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Abstract. Quadratic quaternion forms, introduced by Seip-Hornix
(1965), are special cases of generalized quadratic forms over algebras
with involutions. We apply the formalism of these generalized qua-
dratic forms to give a characteristic free version of different results
related to hermitian forms over quaternions:
1) An exact sequence of Lewis
2) Involutions of central simple algebras of exponent 2.
3) Triality for 4-dimensional quadratic quaternion forms.
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1. Introduction

Let F be a field of characteristic not 2 and letD be a quaternion division algebra
over F . It is known that a skew-hermitian form over D determines a symmetric
bilinear form over any separable quadratic subfield of D and that the unitary
group of the skew-hermitian form is the subgroup of the orthogonal group
of the symmetric bilinear form consisting of elements which commute with a
certain semilinear mapping (see for example Dieudonné [3]). Quadratic forms
behave nicer than symmetric bilinear forms in characteristic 2 and Seip-Hornix
developed in [9] a complete, characteristic-free theory of quadratic quaternion
forms, their orthogonal groups and their classical invariants. Her theory was
subsequently (and partly independently) generalized to forms over algebras
(even rings) with involution (see [11], [10], [1], [8]).
Similitudes of hermitian (or skew-hermitian) forms induce involutions on the
endomorphism algebra of the underlying space. To generalize the case where
only similitudes of a quadratic form are considered, the notion of a quadratic
pair was worked out in [6]. Relations between quadratic pairs and generalized
quadratic forms were first discussed by Elomary [4].
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The aim of this paper is to apply generalized quadratic forms to give a charac-
teristic free presentation of some results on forms and involutions. After briefly
recalling in Section 2 the notion of a generalized quadratic form (which, follow-
ing the standard literature, we call an (ε, σ)-quadratic form) we give in Section
3 a characteristic-free version of an exact sequence of Lewis (see [7], [8, p. 389]
and the appendix to [2]), which connects Witt groups of quadratic and quater-
nion algebras. The quadratic quaternion forms of Seip-Hornix are the main
ingredient. Section 4 describes a canonical bijective correspondence between
quadratic pairs and (ε, σ)-quadratic forms and Section 5 discusses the Clifford
algebra. In particular we compare the definitions given in [10] and in [6]. In Sec-
tion 6 we develop triality for 4-dimensional quadratic quaternion forms whose
associated forms (over a separable quadratic subfield) are 3-Pfister forms. Any
such quadratic quaternion form θ is an element in a triple (θ1, θ2, θ3) of forms
over 3 quaternions algebras D1, D2 and D3 such that [D1][D2][D3] = 1 in the
Brauer group of F . Triality acts as permutations on such triples.

2. Generalized quadratic forms

Let D be a division algebra over a field F with an involution σ : x 7→ x. Let V
be a finite dimensional right vector space over D. An F -bilinear form

k : V × V → D

is sesquilinear if k(xa, yb) = ak(x, y)b for all x, y ∈ V , a, b ∈ D. The additive
group of such maps will be denoted by Sesqσ(V,D). For any k ∈ Sesqσ(V,D)
we write

k∗(x, y) = k(y, x).

Let ε ∈ F× be such that εε = 1. A sesquilinear form k such that k = εk∗

is called ε-hermitian and the set of such forms on V will be denoted by
Hermε

σ(V,D). Elements of

Altεσ(V,D) = {g = f − εf∗ | f ∈ Sesqσ(V,D)}.

are ε-alternating forms. We obviously have Alt−ε
σ (V,D) ⊂ Hermε

σ(V,D). We
set

Qε
σ(V,D) = Sesqσ(V,D)/Altεσ(V,D)

and refer to elements of Qε
σ(V,D) as (ε, σ)-quadratic forms. We recall that

(ε, σ)-quadratic forms were introduced by Tits [10], see also Wall [11], Bak [1] or
Scharlau [8, Chapter 7]. For any algebra A with involution τ , let Symε(A, τ) =
{a ∈ A | a = ετ(a)} and Altε(A, τ) = {a ∈ A | a = c − ετ(c), c ∈ A}. To
any class θ = [k] ∈ Qε

σ(V,D), represented by k ∈ Sesqσ(V,D), we associate a
quadratic map

qθ : V → D/Altε(D,σ), qθ(x) = [k(x, x)]

where [d] denotes the class of d in D/Altεσ(D). The ε-hermitian form

bθ(x, y) = k(x, y) + εk∗(x, y) = k(x, y) + εk(y, x)
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depends only on the class θ of k in Qε
σ(V,D). We say that bθ is the polarization

of qθ.

Proposition 2.1. The pair (qθ, bθ) satisfies the following formal properties:

qθ(x+ y) = qθ(x) + qθ(y) + [bθ(x, y)]

qθ(xd) = dqθ(x)d

bθ(x, x) = qθ(x) + εqθ(x)

(1)

for all x, y ∈ V , d ∈ D. Conversely, given any pair (q, b), q : V →
D/Altε(D,σ), b ∈ Hermε

σ(V,D) satisfying (1), there exist a unique θ ∈
Qε

σ(V,D) such that q = qθ, b = bθ.

Proof. The formal properties are straightforward to verify. For the converse
see [11, Theorem 1].

Example 2.2. Let D = F , σ = IdF and ε = 1. Then sesquilinear forms are
F -bilinear forms, Altε(D,σ) = 0 and a (σ, ε)-quadratic form is a (classical)
quadratic form. We denote the set of bilinear forms on V by Bil(V, F ). Ac-
cordingly we speak of ε-symmetric bilinear forms instead of ε-hermitian forms.

Example 2.3. Let D be a division algebra with involution σ and let D be a
finite dimensional (right) vector space over D. We use a basis of V to identify
V with Dn and EndD(V ) with the algebra Mn(D) of (n × n)-matrices with
entries in D. For any (n×m)-matrix x = (xij), let x

∗ = xt, where t is transpose
and x = (xij). In particular the map a 7→ a∗ is an involution of A =Mn(D). If
we write elements of Dn as column vectors x = (x1, . . . , xn)

t any sesquilinear
form k over Dn can be expressed as k(x, y) = x∗ay, with a ∈ Mn(D), and
k∗(x, y) = x∗a∗y. We write Altn(D) = {a = b − εb∗} ⊂ Mn(D), so that
Qε

σ(V,D) =Mn(D)/Altn(D).

