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1 Introduction

Fix a rational prime p. The classical polylogarithm sheaf, constructed by Beilin-
son and Deligne, is a variation of mixed Hodge structures on the projective line
minus three points. The p-adic polylogarithm sheaf is its p-adic analogue, and
is expected to be the p-adic realization of the motivic polylogarithm sheaf. In
our previous paper [Ban1], we explicitly calculated the p-adic polylogarithm
sheaf on the projective line minus three points, and calculated its specializa-
tions to the d-th roots of unity for d prime to p. The purpose of this paper
is to extend this calculation to the d-th roots of unity for d divisible by p. In
particular, we prove that the specialization of the p-adic polylogarithm sheaf to
d-th roots of unity is again related to special values of the p-adic polylogarithm
function defined by Coleman [Col].
Let K = Qp(µd), with ring of integers OK . Let Gm = SpecOK [t, t−1] be
the multiplicative group over OK . Denote by S(Gm) the category of syntomic
coefficients on Gm. This category is a rough p-adic analogue of the category
of variation of mixed Hodge structures. Since p is in general ramified in K, we
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will use the definition in [Ban2], which is a generalization of the definition in
[Ban1] to the case when p is ramified in K.

In order to describe the polylogarithm sheaf, it is first necessary to introduce
the logarithmic sheaf Log, which is a pro-object in S(Gm). The first property
we prove for this sheaf is that it satisfies the splitting principle, even at roots
of unity whose order is divisible by p.

Proposition (= Proposition 5.1) Let z 6= 1 be a d-th root of unity in K,
and let iz : SpecOK →֒ Gm be the closed immersion defined by t 7→ z. Then

i∗zLog =
∏

j≥0

K(j).

Let U = Gm \ {1}. In our previous paper, following the method of [HW1]
Definition III 2.2, we constructed the polylogarithm extension

pol ∈ Ext1Ssyn(U)(K(0),Log).

We first consider the case when z is a d-th root of unity, where d is an integer of
the form d = Npr with (N, p) = 1 and N > 1. In this case, we have a natural
map iz : SpecOK → U. Let i∗z pol be the image of pol in

Ext1S(OK)(K(0), i∗zLog) =
∏

j≥0

Ext1S(OK)(K(0),K(j))

with respect to the pull-back map

Ext1S(U)(K(0),Log)
i∗z−→ Ext1S(OK)(K(0), i∗zLog).

Our main result is concerned with the explicit shape of i∗z pol.

For integers j ≥ 1, let Lij(t) be the p-adic polylogarithm function defined
by Coleman ([Col] VI, the function denoted ℓj(t)). It is a locally analytic
function defined on P1(Cp) \ {1,∞} satisfying Lij(0) = 0. On the open unit
disc {z ∈ Cp | |z|p < 1}, the function is given by the usual power series

Lij(t) =

∞∑

n=1

tn

nj
.

To deal with the specialization at points in the open unit disc around one, we
also consider the locally analytic function

Lij,c(t) = Lij(t) − c1−j Lij(t
c),

where c is an integer > 1.

Our main theorem may be stated as follows:
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Theorem 1 (= Theorem 7.3) Let z be a d-th root of unity, where d is an
integer of the form d = Npr with (N, p) = 1 and N > 1. Then we have

i∗z pol =
(
(−1)j Lij(z)

)
j≥1

∈
∏

j≥0

Ext1S(OK)(K(0),K(j)),

where we view (−1)j Lij(z) as elements of Ext1S(OK)(K(0),K(j)) through the
isomorphism

Ext1S(OK)(K(0),K(j)) ∼= K. (1)

Remark 1 The above is compatible with the results of Somekawa [So] and also
Besser-de Jeu [BdJ] on the calculation of the syntomic regulator.

Remark 2 In [Ban1], we proved that when d is prime to p,

i∗z pol =
(

(−1)jℓ
(p)
j (z)

)
j≥1

,

where ℓ
(p)
j (t) is a locally analytic function on P1(Cp)\{1,∞}, whose expansion

on the open unit disc around 0 is given by

ℓ
(p)
j (t) =

∑

n≥1,(n,p)=1

tn

nj
.

The difference between this formula and the formula of the previous theorem
comes from the choice of the isomorphism (1). (See Remark 7.2 for details.)

For the case when z is a pr-th root of unity, let c > 1 be an integer and let
[c] : Gm → Gm be the multiplication by c map induced from t 7→ tc. We denote
by [c]∗ the pull back morphism of syntomic coefficients. We define the modified
polylogarithm to be

polc = pol−[c]∗ pol,

which we prove to be an element in Ext1Ssyn(Uc)(K(0),Log) for

Uc = SpecOK

[
t,

t− 1

tc − 1

]
.

We note that this modification, which removes the singularity around one, is
standard in Iwasawa theory.
Our theorem in this case is:

Theorem 2 (= Theorem 8.3) Let z be a pr-th root of unity. Then we have

i∗z polc =
(
(−1)j Lij,c(z)

)
j≥1

∈
∏

j≥0

Ext1S(OK)(K(0),K(j)),

where i∗z is the pull back of syntomic coefficient by the natural inclusion iz :
SpecOK → Uc. Again, we view Lij,c(z) as an element of Ext1S(OK)(K(0),K(j))
through the isomorphism (1).
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Notation Let p be a rational prime. In this paper, we let K be a finite
extension of Qp with ring of integers OK and residue field k. We denote by π
a generator of the maximal ideal of OK . We let K0 the maximal unramified
extension of Qp in K, and W its ring of integers. We denote by σ the Frobenius
morphism on K0 and W .

