Then T1 = T ∩ GR1

is a
fan in GR1

by (3.3)
Case 1 : (X1/T1) ⊂ Xδ for some δ ∈ A.
Here X∗

1/T = (Xδ/T1)(ǫ), over some set of extensions ǫ to E1. If δ 6= δ1 then
f(P ) = −1 for all P ∈ (X∗

1/T ) since D0 only has extensions from Xδ1 . Thus

∑

P∈X∗

1
/T

f(P ) = −|X∗
1/T | ≡ 0 (mod |X∗

1/T |).

If δ = δ1 then P ∈ D0 iff P ∈ D|X∗
1 iff some (equivalently, every) extension,

with t11 positive, of P to XR lies in D iff ϕ̂(P ) = 3. So f(P ) = ϕ̂(P ) for all
P ∈ X∗

1/T . We obtain

∑

P∈X∗

1
/T

f(P ) =
∑

P∈X∗

1
/T

ϕ̂(P ) ≡ 0 (mod |X∗
1/T |).

Case 2 : (X1/T1) 6⊂ Xδ for some δ ∈ A.
Here we must have |X1/T1| = 2 by [11, 8.12] Write X1/T1 = {Pα, Pβ} where
α, β are distinct elements of A and Pα ∈ Xα and Pβ ∈ Xβ . Then X

∗
1/T consists

of some set of extensions, to E1, applied to Pα and Pβ .
Again, if neither α nor β are δ1 then all f(P ) = −1 and we are done. So
say α = δ1 (and so β 6= δ1). If Pα /∈ D|X1 then no extension is in D0 and
all f(P ) = −1 again. So suppose Pα ∈ (D|X1) ∩ Xδ1 . Since Pβ /∈ Xδ1 no
extension of Pβ in X∗

1/T is in D0. This is half of X∗
1/T . The other half

consists of extensions of Pα and by (3.3) either none, exactly half or all of these
extensions make t11 positive, and hence lie in D0. Thus |D0∩ (X∗

1 )| = d|X∗
1/T |,

where d is either (i) 0, or (ii) 1
4 or (iii) 1

2 . In case (i) we have

∑

P∈X∗

1

f(P ) = −|X∗
1/T | ≡ 0 (mod |X∗

1/T |).

In case (ii) we have

∑

P∈X∗

1

f(P ) = 1
4 |X

∗
1/T | · 3 +

3
4 |X

∗
1/T | · (−1) ≡ 0 (mod |X∗

1/T |).
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In case (iii) we have

∑

P∈X∗

1

f(P ) = 1
2 |X

∗
1/T | · 3 +

1
2 |X

∗
1/T | · (−1) ≡ 0 (mod |X∗

1/T |).

Thus in all cases we have
∑

f(P ) ≡ 0 (mod |X∗
1/T |). By the non-trivial half

of the Representation Theorem we have f = ψ̂ for some form ψ ∈ R1[E
1]. By

construction ψ̂(X∗
1 ) = {3,−1} and ψ̂−1(3) = D0 < D. Hence by [7, 1.7] ψ is a

proper divisor of ϕ. Hence ϕ is not irreducible, a contradiction.
We thus have if R ∈ Cn is atomic then all sheaf products are finite. Hence
cl(R) <∞, using [12, 4.2.1]. �

Corollary 3.5. Let R ∈ Cω. If R[E] is atomic then so is R.

Proof. R[E] atomic implies R[E] has finite chain length by (3.4). Then , as
cl(R[E]) = cl(R), R has finite chain length and so is atomic by (3.2). �

It is unknown if the reduced Witt rings of finite stability index lie in Cω so the
following may improve (3.4), although (3.4) includes many atomic Witt rings
with X infinite.

Proposition 3.6. Suppose R has finite stability index. The following are
equivalent:

(1) R has finite chain length.
(2) R has ACC on principal ideals.
(3) R is atomic.
(4) X is finite.