Example 2.4. Let D be a quaternion division algebra, i.e. D is a central
division algebra of dimension 4 over F . Let K be a maximal subfield of D
which is a quadratic Galois extension of F and let σ : x 7→ x be the nontrivial
automorphism of K. Let j ∈ K \F be an element of trace 1, so that K = F (j)
with j2 = j + λ, λ ∈ F . Let ℓ ∈ D be such that ℓxℓ−1 = x for x ∈ K,
ℓ2 = µ ∈ F×. The elements {1, j, ℓ, ℓj} form a basis of D and D = K ⊕ ℓK is
also denoted [K,µ). The F -linear map σ : D → D, σ(d) = TrdD(d) − d = d
is an involution of D (the “conjugation”) which extends the automorphism
σ of K. The element N(d) = dσ(d) = σ(d)d is the reduced norm of d. We
have Alt−1

σ (D) = F and (σ,−1)-quadratic forms correspond to the quadratic
quaternion forms introduced by Seip-Hornix in [9]. Accordingly we call (σ,−1)-
quadratic forms quadratic quaternion forms.

The restriction of the involution τ to the center Z of A is either the identity
(involutions of the first kind) or an automorphism of order 2 (involutions of the
second kind). If the characteristic of F is different from 2 or if the involution
is of second kind there exists an element j ∈ Z such that j + σ(j) = 1. Under
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such conditions the theory of (σ, ε)-quadratic forms reduces to the theory of
ε-hermitian forms:

Proposition 2.5. If the center of D contains an element j such that j+σ(j) =
1, then Herm−ε

σ (V,D) = Altεσ(V,D) and a (σ, ε)-quadratic form is uniquely
determined by its polar form bθ.

Proof. If k = −εk∗ ∈ Herm−ε
σ (V,D), then k = 1k = jk + jk = jk − jεk∗ ∈

Altεσ(V,D). The last claim follows from the fact that polarization induces an

isomorphism Sesqσ(V,D)/Herm−ε
σ (V,D)

∼
−→ Qε

σ(V,D).

For any left (right) D-space V we denote by σV the space V viewed as right
(left) D-space through the involution σ. If σx is the element x viewed as an
element of σV , we have σxd =σ

(
σ(d)x

)
. Let V ∗ be the dual σHomD(V,D) as

a right D-module, i.e., (σfd)(x) = σ(df)(x), x ∈ V , d ∈ D. Any sesquilinear

form k ∈ Sesqσ(V,D) induces a D-module homomorphism k̂ : V → V ∗, x 7→
k(x,−). Conversely any homomorphism g : V → V ∗ induces a sesquilinear
form k ∈ Sesqσ(V,D), k(x, y) = g(x)(y) and the additive groups Sesqσ(V,D)

and HomD(V, V ∗) can be identified through the map h 7→ k̂. For any f :
V → V ′, let f∗ : V ′∗ → V ∗ be the transpose, viewed as a homomorphisms
of right vector spaces. We identify V with V ∗∗ through the map v 7→ v∗∗,
v∗∗(f) = f(v). Then, for any f ∈ HomD(V, V ∗), f∗ is again in HomD(V, V ∗)

and k̂∗ = k̂∗. A (σ, ε)-quadratic form qθ is called nonsingular if its polar form bθ
induces an isomorphism b̂θ. A pair (V, qθ) with qθ nonsingular is called a (σ, ε)-
quadratic space. For any vector space W , the hyperbolic space V = W ⊕W ∗

equipped with the quadratic form qθ, θ = [k] with

k
(
(p, q), (p′, q′)

)
= q(p′),

is nonsingular. There is an obvious notion of orthogonal sum V ⊥ V ′ and
a quadratic space decomposes whenever its polarization does. Most of the
classical theory of quadratic spaces extends to (σ, ε)-quadratic spaces. For
example Witt cancellation holds and any (σ, ε)-quadratic space decomposes
uniquely (up to isomorphism) as the orthogonal sum of its anisotropic part with
a hyperbolic space. Moreover, if we exclude the case σ = 1 and ε = −1, any
(σ, ε)-quadratic space has an orthogonal basis. A similitude of (σ, ε)-quadratic

spaces t : (V, q)
∼
−→ (V ′, q′) is a D-linear isomorphism V

∼
−→ V ′ such that

q′(tx) = µ(t)q(x) for some µ(t) ∈ F×. The element µ(t) is called the multiplier
of the similitude. Similitudes with multipliers equal to 1 are isometries. As in
the classical case there is a notion of Witt equivalence and corresponding Witt
groups are denoted by W ε(D,σ).

3. An exact sequence of Lewis

Let D be a quaternion division algebra. We fix a representation D = [K,µ) =
K ⊕ ℓK, with ℓ2 = µ, as in (2.4). Let V be a vector space over D. Any
sesquilinear form k : V × V → D can be decomposed as

k(x, y) = P (x, y) + ℓR(x, y)
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with P : V × V → K and R : V × V → K. The following properties of P and
R are straightforward.

Lemma 3.1. 1) P ∈ Sesqσ(V,K), R ∈ Sesq1(V,K) = Bil(V,K).

2) k∗ = P ∗ − ℓRt, where P ∗(x, y) = P (y, x) and Rt(x, y) = R(y, x).

The sesquilinearity of k implies the following identities:

R(xℓ, y) = −P (x, y), R(x, yℓ) = P (x, y)

P (xℓ, y) = −µR(x, y), P (x, yℓ) = µR(x, y)

P (xℓ, yℓ) = −µP (x, y), R(xℓ, yℓ) = −µR(x, y)

(2)

Let V 0 be V considered as a (right) vector space over K (by restriction of
scalars) and let T : V 0 → V 0, x 7→ xℓ. The map T is a K-semilinear automor-
phism of V 0 such that T 2 = µ. Conversely, given a vector space U over K,
together with a semilinear automorphism T such that T 2 = µ ∈ F×, we define
the structure of a right D-module on U , D = [K,µ), by putting xℓ = T (x).

Lemma 3.2. Let V be a vector space over D. 1) Let f1 : V 0 × V 0 → K be a
sesquilinear form over K. The form

f(x, y) = f1(x, y)− ℓµ−1f1(Tx, y)

is sesquilinear over D if and only if f1(Tx, Ty) = −µf1(x, y).
2) Let f2 : V 0 × V 0 → K be a bilinear form over K. The form

f(x, y) = −f2(Tx, y) + ℓf2(x, y)

is sesquilinear over D if and only if f2(Tx, Ty) = −µf2(x, y).