2 Review of the p-adic polylogarithm function

In this section, we will review the theory of p-adic polylogarithm functions
due to Coleman [Col]. Since we will mainly deal with the value of the p-adic
polylogarithm function at units in OCp

, we will not need the full theory of
Coleman integration.
As in [Col], we call any locally analytic homomorphism log : C×

p → C+
p , such

that d
dz log(1) = 1, a branch of the logarithm. Throughout this paper, we fix

once and for all a branch of the logarithm. Since we will only deal with the
values of p-adic analytic functions at points outside the open unit disc where
the functions have logarithmic poles, the results of this paper is independent of
the choice of the branch.
We define the p-adic polylogarithm function ℓ

(p)
j (t) for |t| < 1 by

ℓ
(p)
j (t) =

∑

(n,p)=1

tn

nj
(j ≥ 1).
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Specialization to p-th Power Roots of Unity 77

By [Col] Proposition 6.2, this function extends to a rigid analytic function on

Cp \ {z ; |z − 1|p < p(p−1)−1

}.

Proposition 2.1 ([Col] Section VI) The p-adic polylogarithm function
Lij(t) (Denoted ℓj(t) in [Col]) is a locally analytic function on P1(Cp) \ {1,∞}
satisfying

(i) Li0(t) = t/(1 − t)

(ii) d
dt Lij+1(t) = 1

t Lij(t) (j ≥ 0).

(iii) ℓ
(p)
j (t) = Lij(t) − p−j Lij(t

p) (j ≥ 1).

Definition 2.2 (i) For any integer j, we define the function uj(t) by

uj(t) =

{
1
j! logj(t) (j ≥ 0)

0 (j < 0).

Note that if z is a root of unity in Cp, then uj(z) = 0 (j 6= 0).

(ii) For any integer n ≥ 1, we define the function Dn(t) by

Dn(t) =

n−1∑

j=0

(−1)j Lin−j(t)uj(t).

If z is a root of unity in Cp, then Dn(z) = Lin(z).

To deal with the torsion points of p-th power order, we need modified versions
of the above functions.

Definition 2.3 Let c > 1 be an integer prime to p. We let:

(i) ℓ
(p)
j,c (z) = ℓ

(p)
j (z) − c1−nℓ

(p)
j (zc) (j ≥ 1).

(ii) Lij,c(z) = Lij,c(z) − c1−n Lij,c(z
c) (j ≥ 1).

(iii)

Dn,c(z) =
n−1∑

j=0

(−1)j Lin−j,c(t)uj(t).

The above functions are locally analytic on the open unit disc around one.
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3 The Category of Syntomic Coefficients

In this section, we will review the construction of the category of syntomic
coefficients given in [Ban2] §4. Note that since we need to deal with the case
when the prime p is ramified in K, the theory of [Ban1] is not sufficient.

Definition 3.1 A syntomic datum X = (X,X, j,PX , φX , ι) consists of the
following:

(i) A proper smooth scheme X, separated an of finite type over OK , and an
open immersion j : X →֒ X, such that the complement D is a relative
simple normal crossing divisor over OK .

(ii) A formal scheme PX over W .

(iii) For the formal completion X of X with respect to the special fiber, a closed
immersion ι : X → PX ⊗W OK , such that both PX and the morphism ι
are smooth in a neighborhood of Xk.

(iv) A Frobenius map φX : PX → PX , which fits into the diagram

Xk
ι

−−−−→ PX −−−−→ Spf W

F

y φX

y σ∗

y

Xk
ι

−−−−→ PX −−−−→ Spf W,

(2)

where F is the absolute Frobenius of Xk.

We will often omit j and ι from the notation and write

X = (X,X,PX , φX).

Example 3.2 1. Let P1 be the projective line over W with coordinate t, and
let P1

OK
= P1 ⊗OK . We let Gm be the syntomic datum given by

Gm =
(
GmOK

,P1
OK

, P̂1, φ
)
,

where

(a) GmOK
is the multiplicative group over OK , with natural inclusion

j : GmOK
→֒ P1

OK
.

(b) P̂1 is the p-adic formal completion of P1.

(c) ι : P̂1
OK

→ P̂1 ⊗OK is the identity.

(d) φ is the Frobenius given by φ(t) = tp for the coordinate t on P̂1.
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Specialization to p-th Power Roots of Unity 79

2. We let U be the syntomic datum given by

U =
(
UOK

,P1
OK

, P̂1, φ
)
,

where UOK
= P1

OK
\{0, 1,∞}, with the natural inclusion j : UOK

→֒ P1
OK

.

3. We let OK be the syntomic datum given by

OK = (SpecOK , SpecOK , Spf W,σ),

where j and ι are the identity.

Throughout this section, we fix a syntomic datum X. We will next review the
definition of the category of syntomic coefficients S(X) on X. We will first
define the categories SdR(X), Srig(X) and Svec(X). Let XK = X ⊗ K and
XK = X ⊗K.

Definition 3.3 We define the category SdR(X) to be the category consisting
of objects the triple MdR := (MdR,∇dR, F

•), where:

(i) MdR is a coherent OXK
module.

(ii) ∇dR : MdR → MdR ⊗ Ω1(logDK) is an integrable connection on MdR

with logarithmic poles along DK = D ⊗K.