Proof. (1) and (4) are equivalent by [10] (first shown, in the field case in [4]).
As in the proof of (3.4) we need only show (3) implies (1). Suppose the stability
index of R is n. We can find a prime p congruent to 1 mod 2n by Dirichlet’s
Theorem. R is atomic so p = ϕ1 · · ·ϕt for some irreducible elements ϕi. Note
that for each i we have |ϕ̂i(X)| = {p, 1}. Let Ai = ϕ̂−1

i (±p). The Ai’s form a
clopen cover of X.
We wish to show R has finite chain length. So suppose we have a tower

H(a1) > H(a2) > H(a3) > · · · .

First suppose there is an s, 1 ≤ s ≤ t and a k such that As ∩ H(ak) is a
non-empty, proper subset of As. Define f : X → Z by

f(α) =

{

p, if α ∈ As ∩H(ak)

1, if α /∈ As ∩H(ak).

Let T be a fan, |X/T | = 2m, where m ≤ n by definition of the stability index.
Set w = |As ∩H(ak) ∩ (X/T )|. Then

∑

α∈X/T

f(α) = wp+ (2m − w) = w(p− 1) ≡ 0 (mod 2m),
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since p − 1 is a multiple of 2n. By the Representation Theorem, f = ψ̂ for

some form ψ. Then ψ̂(α) divides ϕ̂s(α) for all α and for α ∈ As \ H(ak),

ψ̂(α) 6= ±ϕ̂s(α). So, using [7, 1.7], we have ψ is proper divisor of ϕs, which is
impossible.
Thus there does not exists a pair s, k such that H(ak) ∩ As is a non-empty,
proper subset of As. That is, for all i, j we have H(ai) ∩ Aj 6= ∅ implies
Aj ⊂ H(ai). The Aj ’s cover X so each H(ai) is a union of Aj ’s. Let n(i) be
the number of Aj ’s required to cover H(ai). Then 1 ≤ n(i+ 1) < n(i) ≤ t for
all i. Thus the tower is finite and we are done. �

4. Irreducible elements.

We look at some examples to illustrate factorization in reduced Witt rings.

Proposition 4.1. If 1 6= a ∈ G then 〈1,−a〉 is irreducible in R.

Proof. Suppose 〈1,−a〉 = qϕ in R. We may assume q is even dimensional and
ϕ is odd dimensional. If a <α 0 then 2 = q̂(α)ϕ̂(α). Thus q̂(α) = ±2 =
±sgnα〈1,−a〉, for all α with sgnα〈1,−a〉 6= 0. By (2.6) there exists a d ∈ G
such that 〈d〉〈1,−a〉 = q and so q is an associate of 〈1,−a〉. �

Example. If R 6= Z then factorization into irreducible elements is not unique.
Namely, if a 6= ±1 then 〈1,−a〉〈1,−a〉 = 〈1, 1〉〈1,−a〉 gives two different fac-
torizations of the Pfister form. This is quite different from the case of factoring
odd dimensional forms. When X is finite there is unique factorization of odd
dimensional forms if the ideal class group of R is trivial or, equivalently, the
stability index is at most 2, by [6, 2.7] and [7, 1.17].

We next find the irreducible elements in Z[E1]. Note that any form q in this
ring is associate to some n+mt with n ≥ |m|.

Proposition 4.2. Let q = n+mt ∈ Z[E1] with n ≥ |m|. Then q is irreducible
iff (n,m) or (n,−m) equals one of the following:

(1) (1, 1)
(2) (2k + 1, 2k − 1), for some k ≥ 0
(3) ( 12 (p+ 1), 12 (p− 1)), for some odd prime p.

Proof. Let q be irreducible. First suppose q is even dimensional. If both n and
m are even then 2 is a factor of q. So we have n and m odd. If n = ±m then n
is a factor of q and we must have n = 1. Thus (n,m) = (1,±1). We may thus
suppose n+m and n−m are non-zero. Write n+m = 2gh and n−m = 2kℓ
with h and ℓ odd and g, k ≥ 1. Set

ϕ1 = 1
2 (2

g + 2k) + 1
2 (2

g − 2k)t

ϕ2 = 1
2 (h+ ℓ) + 1

2 (h− ℓ)t.