Proof. The two claims follow from the identities (2).

Let f be a bilinear form on a space U over K and let λ ∈ K×. A semilinear
automorphism t of U such that f(tx, ty) = λf(x, y) for all x ∈ U is a semilinear
similitude of (U, f), with multiplier λ. In particular Tx = xℓ is a semilinear
similitude of R on V 0, such that T 2 = µ and with multiplier −µ. The following
nice observation of Seip-Hornix [9, p. 328] will be used later:

Proposition 3.3. Let R be a K-bilinear form over U and let T be a semilinear
similitude of U with multiplier λ ∈ K× and such that T 2 = µ. Then:
1) µ ∈ F ,
2) For any ξ ∈ K and x ∈ U , let ρξ(x) = xξ. There exists ν ∈ K× such that

T ′ = ρν ◦ T satisfies T ′2 = µ′ and R(T ′x, T ′y) = −µ′R(x, y).

Proof. The first claim follows from µ = λλ. For the second we may assume that
λ 6= µ (if λ = µ replace T by T ◦ ρk for an appropriate k). For ν = (1− µλ−1)
we have µ′ = 2µ− λ− λ.
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Assume that k ∈ Sesqσ(V,D) defines a (σ, ε)-quadratic space [k] on V over
D. It follows from (3.1) that P defines a (σ, ε)-quadratic space [P ] on V 0 over
K and R a (Id,−ε)-quadratic space [R] on V 0 over K. Let K = F (j) with
j2 = j + λ. Let r(x, y) = R(x, y)− εR(y, x) be the polar of R.

Proposition 3.4. 1) q[P ](x) = εj[r(x, Tx)]
2) q[k](x) = εj[r(x, Tx)] + ℓq[R](x)

3) The map T is a semilinear similitude of
(
q[R], V

0
)
with multiplier −µ.

Proof. It follows from the relations (2) that

P (x, x) + εP (x, x) = R(x, Tx)− εR(Tx, x) = r(x, Tx)(3)

and obviously this relation determines P (x, x) up to a function with values in
Sym−ε(K,σ). Since Sym−ε(K,σ) = Alt+ε(K,σ) by (2.5), [P ] is determined by

(3). Since r(x, Tx) = εr(x, Tx) by (2), we have εjr(x, Tx) + ε
(
εjr(x, Tx)

)
=

r(x, Tx) and 1) follows. The second claim follows from 1) and 3) is again a
consequence of the identities (2).

Corollary 3.5. Any pair
(
[R], T

)
with [R] ∈ Qε

1(U,K) and T a semilinear

similitude with multiplier −µ ∈ F× and such that T 2 = µ, determines the
structure of a (σ, ε)-quadratic space on U over D = [K,µ).

Proposition 3.6. The assignments h 7→ P and h 7→ R induce homomor-
phisms of groups π1 : W ε(D,−) → W ε(K,−) and π2 : W−ε(D,−) →
W ε(K, Id).

Proof. The assignments are obviously compatible with orthogonal sums and
Witt equivalence.

We recall that W ε(K,−) can be identified with the corresponding Witt group
of ε-hermitian forms (apply (2.5)). However, it is more convenient for the
following computations to view ε-hermitian forms over K as (σ, ε)- quadratic
forms. Let i ∈ K× be such that σ(i) = −i (take i = 1 if CharF = 2). The map

k 7→ ik induces an isomorphism s : W ε(K,−)
∼
−→ W−ε(K,−) (“scaling”). For

any space U over K, let UD = U ⊗K D. We identify UD with U ⊕ Uℓ through
the map u ⊗ (x + ℓy) 7→ (ux, uyl) and get a natural D-module structure on
UD = U ⊕ Uℓ. Any K-sesquilinear form k on U extends to a D-sesquilinear
form kD on UD through the formula

kD(x⊗ a, y ⊗ b) = ak(x, y)b

for x, y ∈ U and a, b ∈ D.

Lemma 3.7. The assignment k 7→ (ik)D induces a homomorphism

β :W ε(K,−) →W−ε(D,−)

Proof. Let k̃ = (ik)D. We have (k̃)∗ = −k̃∗.
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Theorem 3.8 (Lewis). With the notations above, the sequence

W ε(D,−)
π1−−−−→ W ε(K,−)

β
−−−−→ W−ε(D,−)

π2−−−−→ W ε(K, Id)

is exact.

Proof. This is essentially the proof given in Appendix 2 of [2] with some changes
due to the use of generalized quadratic forms, instead of hermitian forms. We
first check that the sequence is a complex. Let [k] ∈ Qε

σ(V,D) and let V 0 = U .
We write elements of UD = U⊕Uℓ as pairs (x, yℓ) and decompose kD = P+ℓR.
By definition we have βπ1([k]) = [β(P )] and

β(P )
(
(x1, y1), (x2, y2)

)
= i

(
P (x1, x2) + P (x1, y2)ℓ+ ℓP (y1, x2)

+ℓP (y1, y2)ℓ
)
.

Let (xℓ, xℓ) ∈ U ⊕ Uℓ. We get β(P )
(
(xℓ, xℓ), (xℓ, xℓ)

)
= 0 hence W =

{(xℓ, xℓ)} ⊂ U ⊕ Uℓ is totally isotropic. It is easy to see that W ⊂ W⊥,
so that [β(P )] is hyperbolic and β ◦ π1 = 0. Let [g] ∈ Qε

σ(U,K). The sub-
space W = {(x, 0) ∈ U ⊕ Uℓ} is totally isotropic for π2β([g]) and W ⊂ W⊥.
Hence π2β([g]) = 0. We now prove exactness at W ε(K,−). Since the claim
is known if Char 6= 2, we may assume that Char = 2 and ε = 1. Let
[g] ∈ Qε

σ(U,K) be anisotropic such that β([g]) = 0 ∈ W−ε(D,−). In par-
ticular β([g]) ∈ Q−ε

σ (UD, D) is isotropic. Hence the exist elements x1, x2 ∈ U
such that [g̃]

(
(x1, x2ℓ), (x1, x2ℓ)