(iii) F • is the Hodge filtration, which is a descending exhaustive separated
filtration on MdR by coherent sub-OXK

modules satisfying

∇dR(FmMdR) ⊂ Fm−1MdR ⊗ Ω1
XK

(logDK).

Let Xk = X ⊗ k be the special fiber of X and X the formal completion of X
with respect to the special fiber. We denote by XK the rigid analytic space over
K associated to X ([Ber1] Proposition (0.2.3)) and by Xan

K the rigid analytic
space over K associated to XK (loc. cit. Proposition (0.3.3)). We will use the
same notations for X.

Definition 3.4 We say that a set V ⊂ XK is a strict neighborhood of XK in
Xan

K , if V ∪ (Xan
K \ XK) is a covering of Xan

K for the Grothendieck topology.

For any abelian sheaf M on Xan
K , we let

j†M := lim
−→
V

αV ∗α
∗
V M,

where the limit is taken with respect to strict neighborhoods V of XK in Xan
K

with inclusion αV : V →֒ XK . If M has a structure of a OXan
K

-module, then

j†M has a structure of a j†OXan
K

-module.

Documenta Mathematica · Extra Volume Kato (2003) 73–97



80 Kenichi Bannai

Definition 3.5 We define the category Svec(X) to be the category consisting
of objects the pair Mvec := (Mvec,∇vec), where:

(i) Mvec is a coherent j†OXan
K

module.

(ii) ∇vec : Mvec → Mvec ⊗ Ω1
Xan

K
is an integrable connection on Mvec.

Let pdR : Xan
K → XK be the natural map.

Definition 3.6 We define the functor

FdR : SdR(X) → Svec(X)

by associating to MdR := (MdR,∇dR, F
•) the module j†(p∗dRMdR) with the con-

nection induced from ∇dR. The functor FdR is exact, since it is a composition
of exact functors ([Ber1] Proposition 2.1.3 (iii)).

Let PK0
be the rigid analytic space over K0 associated to PX ([Ber1] (0.2.2)).

As in loc. cit. Définitions (1.1.2)(i), we define the tubular neighborhood of Xk

(resp. Xk) in PK0
by

]Xk[P := sp−1(Xk)
(

resp. ]Xk[P := sp−1(Xk)
)
,

where sp : PK0
→ PX is the spécialization [Ber1] (0.2.2.1). The tubular neigh-

borhoods are rigid analytic spaces over K0 with structures induced from that
of PK0

.

Definition 3.7 We say that a set V ⊂]Xk[P is a strict neighborhood of ]Xk[P
in ]Xk[P , if

V ∪ (]Xk[P\]Xk[P)

is a covering of ]Xk[P for the Grothendieck topology.

For any abelian sheaf M on ]Xk[P , we let

j†M := lim
−→
V

αV ∗α
∗
V M,

where the limit is taken with respect to strict neighborhoods V of ]Xk[P in
]Xk[P with inclusion αV : V →֒]Xk[P . If M has a structure of a O]Xk[P

-

module, then j†M has a structure of a j†O]Xk[P
-module.

The Frobenius map φX : PX → PX induces a natural morphism of rigid
analytic spaces φX : ]Xk[P→]Xk[P .

Definition 3.8 We define the category Srig(X) to be the category consisting
of objects the triple Mrig := (Mrig,∇rig,ΦM ), where:

(i) Mrig is a coherent j†O]Xk[P
-module.
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(ii) ∇rig : Mrig → Mrig ⊗ Ω1
]Xk[P

is an integrable connection on Mrig.

(iii) ΦM is the Frobenius morphism, which is an isomorphism

ΦM : φ∗
XMrig

∼=
−→ Mrig

of j†O]Xk[P
-modules compatible with the connection.

The map ι : X → PX ⊗W OK induces a map of rigid analytic spaces

prig : Xan
K → ]Xk[P . (3)

Definition 3.9 We define the functor

Frig : Srig(X) → Svec(X)

by associating to the object Mrig := (Mrig,∇rig,ΦM ) the object

Frig(Mrig) := (p∗rigMrig, p
∗
rig∇rig)

in Svec(X). This functor is exact by definition.

Definition 3.10 We define the category of syntomic coefficients to be the cat-
egory S(X) such that:

(i) The objects of S(X) consists of the triple M := (MdR,Mrig,p), where:

(a) Mtyp is an object in Styp(X) for typ ∈ {dR, rig}.

(b) p is an isomorphism

p : FdR(MdR)
∼=
−→ Frig(Mrig)

in Svec(X).

(ii) A morphism f : M → N in S(X) is given by a pair (fdR, frig), where
ftyp : Mtyp → Ntyp are morphisms in Styp(X) for typ ∈ {dR, rig} com-
patible with the comparison isomorphism p.

Example 3.11 For each integer n ∈ Z, we define the Tate object K(n) in
S(X) to be the set K(n) := (K(n)dR,K(n)rig,p), where:

(i) K(n)dR in SdR(X) is given by the rank one free OXK
-module generated

by en,dR, with connection ∇dR(en,dR) = 0 and Hodge filtration

{
FmK(n)dR = K(n)dR m ≤ −n

FmK(n)dR = 0 m > −n.
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(ii) K(n)rig in Srig(X) is given by the rank one free j†O]Xk[P
-module gener-

ated by en,rig, with connection ∇rig(en,rig) = 0 and Frobenius

Φ(en,rig) := p−nen,rig.