Then q = ϕ1ϕ2 and ϕ2 is odd dimensional and so not an associate of q. Thus
ϕ1 is an associate of q. If α is the ordering with t positive then n+m = q̂(α) =

Documenta Mathematica · Quadratic Forms LSU 2001 · 141–163



Isotropy and Factorization 161

±ϕ̂1(α) = ±2g. Since n ≥ −m we obtain n +m = 2g and h = 1. Similarly,
taking signatures at the ordering β with t negative gives ℓ = 1. If both g and k
are at least 2 then n and m are even which is not possible. Suppose n+m = 2g

and n−m = 2. Then we get case (2). The reverse , n+m = 2 and n−m = 2k

gives case (2) for the pair (n,−m).
Now suppose q is odd dimensional. If n+m is composite, say n+m = ab with
a, b > 1, then set

ϕ1 = 1
2 (a+ 1) + 1

2 (a− 1)t

ϕ2 = 1
2 (b+ n−m) + 1

2 (b− n+m)t.

Then q = ϕ1ϕ2. Neither ϕ1 nor ϕ2 is an associate of q as q̂(α) = ab while
ϕ̂1(α) = a and ϕ̂2(α) = b. Hence n +m is not composite. Similarly, n −m is
not composite. If both n+m and n−m are prime then set

ϕ1 = 1
2 (n+m+ 1) + 1

2 (n+m− 1)t

ϕ2 = 1
2 (n−m+ 1) + 1

2 (1− n+m)t.

We have q = ϕ1ϕ2. Neither ϕ1 nor ϕ2 is an associate of q as q̂(α) = n+m while
ϕ̂2(α) = 1 and q̂(β) = n−m while ϕ̂1(β) = 1. Thus we must have n+m = p,
p an odd prime, and n−m = 1 (or the reverse). This gives case (3).
It is straightforward to check the forms in cases (1) - (3) are irreducible. �

Example. Already for Z[E1], and in fact for any R 6= Z, the number of irre-
ducible factors in factorization of a given element can be arbitrarily large. For
instance, 〈1, 1, t〉 is irreducible (take p = 3 in (4.2)(3)) and 〈1,−t〉〈1, 1, t〉 =
〈1,−t〉. Hence

〈〈1,−t〉〉 = 〈1, 1〉〈1, 1, t〉n〈1,−t〉

is a factorization into irreducible elements for any n. Again the situation is quite
different if we consider only factorizations of odd dimensional forms. WhenX is
finite, the number of irreducible factors in a factorization is uniquely determined
iff the stability index is at most 3 and R has no factor of the type (Zs)[E2],
with s ≥ 3, see [7].

Notice that the even prime of Z remains irreducible in Z[E1] while the odd
primes of Z all factor in Z[E1]. This holds more generally.

Proposition 4.3. Let q ∈ R be irreducible.

(1) If q is even dimensional then q remains irreducible in R[E1].
(2) If q is odd dimensional then q remains irreducible in R[E1] iff q is not

associate to 1 + 2q0, for some q0 ∈ R.

Proof. First say q = 1 + 2q0, for some q0 ∈ R. Since q is not a unit, there
exists an α ∈ XR with q̂(α) 6= ±1. Let α+ and α− denote the extensions of α
to R[E1] with, respectively, t positive and t negative. Now

q = (1 + q0〈1, t〉)(1 + q0〈1,−t〉).
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Neither factor is an associate of q as the first has signature 1 at α− and the
second has signature 1 at α+. Thus q is not irreducible in R[E1].
Now suppose we have an irreducible q that factors in R[E1]. We want to show
q is odd dimensional and associate to some 1+ 2q0. Write q = (a+ b〈1, t〉)(c+
d〈1,−t〉), with a, b, c, d ∈ R and neither factor an associate of q. The coefficient
of t, namely bc− ad, must be zero and so q = ac+ ad+ bc. Then

q = ac+ 2bc = c(a+ 2b)(4.4)