)
= 0. This implies (in Char 2) that

g(x1, x1) + µg(x2, x2) ∈ F, g(x1, x2)ℓ+ ℓg(x2, x1) = 0.(4)

Let V1 be the K-subspace of V generated by x1 and x2. Since [g] is anisotropic,
[g] = [g1] ⊥ [g2] with g1 = g|V1

. We make V1 into a D-space by putting

(x1a1 + x2a2)ℓ = µx2a1 + x1a2

To see that the action is well-defined, it suffices to show that dimK V1 = 2.
The elements x1 and x2 cannot be zero since [g] is anisotropic, so assume
x2 = x1c, c ∈ K×. Then (4) implies g(x1, x1) + µccg(x1, x1) ∈ F , which

contradicts the fact that g is anisotropic. Let g1(x1, x1)+µg1(x2, x2) = z ∈ F .
Let f ∈ Sesqσ(V1,K). Replacing g1 by g1 + f + f∗ defines the same class in
Qε

σ(V1,K) (recall that CharF = 2). Choosing f as

f(x1, x1) = jz, f(x2, x2) = 0, f(x1, x2) = f(x2, x1) = 0,

we may assume that

g1(x1, x1) + µg1(x2, x2) = 0, g1(x1, x2)ℓ+ ℓg1(x2, x1) = 0.(5)

By (3.2) we may extend g1 to a sesquilinear form

g′(x, y) = g1(x, y) + ℓµ−1g1(xℓ, y)

over D if g1 satisfies

g1(xℓ, yℓ) = −µg1(x, y)

This can easily be checked using (5) (and the definition of xℓ). Then g1 is in the
image of π1. Exactness atW

ε(K,−) now follows by induction on the dimension
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of U . We finally check exactness at W−ε(D,−). Let [k] be anisotropic such
that π2([k]) = 0 in W−ε(K, Id). In particular π2([k]) is isotropic; let x 6= 0
be such that π2k(x, x) = 0 and let W be the D-subspace of V generated by x.
Since [k] is anisotropic, [k′] = [k|W ] is nonsingular and [k] = [k′] ⊥ [k′′]. The
condition π2k(x, x) = 0 implies k(x, x) ∈ K. Let W1 be the K-subspace of W
generated by x. Define g : W1 ×W1 → K by g(xa, xb) = k(xa, xb)i−1 for a,
b ∈ K. Then clearly [g] defines an element of W ε(K,−) and β(g) = k′. Once
again exactness follows by induction on the dimension of V .

4. Involutions on central simple algebras

LetD be a central division algebra over F , with involution σ and let b : V ×V →
D be a nonsingular ε-hermitian form on a finite dimensional space over D. Let
A = EndD(V ). The map σb : A→ A such that σb(λ) = σ(λ) for all λ ∈ F and

b
(
σb(f)(x), y) = b

(
x, f(y)

)

for all x, y ∈ V , is an involution of A, called the involution adjoint to b. We

have σb(f) = b̂−1f∗b̂, where b̂ : V
∼
−→ V ∗ is the adjoint of b. Conversely,

any involution of A is adjoint to some nonsingular ε-hermitian form b and b is
uniquely multiplicatively determined up to a σ-invariant element of F×.
Any automorphism φ of A compatible with σb, i.e., σb

(
φ(a)

)
= φ

(
σb(a)

)
, is of

the form φ(a) = uau−1 with u : V
∼
−→ V a similitude of b. We say that an invo-

lution τ of A is a q-involution if τ is adjoint to the polar bθ of a (σ, ε)-quadratic
form θ. We write τ = σθ. Two algebras with q-involutions are isomorphic if the
isomorphism is induced by a similitude of the corresponding quadratic forms.
Over fields q-involutions differ from involutions only in characteristic 2 and for
symplectic involutions. In view of possible generalizations (for example rings in
which 2 6= 0 is not invertible) we keep to the general setting of (σ, ε)-quadratic
forms. Let F0 be the subfield of F of σ-invariant elements and let TF/F0

be the
corresponding trace.

Lemma 4.1. The symmetric bilinear form on A given by Tr(x, y) =
TF/F0

(
TrdA(xy)

)
is nonsingular and Sym(A, τ)⊥ = Alt(A, τ).

Proof. If τ is of the first kind F0 = F and the claim is (2.3) of [6]. Assume that τ
is of the second kind. Since the bilinear form (x, y) → TrdA(xy) is nonsingular,
Tr is also nonsingular and it is straightforward that Alt(A, τ) ⊂ Sym(A, τ)⊥.
Equality follows from the fact that dimF0

Alt(A, τ) = dimF0
Sym(A, τ) =

dimF A.

Proposition 4.2. Let (V, θ), θ = [k] be a (σ, ε)-quadratic space over D and

let h = k̂ + εk̂∗ : V
∼
−→ V ∗. The F0-linear form

fθ : Sym(A, σθ) → F0, fθ(s) = Tr(h−1k̂s), s ∈ Sym(A, σθ)

depends only on the class θ and satisfies fθ
(
x+ σθ(x)

)
= Tr(x).
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Proof. The first claim follows from (4.1) and the fact that if k ∈ Altεσ(V,D)

then h−1k̂ ∈ Alt1σθ
(V,D). For the last claim we have:

fθ
(
x+ σθ(x)

)
= Tr

(
h−1k̂(x+ σθ(x)

)

= Tr
(
h−1k̂x

)
+Tr

(
h−1k̂h−1x∗h

)

= Tr
(
h−1k̂x

)
+Tr

(
k̂h−1x∗

)

= Tr
(
h−1k̂x

)
+Tr

(
x(h−1)∗k̂∗

)

= Tr
(
h−1k̂x

)
+Tr

(
h−1εk̂∗x

)
= Tr(x).

Lemma 4.3. Let τ be an involution of A = EndD(V ) and let f be A F0-linear
form on Sym(A, τ) such that f

(
x + τ(x)

)
= Tr(x) for all x ∈ A. There exists

an element u ∈ A such that f(s) = Tr(us) and u + τ(u) = 1. The element u
is uniquely determined up to additivity by an element of Alt(A, τ). We take
u = 1/2 if CharF 6= 2.

Proof. The proof of (5.7) of [6] can easily be adapted.