(iii) p is the isomorphism given by p(en,dR) = en,rig.

Example 3.12 (See [Ban1] Definition 5.1) We define the logarithmic
sheaf

Log(n) := (L
(n)
dR , L

(n)
rig ,p)

in S(Gm) by:

(i) L
(n)
dR in SdR(Gm) is given by the rank n free OP1

K
-module

L
(n)
dR =

n∏

j=0

OP1
K
ej,dR,

with connection ∇dR(ej,dR) = ej+1,dR ⊗ d log t for 0 ≤ j ≤ n − 1 and
∇(en,dR) = 0, and Hodge filtration given by

F−mL
(n)
dR =

m∏

j=0

OP1
K
ej,dR.

(ii) L
(n)
rig in Srig(Gm) is given by the rank n free j†O]P1

k
[
P̂1
-module

L
(n)
rig =

n∏

j=0

j†O]P1
k
[
P̂1
ej,rig,

with connection ∇rig(ej,rig) = ej+1,rig ⊗ d log t for 0 ≤ j ≤ n − 1 and
∇(en,rig) = 0, and Frobenius

Φ(ej,rig) := p−jej,rig.

(iii) p is the isomorphism given by p(ej,dR) = ej,rig.

4 Morphisms of Syntomic Data

Definition 4.1 Define a morphism between syntomic data u : X → Y to be a
pair (udR, urig) such that:

(i) udR : X → Y is a morphism of schemes over OK .
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(ii) urig : PX → PY is a morphism of formal schemes over W compatible
with the Frobenius, such that the diagram

X ⊗ k
ι

−−−−→ PX ⊗ k

udR

y urig

y

Y ⊗ k
ι

−−−−→ PY ⊗ k

(4)

is commutative.

Remark 4.2 Notice that in (4), contrary to [Ban2] Definition 4.2 (iii), we do
not impose the commutativity of the diagram

X
ι

−−−−→ PX

udR

y urig

y

Y
ι

−−−−→ PY .

(5)

Example 4.3 Let z be an element in O×
K , and let Gm be the syntomic datum

defined in Example 3.2.1. We denote by z0 the Teichmüller representative of
z. In other words, z0 is a root of unity in W such that z ≡ z0 (mod π). Then

iz = (idR, irig) : OK → Gm

is a morphism of syntomic data, where idR : SpecOK → GmOK
and irig :

Spf OK → P̂1
W are morphisms defined respectively by t 7→ z and t 7→ z0.

Let u = (udR, urig) : X → Y be a morphism of syntomic data. By [Ber1]
(2.2.16), we have a functor u∗

rig : Srig(Y) → Srig(X).

Lemma 4.4 Let u : X → Y be a morphism of syntomic data, and let
M := (MdR,Mrig,p) be an object in S(Y). Then there exists a canonical
and functorial isomorphism

u∗(p) : FdR(u∗
dRMdR) → Frig(u∗

rigMrig)

in Svec(X).

The above lemma is trivial if we assume the commutativity of (5).
Proof. Let uvec : X → Y be the morphism of formal schemes induced from
udR, and denote again by uvec the map induced on the associated rigid analytic
space. Then we have

FdR(u∗
dRMdR) = u∗

vecFdR(MdR).

Let u1 := ι ◦ uvec and u2 := (urig ⊗ 1) ◦ ι be maps of formal schemes

u1, u2 : X → PY ⊗OK .
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Then u∗
vecFrig(Mrig) = u∗

1K(Mrig ⊗ K) and Frig(u∗
rigMrig) = u∗

2K(Mrig ⊗ K).

Since (4) is commutative, u1 and u2 coincide on Xk. Hence by [Ber1] Propo-
sition (2.2.17), we have a canonical isomorphism

ǫ1,2 : u∗
1K(Mrig ⊗K)

≃
→ u∗

2K(Mrig ⊗K). (6)

The isomorphism of the lemma is the composition of the isomorphism

FdR(u∗
dRMdR) = u∗

vecFdR(MdR)
p∼=
−−→ u∗

vecFrig(Mrig).

with ǫ1,2.

Definition 4.5 Let u : X → Y be a morphism of syntomic data. Then

u∗ : S(Y) → S(X)

is the functor defined by associating to any object M := (MdR,Mrig,p) the
object

u∗M = (u∗
dRMdR, u

∗
rigMrig, u

∗(p))

in S(X).

5 The splitting principle

Let Log(n) be the logarithmic sheaf defined in Example 3.12. In this section,
we will extend the splitting principle of [Ban1] Proposition 5.2 to the points
defined in Example 4.3.

Proposition 5.1 (splitting principle) Let d be a positive integer, and let
z = ζd be a primitive d-th root of unity in K. Let

iz = (idR, irig) : OK → Gm

be the morphism of syntomic data of Example 4.3 corresponding to z. Then we
have an isomorphism

i∗zLog
(n) ∼=

n∏

j=0

K(j)

in S(OK).

The proof of the proposition will be given at the end of this section. In order
to prove the proposition, it is necessary to explicitly calculate the map i∗z(p) of
Lemma 4.4. For this purpose, we first review the Monsky-Washnitzer interpre-
tation of overconvergent isocrystals and the explicit description of ǫ1,2 of (6)
(See [Ber1] §2 and [T] §2 for details).
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We assume for now that z is an arbitrary element in O×
K . We denote by z0 the

root of unity in W such that z ≡ z0 (mod π). Let A = Γ(GmOK
,OGmOK

) =

OK [t, t−1]. We fix a presentation

OK [x1, · · · , xn]/I ∼= A

over OK , which defines a closed immersion

GmOK
→֒ An

OK
.