= ac+ 2ad = a(c+ 2d).(4.5)

As q is irreducible in R, (4.4) shows that either c or a+2b is an associate of q.
We may assume c is the associate of q. Namely, if a+ 2b is the associate then
rewrite q as

q = ((c+ 2d) + (−d)〈1, t〉)((a+ 2b) + (−b)〈1,−t〉)

≡ (a′ + b′〈1, t〉)(c′ + d′〈1,−t〉).

Then c′ = a+ 2b is associate to q.
Write uq = c for some unit c ∈ R. Equation (4.5) shows that either a or c+2d
is an associate of q. Assume by way of contradiction that vq = c+2d for some
unit v ∈ R. Note (v − u)q = 2d; set χ = v − u. Let Z = {α ∈ XR : q̂(α) 6= 0}.

From (4.4), q = qu(a + 2b) so that û = â + 2b̂ on Z. Similarly, from (4.5)

q = qva so that v̂ = â on Z. Thus, on Z, χ̂ = v̂ − û = −2b̂. Now u and v are
units and so have signatures ±1 at all orderings. Thus χ̂(XR) ⊂ {2, 0,−2}. If

b is even dimensional then we must have b̂ = 0 on Z. Then χ̂ = 0 on Z and
0 = qχ = 2d. But then d = 0 and the second factor of q, c+ d〈1,−t〉 = c = uq
is an associate of q, a contradiction. Hence b is odd dimensional. In particular,

b̂ is never zero. So v̂ − û is not zero on Z. We must have v̂ = −û (as û and v̂
are always ±1). So χ̂ = 2v̂ on Z. Then 2vq = qχ = 2d and vq = d. But then
the second factor of q is c+ d〈1,−t〉 = uq + vq〈1,−t〉 = q(u+ v − vt) = −vtq,
an associate of q. This is impossible.
Hence we must have that q is an associate of a as well as c. Write uq = c and
vq = a for units u, v ∈ R. Equation (4.4) gives q = uq(a + 2b). If q is even
dimensional then a + 2b is odd dimensional and so a is odd dimensional. But
a is an associate of the even dimensional q so a must be even dimensional, a
contradiction.
We have then that q is odd dimensional. Then q = uq(a+2b) implies u(a+2b) =
1. So uvq = ua = 1− 2ub, as desired. �

It can be shown that a + bt ∈ R[E1] is irreducible if a + b is irreducible in R
and a − b is a unit. Thus in the factorization of (4.3) 1 + 2q0 = (1 + q0 +
q0t)(1 + q0 − q0t), both factors are irreducible. However, not every irreducible
a + bt ∈ R[E1] satisfies a + b irreducible and a − b a unit. For instance, one
may easily check that q = 〈1〉 + 〈〈t1, t2, t3〉〉 ∈ Z[E3] is irreducible. As a form
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in R[E1], where R = Z[E2], we have q = a + bt3 with a = 〈1〉 + 〈〈t1, t2〉〉 and
b = 〈〈t1, t2〉〉. Then a− b is a unit but a+ b = 1+ 2〈〈t1, t2〉〉 = (1− 〈〈t1, t2〉〉)

2.
In fact, we have been unable to determine the irreducible elements of R[E1]
in terms of the irreducibles of R. For products, we can determine only the
irreducible odd dimensional forms.

Proposition 4.6. If R = R1 ⊓ R2 and (a, b) ∈ R is odd dimensional then
(a, b) is irreducible iff a is irreducible in R and b is a unit or the reverse, a is
a unit and b is irreducible.

Proof. We have (a, b) = (a, 1)(1, b). So (a, b) irreducible implies either a or b
is a unit. Say b is a unit. If a = xy then (a, b) = (x, b)(y, 1), so a must be
irreducible in R. �
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