Proposition 4.4. Let τ be an involution of A = EndD(V ) and let f be A
F0-linear form on Sym(A, τ) such that f

(
x+ τ(x)

)
= Tr(x) for all x ∈ A.

1) There exists a nonsingular (σ, ε)-quadratic form θ on V such that τ = σθ
and f = fθ.
2) (σθ, fθ) = (σθ′ , fθ′) if and only if θ′ = λθ for λ ∈ F0.
3) If τ = σθ and f = fθ with fθ(s) = Tr(us), the class of u in A/Alt(A, σθ) is
uniquely determined by θ.

Proof. Here the proof of (5.8) of [6] can adapted. We prove 1) for completeness.

Let τ(x) = h−1x∗h, h = εh∗ : V
∼
−→ V ∗. Let f(s) = Tr(us) with u+ τ(u) = 1

and let k ∈ Sesqσ(V,D) be such that k̂ = hu : V → V ∗. We set θ = [k]. It is
then straightforward to check that h = k + εk∗.

Proposition 4.5. Let φ :
(
EndD(V ), σθ

) ∼
−→

(
EndD(V ′), σθ′

)
be an isomor-

phism of algebras with involution. Let fθ(s) = Tr(us) and fθ′(s′) = Tr(u′s′).
The following conditions are equivalent:
1) φ is an isomorphism of algebras with q-involutions.
2) fθ′

(
φ(s)

)
= fθ(s) for all s ∈ Sym

(
EndD(V ), σθ

)
.

3) [φ(u)] = [u′] ∈ EndD(V ′)/Alt
(
EndD(V ′), σθ′

)
.

Proof. The implication 1) ⇒ 2) is clear. We check that 2) ⇒ 3). Let φ be

induced by a similitude t : (V, bθ)
∼
−→ (V ′, bθ′). Since fθ′(φs) = fθ(s), we

have Tr(t−1u′ts) = Tr(u′tst−1) = Tr(us) for all s ∈ Sym
(
EndD(V ), σθ

)
, hence

[φ(u)] = [u′]. The implication 3) ⇒ 1) follows from the fact that u can be

chosen as h−1k̂, h = k̂ + εk̂∗.

Documenta Mathematica · Quadratic Forms LSU 2001 · 201–218



210 Max-Albert Knus and Oliver Villa

Remark 4.6. We call the pair (σθ, fθ) a (σ, ε)-quadratic pair or simply a qua-
dratic pair. It determines θ up to the multiplication by a σ-invariant scalar
λ ∈ F×. In fact σθ determines the polar bθ up to λ and fθ determines u. We

have θ = [̂bθu].

Example 4.7. Let q : V → F be a nonsingular quadratic form. The polar bq
induces an isomorphism ψ : V ⊗F V

∼
−→ EndF (V ) such that σq

(
ψ(x ⊗ y)

)
=

ψ(y⊗x). Thus ψ(x⊗x) is symmetric and fq
(
ψ(x⊗x)

)
= q(x) (see [6, (5.11)].

More generally, if V is a right vector space over D, we denote by ∗V the space

V viewed as a left D-space through the involution σ of D. The adjoint b̂θ of a
(σ, ε)-quadratic space (V, θ) induces an isomorphism ψθ : V⊗D

σV
∼
−→ EndD(V )

and ψθ(xd⊗ x) is a symmetric element of
(
EndD(V ), σθ

)
for all x ∈ V and all

ε-symmetric d ∈ D. One has fθ
(
ψ(xd⊗ x)

)
= [dk(x, x)], where θ = [k] (see [4,

Theorem 7]).

5. Clifford algebras

Let σ be an involution of the first kind on D and let θ be a nonsingular
(σ, ε)-quadratic form on V . Let σθ be the corresponding q-involution on A =

EndD(V ). We assume in this section that over a splitting A⊗F F̃
∼
−→ EndF̃ (M)

of A, θF̃ = θ ⊗ 1F̃ is a (Id, 1)-quadratic form q̃ over F̃ , i.e. θF̃ is a (classical)
quadratic form. In the terminology of [6] this means that σθ is orthogonal
if Char 6= 2 and symplectic if Char = 2. From now on we call such forms
over D quadratic forms over D, resp. quadratic spaces over D if the forms are
non-singular.
Classical invariants of quadratic spaces (V, θ) are the dimension dimD V and
the discriminant disc(θ) and the Clifford invariant associated with the Clifford
algebra. We refer to [6, §7] for the definition of the discriminant. We recall the
definition of the Clifford algebra Cl(V, θ), following [10, 4.1]. Given (V, θ) as

above, let θ = [k], k ∈ Sesqσ(V,D), bθ = k + εk∗ and h = b̂θ ∈ HomD(V, V ∗).
Let A = EndD(V ), B = Sesqσ(V,D) and B′ = V ⊗D

σV . We identify A with
V ⊗D

σV ∗ through the canonical isomorphism (x⊗ σf)(v) = xf(v) and B with

V ∗⊗D
σV ∗ through (f ⊗ σg)(x, y) = g(x)f(y). The isomorphism h can be used

to define further isomorphisms:

ϕθ : B′ = V ⊗D
σV

∼
−→ A = EndD(M), ϕθ : x⊗ y 7→ x⊗ h(y)

and the isomorphism ψθ already considered in (4.7):

ψθ : A
∼
−→ B, ψθ : x⊗ σf 7→ h(x)⊗ σf.

We use ϕθ and ψθ to define maps B′ ×B → A, (b′, b) 7→ b′b and A×B′ → B′,
(a, b′) 7→ ab′:

(x⊗ σy)(h(u)⊗ g) = xb(y, u)⊗ σf and (x⊗,σf)(u⊗,σv) = xf(u)⊗ σh(v)

Furthermore, let τθ = ϕ−1
θ σθϕθ : B′ → B′ be the transport of the involution

σθ on A. We have τθ(x⊗
σy) = εy⊗ σx. Let S1 = {s1 ∈ B′ | τθ(s1) = s1}. We
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have S1 =
(
Altε(V,D)

)⊥
for the pairing B′ ×B → F, (b′, b) 7→ TrdA(b

′b). Let
Sand be the bilinear map B′⊗B′×B → B′ defined by Sand(b′1⊗b

′
2, b) = b′2bb

′
1.