Then the intersections Uλ of Gan
mK with the ball B(0, λ+) ⊂ An an

K for λ → 1+

form a system of strict neighborhoods (Definition 3.4) of ĜmK in Gan
mK . For

λ > 1, we let Aλ = Γ(Uλ,OUλ
). Then limλ→1+ Aλ = A† ⊗K, where A† is the

weak completion of A.
Let Mvec = (Mvec,∇vec) be an object in Svec(Gm). By [Ber1] Proposition 2.2.3,
Mvec is of the form j†(M0,∇0), where M0 is a coherent module with integrable
connection ∇0 on a strict neighborhood Uλ. Let Mλ = Γ(Uλ,M0). Then for
λ′ < λ, the section Γ(Uλ′ ,M0) is given by Mλ′ = Mλ ⊗Aλ

Aλ′ , and

M := Γ(Gan
mK ,Mvec) = lim

−→
λ→1+

Mλ. (7)

M is a projective A† ⊗ K-module with integrable connection ∇ : M → M ⊗
Ω1

A†⊗K induced from ∇0.
Suppose the connection ∇vec is overconvergent. By [Ber1] Proposition 2.2.13,
for any η < 1, there exists λ > 1 such that

∥∥∥∥
1

i!
∇λ(∂i

t)(m)

∥∥∥∥ η
i → 0 (i → ∞) (8)

for any m ∈ Mλ. Here, ∇λ : Mλ → Mλ ⊗ Ω1
Aλ/K

is the connection induced

from ∇0, ∂t is the derivation by t, and ‖ − ‖ is a Banach norm on Mλ.
Let M = (MdR,Mrig,p) be an object in S(Gm). Then

Mvec := Frig(Mrig) = (Mrig ⊗K0
K,∇rig ⊗K0

K)

is an object in Svec(Gm). We have

i∗vecFrig(Mrig) = M ⊗ivec K, Frig(i∗rigMrig) = M ⊗irig K,

where M is as in (7), and ivec, irig : A† ⊗OK
K → K are ring homomorphisms

given respectively by t 7→ z and t 7→ z0. By [Ber1] 2.2.17 Remarque,

ǫ1,2 : M ⊗ivec K
∼=
−→ M ⊗irig K

of (6) is given explicitly by the Taylor series

ǫ1,2(m⊗ivec 1) =
∑

i≥0

1

i!
∇(∂i

t)(m) ⊗irig (z − z0)i. (9)
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The existence of the Frobenius ΦM on Mrig insures that the connection ∇rig

(hence ∇vec) is overconvergent ([Ber1] Theorem 2.5.7). Since |z − z0| < 1, the
above series converges by (8).
Next, let

Log(n) := (L
(n)
dR , L

(n)
rig ,p)

be the logarithmic sheaf of Example 3.12. As in (7), we L = Γ(Gan
mK , L

(n)
vec) for

L
(n)
vec = L

(n)
rig ⊗K0

K. Then

L =

n∏

j=0

(A† ⊗K)ej

for the basis ej = ej,rig ⊗ 1, and the connection is given by

∇(ej) = ej+1 ⊗
dt

t
(0 ≤ j ≤ n− 1). (10)

Let uj(t) be the function defined in Definition 2.2.

Proposition 5.2 For integers i,m ≥ 0, let a
(i)
m be elements in A†

K such that

∇(∂i
t)(e0) =

n∑

j=0

a
(i)
j ej .

Then

∂i
t(um) =

n∑

j=0

a
(n)
j um−j .

In particular, we have
a(i)m (z0) = ∂i

t(um)(z0). (11)

Remark 5.3 The definition of a
(i)
j implies

∇(∂i
t)(em) =

n−m∑

j=0

a
(i)
j em+j .

Proof. We will give the proof by induction on i ≥ 0. Since a
(0)
0 = 1, the

statement is true for i = 0. Suppose for an integer i ≥ 0, we have

∂i
t(um) =

n∑

j=0

a
(i)
j um−j . (12)

By comparing the definition of a
(i+1)
j with the equality

∇(∂i+1
t )(e0) = ∇(∂t) ◦ ∇(∂i

t)(e0) =

n∑

j=0

(
(∂ta

(i)
j )ej + t−1a

(i)
j ej+1

)
,
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we obtain the equality

a
(i+1)
j = ∂ta

(i)
j + t−1a

(i)
j−1. (13)

Similarly, from the hypothesis (12) and ∂tum = t−1um−1, we have

∂i+1
t (um) = ∂t ◦ ∂

i
t(um) =

n∑

j=0

(
(∂ta

(i)
j )um−j + t−1a

(i)
j um−j−1

)
.

This together with (13) gives the desired result. (11) follows from the fact that
since z0 is a root of unity, um(z0) = 0 unless m = 0.

Corollary 5.4 For any integers i,m ≥ 0, we have

∇(∂i
t)(em) ⊗irig 1 =

n−m∑

j=0

(
em+j ⊗irig ∂

i
t(uj)(z0)

)
.

Proof. The assertion follows immediately from Remark 5.3

Proposition 5.5 We have

ǫ1,2(em ⊗ivec 1) =

n−m∑

j=0

(
em+j ⊗irig uj(z)

)

for the map ǫ1,2 : L⊗ivec K → L⊗irig K of (9) associated to L.

Proof. Since log(z0) = 0, we have ∂i
t(uj)(z0) = 0 for i < j. Substituting z to

the Taylor expansion of uj(t) at t = z0 gives the equality

uj(z) =

∞∑

i=j

1

i!
∂i
t(uj)(z0)(z − z0)i.

The proposition now follows from the definition of ǫ1,2 (9) and Corollary 5.4.
Let us now return to the case when z = ζd is a primitive d-th root of unity.
Proof of Proposition 5.1. Since the connection is the only structure preventing

L
(n)
dR and L

(n)
rig from splitting, we have

i∗dRL
(n)
dR =

n∏

j=0

Kej,dR i∗rigL
(n)
rig =

n∏

j=0

K0ej,rig.

It is sufficient to prove that the comparison isomorphism i∗z(p) respects the
splitting. The isomorphism

p : i∗dRL
(n)
dR → L⊗ivec K
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is given by ej,dR 7→ ej,rig. Since z is a torsion point, uj(z) = 0 for j 6= 0. Hence
by Proposition 5.5,

ǫ1,2 : L⊗ivec K → L⊗irig K

maps ej,rig ⊗ivec 1 to ej,rig ⊗irig 1. Hence i∗z(p) = ǫ1,2 ◦ p respects the splitting.
We have

i∗zLog
(n) ∼=

n∏

j=0

K(j)

in S(OK) as desired.

Remark 5.6 The calculation of Proposition 5.5 shows that if z is an arbitrary
element in O×

K , then

i∗zLog
(n) = (L

(n)
z,dR, L

(n)
z,rig,pz) ∈ S(OK),

where

L
(n)
z,dR =

n∏

j=0

Kej,dR, L
(n)
z,rig =

n∏

j=0

K0ej,rig,

and

pz(em,dR) =

n−m∑

j=0

em+j,rig ⊗K0
uj(z).

6 The specialization of pol to torsion points

In this section, we will first introduce the p-adic polylogarithmic extension pol
calculated in [Ban1]. Then we will calculate its restriction to d-th roots of
unity, where d is an integer of the form d = Npr with (N, p) = 1 and N > 1.
The case N = 1 will be treated in Section 8.
Let U be the syntomic datum correspoinding to the projective line minus three
points, as defined in Definition 3.2. The p-adic polylogarithm sheaf is an ex-
tension in S(U) of the trivial object K(0) by the logarithmic sheaf Log having
a certain residue. In our previous paper, we determined the explicit shape of
this sheaf.

Theorem 6.1 ([Ban1] Theorem 2) The p-adic polylogarithmic extension

pol(n) is the extension

0 → Log(n) → pol(n) → K(0) → 0

in S(U), given explicitly by pol(n) := (P
(n)
dR , P

(n)
rig ,p), where:

(i) P
(n)
dR in SdR(U) is given by

P
(n)
dR = OP1

K
edR

⊕
L
(n)
dR ,

with connection ∇dR(edR) = e1,dR⊗d log(t−1) and Hodge filtration given
by the direct sum.
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(ii) P
(n)
rig in Srig(U) is given by

P
(n)
rig = j†O]Uk[P̂1

erig
⊕

L
(n)
rig ,

with connection ∇rig(erig) = e1,rig ⊗ d log(t− 1) and Frobenius

Φ(erig) := erig +
n∑

j=1

(−1)j+1ℓ
(p)
j (t)ej,rig. (14)

(iii) p is the isomorphism given by p(edR) = erig ⊗ 1.

Remark 6.2 In [Ban1] Theorem 2, the Frobenius is written as

Φ(erig) := erig +

n∑

j=1

(−1)jℓ
(p)
j (t)ej,rig.

This is due to an error in the calculation of the proof. The correct Frobenius
is the one given in (14).

Let z be a d-th root of unity, where d is an integer of the form d = Npr with
(N, p) = 1 and N > 1, and let z0 ∈ W such that z ≡ z0 (mod π). The purpose
of this section is to prove the following theorem.

Theorem 6.3 The specialization of the polylogarithm at z is explicitly given
as follows:

(i) i∗zP
(n)
dR = KedR ⊕

⊕n
j=0 Kej,dR with the natural Hodge filtration.

(ii) i∗zP
(n)
rig = K0erig ⊕

⊕n
j=0 K0ej,rig with Frobenius

Φ(erig) := erig +
n∑

j=1

(−1)j+1ℓ
(p)
j (z0)ej,rig.

(iii) p is the isomorphism given by

p(edR) = erig ⊗ 1 +

n∑

j=1

ej,rig ⊗ (−1)j(Dj(z) −Dj(z0)),

where Dj(t) is the function defined in Definition 2.2.

The proof of the theorem will be given at the end of this section. As in the
case of Log, we first consider the Monsky-Washnitzer interpretation of pol(n).
Let B†

K = Γ(Uan
K , j†OUan

K
),

P (n)
vec := Frig(Mrig) = (Mrig ⊗K0

K,∇rig ⊗K0
K),
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and P (n) = Γ(Uan
K , P

(n)
vec ). Then we have

P (n) = B†
Ke

⊕ n∏

j=0

B†
Kej

where e = erig ⊗ 1 and ej = ej,rig ⊗ 1, with connection ∇(e) = e⊗ d log(1 − t)
and ∇(ej) = ej+1 ⊗ d log t.