The Clifford algebra Cl(V, θ) of the quadratic space (V, θ) is the quotient of the
tensor algebra of the F -module B′ by the ideal I generated by the sets

I1 = {s1 − TrdA(s1k)1, s1 ∈ S1}
I2 = {c− Sand(c, k) | Sand

(
c,Altε(V,D)

)
= 0}.

The Clifford algebra Cl(V, θ) has a canonical involution σ0 induced by the

map τ . We have Cl(V, θ)⊗F F̃ = Cl(V ⊗F F̃ , θ⊗ 1F̃ ) for any field extension F̃
of F and Cl(V, q) is the even Clifford algebra C0(V, q) of (V, q) if D = F ([10,
Théorème 2]). The reduction is through Morita theory for hermitian spaces
(see for example [5, Chapter I, §9] for a description of Morita theory). In [6,
§8] the Clifford algebra C(A, σθ, fθ) of the triple (A, σθ, fθ) is defined as the
quotient of the tensor algebra T (A) of the F -space A by the ideal generated
by the sets

J1 = {s− TrdA(us), s ∈ Sym(A, σθ)}
J2 = {c− Sand′(c, u), c ∈ A with Sand′

(
c,Alt(A, σθ)

)
= 0}

where u = b̂θ
−1
k and Sand′ : (A⊗A,A) → A is defined as Sand′(a⊗b, x) = axb.

The two definitions give in fact isomorphic algebras:

Proposition 5.1. The isomorphism ϕθ : V ⊗D
σV

∼
−→ EndD(V ) induces an

isomorphism Cl(V, θ)
∼
−→ C(A, σθ, fθ).

Proof. We only check that ϕθ maps I1 to J1. By definition of τ and S1, s =
ϕθ(s1) is a symmetric element of A. On the other hand we have by definition
of the pairing B′ ×B → A,

TrdA(s1k) = TrdA
(
ϕθ(s1)ψ

−1
θ (k)

)

= TrdA
(
sh−1k̂

)
= TrdA(su) = TrdA(us),

hence the claim.

In particular we have C
(
EndF (V ), σq, fq

)
= C0(V, q) for a quadratic space

(V, q) over F . It is convenient to use both definitions of the Clifford algebra of
a generalized quadratic space.

LetD = [K,µ) = K⊕ℓK be a quaternion algebra with conjugation σ. Let V be
a D-module and let V 0 be V as a right vector space over K (through restriction
of scalars). Let T : V 0 → V 0, Tx = xℓ. We have EndD(V ) ⊂ EndK(V 0) and

EndD(V ) = {f ∈ EndK(V 0) | fT = Tf}.

Let θ = [k] be a (σ,−1)-quadratic space and let k(x, y) = P (x, y) + ℓR(x, y) as
in Section 3. It follows from (3.1) that R defines a quadratic space [R] on V 0

over K.

Proposition 5.2. We have σ[R]|EndD(V ) = σθ and fθ = f[R]|EndD(V ).
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Proof. We have an embedding D →֒ M2(K), a+ ℓb 7→

(
a µb
b a

)
and conjuga-

tion given by x 7→ x∗ = c−1xtc, c =

(
0 1
−1 0

)
. The choice of a basis of V over

D identifies V with Dn, V 0 with K2n, EndD(V ) with Mn(D) and EndK(V 0)
with M2n(K), where n = dimD V . We further identify V and V ∗ through the
choice of the dual basis. We embed any element x = x1 + ℓx2 ∈ Mk,l(D),

xi ∈ Mk,l(K) in M2k,2l(K) through the map ι : x 7→ ξ =

(
x1 µx2
x2 x1

)
. In

particular Dn is identified with a subspace of the space of (2n × 2)-matrices
over K. Then D ⊂M2(K) operates on the right through (2× 2)-matrices and
Mn(D) ⊂ M2n(K) operates on the left through (2n× 2n)-matrices. With the
notations of Example (2.3) we have ι(x∗) = Int(c−1)(xt). Any D-sesquilinear
form k on Dn can be written as k(x, y) = x∗ay, where a ∈Mn(D), as in (2.3).
Let a = a1 + ℓa2, ai ∈Mn(K) and let

α = ι(a) =

(
a1 µa2
a2 a1

)
.

Let η = ι(y), y = y1 + ℓy2. We have

k(x, y) = x∗ay = ξ∗αη =

(
x1 µx2
x2 x1

)∗ (
a1 µa2
a2 a1

)(
y1 µy2
y2 y1

)
.

On the other side it follows from h = P + ℓR that R(x, y) = ξtρη with

ρ =

(
a2 a1
−a1 −µa2

)
.

Assume that θ = [k] , so that σθ corresponds to the involution Int(γ−1) ◦ ∗,
where γ = α − α∗. Similarly σ[R] corresponds to the involution Int(ρ̃−1) ◦ t

where ρ̃ = ρ + ρt. We obviously have ρ = cα with c =

(
0 1
−1 0

)
, so that

ρt = αtct = −αtc = −ca∗ and ρ+ρt = c(α−α∗) or cγ = ρ̃. Now ∗ = Int(c−1)◦t
implies σ[R]|Mn(D) = σθ. We finally check that fθ = f[R]|Sym(Mn(D),σθ). We

have fθ(s) = TrdMn(D)(γ
−1αs) and f[R](s) = TrdM2n(K)(ρ̃

−1ρs), hence the

claim, since ρ = cα and ρ̃ = cγ implies γ−1α = ρ̃−1ρ.

Corollary 5.3. The embedding EndD(V ) →֒ EndK(V 0) induces

1) an isomorphism
(
EndD(V ), σθ, fθ

)
⊗K

∼
−→

(
EndK(V 0), σ[R], f[R]

)
,

2) an isomorphism C
(
EndD(V ), σθ, fθ

)
⊗K

∼
−→ C0(V

0, [R]).

In view of (2) the semilinear automorphism T : V 0 ∼
−→ V 0, Tx = xℓ, is a

semilinear similitude with multiplier −µ of the quadratic form [R], such that
T 2 = µ.

Lemma 5.4. The map T induces a semilinear automorphism C0(T ) of
C0(V

0, R) such that

C0(T )(xy) = (−µ)−1T (x)T (y) for x, y ∈ V 0
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and C0(T )
2 = Id.

Proof. This follows (for example) as in [6, (13.1)]

Proposition 5.5.

C
(
EndD(V ), σθ, fθ

)
= {c ∈ C0(V

0, R) | C0(T )(c) = c}.

Proof. The claim follows from the defining relations of C
(
EndD(V ), σθ, fθ

)
and

the fact that

EndD(V ) = {f ∈ EndK(V 0) | T−1fT = f}.

We call C
(
EndD(V ), σθ, fθ

)
or equivalently Cl(V, θ) the Clifford algebra of the

quadratic quaternion space (V, θ).

Let t be a semilinear similitude of a quadratic space (U, q) of even dimen-
sion over K. Assume that disc(q) is trivial, so that C0(U, q) decomposes as
product of two K-algebras C+(U, q) and C−(U, q). We say that t is proper if
C0(t)

(
C±(U, q)

)
⊂ C±(U, q) and we say that t is improper if C0(t)

(
C±(U, q)

)
⊂

C∓(U, q). In general we say that t is proper if t is proper over some field exten-
sion of F which trivializes disc(q). For any semilinear similitude t, let d(t) = 1
is t if proper and d(t) = −1 if t is improper.

Lemma 5.6. Let ti be a semilinear similitude of (Ui, qi), i = 1, 2. We have
d(t1 ⊥ t2) = d(t1)d(t2).

Proof. We assume that disc(qi), i = 1, 2, is trivial. Let ei be an idempotent
generating the center Zi of C0(qi). We have ti(ei) = ei if ti is proper and
ti(ei) = 1−ei if ti is improper. The idempotent e = e1+e2−2e1e2 ∈ C0(q1 ⊥ q2)
generates the center of C0(q1 ⊥ q2) (see for example [5, (2.3), Chap. IV] ) and
the claim follows by case checking.

Lemma 5.7. Let V , θ, V 0, R and T be as above. Let dimK V 0 = 2m. Then T
is proper if m is even and is improper if m is odd.

Proof. The quadratic space (V, θ) is the orthogonal sum of 1-dimensional spaces
and we get a corresponding orthogonal decomposition of

(
V 0, [R]

)
into sub-

spaces (Ui, qi) of dimension 2. In view of (5.6) it suffices to check the case

m = 1. Let α = a = a1 + ℓa2 ∈ D and ρ =

(
a2 a1
−a1 −µa2

)
. We choose µ = 1,

a1 = j (j as in (2.4)), put i = 1 − 2j, so that i = −i and choose a2 = 0. Let
x = x1e1+x2e2 ∈ V 0, so [R](x1, x2) = ix1x2 and C([R]) is generated by e1, e2
with the relations e21 = 0, e22 = 0, e1e2 + e2e1 = i. The element e = i−1e1e2 is
an idempotent generating the center. Since T (x1e1 + x2e2) = x2e1 + x1e2, we
have C0(T )(e1e2) = −e2e1 and C0(T )(e) = 1− e. Thus T is not proper.
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Of special interest for the next section are quadratic quaternion forms [k] such
that the induced quadratic forms π2([k]) are Pfister forms. For convenience
we call such forms Pfister quadratic quaternion forms. Hyperbolic spaces of
dimension 2n are Pfister forms, hence spaces of the form β([b]), b a hermitian
form over K, are Pfister, in view of the exactness of the sequence of Lewis [7].
It is in fact easy to give explicit examples of Pfister forms using the following
constructions:

Example 5.8 (CharF 6= 2). Let q =< λ1, . . . , λn > be a diagonal quadratic
form on Fn, i.e., q(x) =

∑
λix

2
i . Let [k] onD

n be given by the diagonal form ℓq.
Then the corresponding quadratic form [R] on K2n is given by the diagonal
form < 1,−µ > ⊗q. In particular we get the 3-Pfister form << a, b, µ >>
choosing for q the norm form of a quaternion algebra (a, b)F .

Example 5.9 (CharF = 2). Let b =< λ1, . . . , λn > be a bilinear diagonal
form on Fn, i.e., b(x, y) =

∑
λixiyi. Let k = (j + ℓ)b on Dn. Then the

corresponding quadratic form [R] over K = R(j), j2 = j + λ, is given by
the form [R] = b ⊗ [1, λ] where [ξ, η] = ξx21 + x1x2 + ηx2

2. In particular, for
b =< 1, a, c, ac >, we get the 3-Pfister form << a, c, λ]] with the notations of
[6], p. xxi.

6. Triality for semilinear similitudes

Let C be a Cayley algebra over F with conjugation π : x 7→ x and norm
n : x 7→ xx. The new multiplication x ⋆ y = x y satisfies

x ⋆ (y ⋆ x) = (x ⋆ y) ⋆ x = n(x)y(6)

for x, y ∈ C. Further, the polar form bn is associative with respect to ⋆, in the
sense that

bn(x ⋆ y, z) = bn(x, y ⋆ z).

Proposition 6.1. For x, y ∈ C, let rx(y) = y ⋆ x and ℓx(y) = x ⋆ y. The map
C → EndF (C⊕ C) given by

x 7→

(
0 ℓx
rx 0

)

induces isomorphisms α :
(
C(C, n), τ

) ∼
−→

(
EndF (C⊕ C), σn⊥n

)
and

α0 :
(
C0(C, n), τ0

) ∼
−→

(
EndF (C), σn

)
×
(
EndF (C), σn

)
,(7)

of algebras with involution.

Proof. We have rx
(
ℓx(y)

)
= ℓx

(
rx(y)

)
= n(x) · y by (6). Thus the existence

of the map α follows from the universal property of the Clifford algebra. The
fact that α is compatible with involutions is equivalent to

bn
(
x ⋆ (z ⋆ y), u

)
= bn

(
z, y ⋆ (u ⋆ x)

)
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for all x, y, z, u in C. This formula follows from the associativity of bn. Since
C(C, n) is central simple, the map α is an isomorphism by a dimension count.