Proposition 6.4 For integers i,m > 0, let b
(i)
m be elements in B†

K such that

∇(∂i
t)(e) =

n∑

j=1

(−1)jb
(i)
j ej .

Then

∂i
t(Dm) =

n∑

j=1

(−1)m−jb
(i)
j um−j .

In particular, we have

b(i)m (z0) = ∂i
t(Dm)(z0). (15)

Proof. The proof is again by induction on i > 0. We first consider the case

when i = 1. In this case, b
(1)
1 = (1 − t)−1. Since Lim−j(t) and uj(t) satisfy the

differential equations

∂t(Lij(t)) =
1

t
Lij−1(t) (j ≥ 1) ∂t(uj(t)) =

uj−1

t
(∀j),

the definition of Dm(t) (Definition 2.2) and the fact that uj(t) = 0 for j < 0
implies that:

∂t(Dm) =

m−1∑

j=0

(−1)j∂t(Lim−j(t)uj(t))

=

m−1∑

j=0

(−1)j

t
(Lim−j−1(t)uj(t) + Lim−j(t)uj−1(t))

=
(−1)m−1

t
Li0(t)um−1(t) = (−1)m−1 um−1(t)

1 − t

= (−1)m−1b
(1)
1 (t)um−1(t).

Hence the statement is true for i = 1. Suppose for an integer i ≥ 1, we have

∂i
t(Dm) =

n∑

j=1

(−1)m−jb
(i)
j um−j . (16)
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By comparing the definition of b
(i+1)
j with the equality

∇(∂i+1
t )(e0) = ∇(∂t) ◦ ∇(∂i

t)(e0) =

n∑

j=1

(−1)j
(

(∂tb
(i)
j )ej + t−1b

(i)
j ej+1

)
,

we obtain the equality

b
(i+1)
j = ∂tb

(i)
j − t−1b

(i)
j−1 (i ≥ 1, j > 1). (17)

Similarly, from the hypothesis (16) and ∂tum = t−1um−1, we have

∂i+1
t (Dm) = ∂t




i∑

j=1

(−1)m−jb
(i)
j um−j




=

n∑

j=1

(−1)m−j
(

(∂tb
(i)
j )um−j + t−1b

(i)
j um−j−1

)
.

This together with (17) gives the desired result. (15) follows from the fact that
since z0 is a root of unity, um(z0) = 0 unless m = 0.

Proposition 6.5 We have

ǫ1,2(e⊗ivec 1) = e⊗irig 1 +

n∑

j=1

(
ej ⊗irig (−1)j(Dj(z) −Dj(z0))

)

for the map ǫ1,2 : P ⊗ivec K → P ⊗irig K of (9) associated to P .

Proof. Substituting z to the Taylor expansion of Dj(t) at t = z0 gives the
equality

Dj(z) =

∞∑

i=0

1

i!
∂i
t(Dj)(z0)(z − z0)i.

The proposition now follows from the definition of ǫ1,2 and Proposition 6.4.

7 The main result (Case N > 1)

The following lemma is well-known.

Lemma 7.1 There is a canonical isomorphism

Ext1S(OK)(K(0),K(j)) = K(j)dR (18)

for j > 0.
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Proof. Suppose M̃ = (M̃dR, M̃rig, p̃) is an extension of K(0) by K(j) in S(OK).
We have exact sequences

0 → K(j)dR → M̃dR → K(0)dR → 0

0 → K(j)rig → M̃rig → K(0)rig → 0.

Denote by ej,dR and ej,rig the basis of K(j)dR and K(j)rig, and let ẽ0,dR and

ẽ0,rig respectively be the liftings of e0,dR and e0,rig in M̃dR and M̃rig. If we map
ẽ0,dR to e0,dR, then we have an isomorphism

M̃dR
∼= K(0)dR

⊕
K(j)dR

in SdR(OK). Next, since the quotient of M by K(j) is isomorphic to K(0), the
Frobenius and p̃ is given by

p̃(ẽ0,dR) = ẽ0,rig ⊗ 1 + ej,rig ⊗ a

φ∗(ẽ0,rig) = ẽ0,rig + cej,rig

for some a ∈ K and c ∈ K0. If we take b ∈ K0 such that (1 − σ/pj)b = c, then
we have an isomorphism

M̃rig
∼= K(0)rig

⊕
K(j)rig

in Srig(OK) given by ẽ0,rig 7→ e0,rig − bej,rig. The above shows that we have an
isomorphism

M̃ ∼=
(
K(0)dR

⊕
K(j)dR, K(0)rig

⊕
K(j)rig, p

)

of extensions of K(0) by K(j) in S(OK), where p is the isomorphism given by

p(e0,dR) = ẽ0,rig ⊗ 1 + ej,rig ⊗ a

= e0,rig ⊗ 1 + ej,rig ⊗ (a + b).

The canonical map of the lemma is given by associating to M̃ the element
(a + b)ej,dR in K(j)dR.
The inverse of this canonical map is constructed by associating to wej,dR in
K(j)dR the extension

(
K(0)dR

⊕
K(j)dR, K(0)rig

⊕
K(j)rig, p

)
,

where

p(e0,dR) = e0,rig ⊗ 1 + ej,rig ⊗ w.