Assume from now on that C is defined over a field K which is quadratic Galois
over F . Any proper semilinear similitude t of n induces a semilinear automor-
phism C(t) of the even Clifford algebra

(
C0(C, n), τ0

)
, which does not permute

the two components of the center of C0(C, n). Thus α0 ◦ C0(t) ◦ α
−1
0 is a pair

of semilinear automorphisms of
(
EndK(C), σn

)
. It follows as in (4.5) that, for

any quadratic space (V, q), semilinear automorphisms of (EndK(V ), σq, fq) are
of the form Int(f), where f is a semilinear similitude of q. The following result
is due to Wonenburger [12] in characteristic different from 2:

Proposition 6.2. For any proper semilinear similitude t1 of n with multiplier
µ1, there exist proper semilinear similitudes t2, t2 such that

α0 ◦ C0(t1) ◦ α
−1
0 =

(
Int(t2), Int(t3)

)

and

µ−1
3 t3(x ⋆ y) = t1(x) ⋆ t2(y),
µ−1
1 t1(x ⋆ y) = t2(x) ⋆ t3(y),
µ−1
2 t2(x ⋆ y) = t3(x) ⋆ t1(y).

(8)

Let t1 be an improper similitude with multiplier µ1. There exist improper simil-
itudes t2, t3 such that

µ−1
3 t3(x ⋆ y) = t1(y) ⋆ t2(x),
µ−1
1 t1(x ⋆ y) = t2(y) ⋆ t3(x),
µ−1
2 t2(x ⋆ y) = t3(y) ⋆ t1(x).

The pair (t2, t3) is determined by t1 up to a factor (λ, λ−1), λ ∈ K×, and we
have µ1µ2µ3 = 1.
Furthermore, any of the formulas in (8) implies the two others.

Proof. The proof given in [6, (35.4)] for similitudes can also be used for semi-
linear similitudes.

Remark 6.3. The class of two of the ti, i = 1, 2, 3, modulo K× is uniquely
determined by the class of the third ti.

Corollary 6.4. Let T1 be a proper semilinear similitude of (C, n) such that
T 2
1 = µ1, µ1 ∈ K× and with multiplier −µ1. There exist elements ai ∈ K×,
i = 1, 2, 3, and proper semilinear similitudes Ti of (C, n), with T 2

i = µi, µi ∈
K× and with multiplier −µi, i = 2, 3, such that aiaiµi = µi+1µi+2 and

a3T3(x ⋆ y) = T1(x) ⋆ T2(y)
a1T1(x ⋆ y) = T2(x) ⋆ T3(y)
a2T2(x ⋆ y) = T3(x) ⋆ T1(y
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The class of any Ti modulo K× determines the two other classes and the µi’s
are determined up to norms from K×. Furthermore any of the three formulas
determines the two others.

Proof. Counting indices modulo 3, we have relations

Ti(x) ⋆ Ti+1(y) = bi+2Ti+2, bi ∈ K×

in view of (6.2). If we replace all Tj by Tj ◦ρνj
, νj ∈ K×, we get new constants

ai. The claim then follows from (3.3).

7. Triality for quadratic quaternion forms

Let D1 = K⊕ℓ1K = [K,µ1) be a quaternion algebra over F and let (V1, qθ1) be
a quaternion quadratic space of dimension 4 over D1. Let θ1 = [h1], h1(x, y) =
P1(x, y) + ℓR1(x, y), so that [R1] = π2(θ1) corresponds to a 8-dimensional
(classical) quadratic form on V 0

1 over K. The map T1 : V 0
1 → V 0

1 , T1(x) =
xℓ1, is a semilinear similitude of

(
V 0
1 , [R1]

)
with multiplier −µ1 and such that

T 2
1 = µ1. We recall that by (3.5) it is equivalent to have a quadratic quaternion

space (V1, qθ1) or a pair
(
V 0
1 , [T1]

)
. We assume from now on that the quadratic

form q[R1] is a 3-Pfister form, i.e.,the norm form n of a Cayley algebra C over
K. In view of (6.4) T1 induces two semilinear similitudes T2, resp. T3, with
multipliers µ2, resp. µ3, which in turn define a quaternion quadratic space
(V2, θ2) of dimension 4 over D2 = [K,µ2), resp. a quaternion quadratic space
(V3, θ3) of dimension 4 over D3 = [K,µ3). Let Br(F ) be the Brauer group of
F .

Proposition 7.1. 1) [D1][D2][D3] = 1 ∈ Br(F ),

2) The restriction of α : C0

(
C, n)

) ∼
−→ EndK(C) × EndK(C) to C(Vi, Di, θi)

induces isomorphisms

αi :
(
C(Vi, Di, θi), τ

) ∼
−→

(
EndDi+1

(Vi+1), σθi+1

)
×
(
EndDi+2

(Vi+2), σθi+2

)

Proof. The first claim follows from the fact that µ1µ2 = µ3 NrdD3
(a3) and the

second is a consequence of (5.5), (3.5) and the definition of α.

Example 7.2. Let C0 be a Cayley algebra over F and let C = C0 ⊗FK. For
any c ∈ C0 such that c2 = µ1 ∈ F×, T1 : C → C given by T1(k ⊗ x) = k ⊗ xc is
a semilinear similitude with multiplier −µ1 such that T 2

1 = µ1. The Moufang
identity (cx)(yc) = c(xy)c in C implies that

(xc) ⋆ (cy) = c(x ⋆ y)c.

Thus T2(k ⊗ y) = k ⊗ cy and T3(k ⊗ z) = ik ⊗ czc (where i ∈ K× is such
that i = −i) satisfy (6.4). The corresponding triple of quaternion algebras is(
[K,µ1), [K,µ1), [K, iiµ

2
1)
)
, the third algebra being split.

Example 7.3. Let Di, i = 1, , 2, 3, be quaternion algebras over F such that
[D1][D2][D3] = 1 ∈ Br(F ). We may assume that the Di contain a common
separable quadratic field K and that Di = [K,µi), µi ∈ F× such that µ1µ2µ3 ∈
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F×2
. In [6, (43.12)] similitudes Si with multiplier µi, i = 1, 2, 3, of the split

Cayley algebra Cs over F are given, such that 1) µ−1
3 S3(x ⋆ y) = S1(x) ⋆ S2(y)

and 2) S2
i = µi. Let C = K ⊗ Cs. Let u ∈ K× be such that u = −u. The

semilinear similitudes Ti(k ⊗ x) = uk ⊗ Si(x), i = 1, 2, 3, satisfy

a3T3(x ⋆ y) = T1(x) ⋆ T2(y)

with a3 = uµ−1
3 (we use the same notation ⋆ in Cs and in C). Thus there exist

a triple of quadratic quaternion forms (θ1, θ2, θ3) corresponding to the three
given quaternion algebras. We hope to describe the corresponding quadratic
quaternion forms in a subsequent paper.
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