This construction shows that the canonical map is in fact an isomorphism.
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Remark 7.2 Suppose K = K0. Then by [Ban1] Theorem 1 and Example 2.8,
we have an isomorphism

Ext1S(OK)(K(0),K(j))
∼=
−→ H1

syn(OK ,K(j)) = K(j)rig. (19)

If M is an extension in S(OK) corresponding to aej,dR in Lemma 7.1, then M
maps by (19) to ((1 − p−jσ)a)ej,rig in K(j)rig .

The following theorem is Theorem 1 of the introduction.

Theorem 7.3 Let z be a torsion point of order d = Npr, where (N, p) = 1
and N > 1. Then

i∗z pol(n) = ((−1)j Lij(z)ej,dR)j≥1

in

Ext1S(OK)(K(0), i∗zLog(1)) =
n∏

j=0

Ext1S(OK)(K(0),K(j)),

where we view (−1)j Lij(z)ej,dR as an element in Ext1S(OK)(K(0),K(j))
through the isomorphism of lemma 7.1

Proof. By Theorem 6.3, the image of i∗z pol(n) in Ext1S(OK)(K(0),K(j)) is the

extension M̃ = (MdR, M̃rig, p̃) given as follows: MdR is the direct sum

MdR = K(0)dR
⊕

K(j)dR,

M̃rig is the extension of K(0)rig by K(j)rig with the Frobenius given by

Φ(ẽ0,rig) = ẽ0,rig + (−1)j+1ℓ
(p)
j (z0)ej,rig

for the lifting ẽ0,rig of e0,rig in M̃rig, and p̃ is the isomorphism given by

p̃(e0,dR) = ẽ0,rig ⊗ 1 + ej,rig ⊗ (−1)j(Lij(z) − Lij(z0)).

This implies that, in the notation of Lemma 7.1, we have

a = (−1)j(Lij(z) − Lij(z0))

c = (−1)j+1ℓ
(p)
j (z0).

Since z0 is a root of unity prime to p, the Frobenius acts by σ(z0) = zp0 . Hence
the Formula of Propisition 2.1 (iii) gives

ℓ
(p)
j (z0) =

(
1 −

σ

pj

)
Lij(z0).

Again, in the notation of Lemma 7.1, we have

c = (−1)j+1 Lij(z0).

Since a + b = (−1)j Lij(z), the construction of the canonical map shows that

the image of i∗z pol(n) in Ext1S(OK)(K(0),K(j)) maps to (−1)j Lij(z)ej,dR in
K(j)dR.
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8 The main result (Case N = 1)

In this section, we will consider the specialization of the polylogarithm sheaf to
p-th power roots of unity. As mentioned in the introduction, we will consider
a slightly modified version of the polylogarithm. Let c > 1 be an integer prime
to p, and let U0

c,OK
= SpecOK [t, (1 − tc)−1]. We denote by U0

c the syntomic
data

U0
c = (U0

c,OK
,P1

OK
, P̂1, φ).

The multiplication by [c] map on GmOK
defines a morphism of syntomic datum

[c] : U0
c → U.

Definition 8.1 We define the modified p-adic polylogarithmic pol(n)c by

pol(n)c = pol(n) −[c]∗ pol(n) ∈ Ext1S(U0
c)

(K(0),Log(n)).

The explicit shape of pol(n) given in Theorem 6.1 and the definition of the
pull-back [c]∗ gives the following proposition. Let

θc(t) =
1 − tc

1 − t
.

Proposition 8.2 The modified p-adic polylogarithmic pol(n)c is the extension

in S(U0
c), given explicitly by pol(n)c := (P

(n)
dR , P

(n)
rig ,p), where:

(i) P
(n)
dR in SdR(U0

c) is given by

P
(n)
dR = OP1

K
edR

⊕
L
(n)
dR ,

with connection ∇c,dR(edR) = e1,dR⊗d log θc(t) and Hodge filtration given
by the direct sum.

(ii) P
(n)
rig in Srig(U0

c) is given by

P
(n)
rig = j†O]U0

c,k
[
P̂1
erig

⊕
L
(n)
rig ,

with connection ∇c,rig(erig) = e1,rig ⊗ d log θc(t) and Frobenius

Φ(erig) := erig +

n∑

j=1

(−1)j+1ℓ
(p)
j,c (t)ej,rig,

(iii) p is the isomorphism given by p(edR) = erig ⊗ 1.
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Let Uc,OK
= SpecOK [t, θc(t)

−1], and denote by Uc the syntomic data

Uc = (Uc,OK
,P1

OK
, P̂1, φ).

The explicit shape of pol(n)c given in the previous proposition shows that pol(n)c

is in fact an object in S(Uc). In particular, we can specialize pol(n)c at points
on the open unit disc around one.

Similar caluclations as that of Theorem 6.3 with ℓ
(p)
j , D

(p)
j and Dj replaced

by ℓ
(p)
j,c , D

(p)
j,c and Dj,c gives the following theorem, which is Theorem 2 of the

introduction.

Theorem 8.3 Let z be a pr-th root of unity, and let z0 = 1. Then the special-
ization of the modified polylogarithm at z is explicitly given as follows:

(i) i∗zP
(n)
dR = KedR ⊕

⊕n
j=0 Kej,dR with the natural Hodge filtration.

(ii) i∗zP
(n)
rig = Kerig ⊕

⊕n
j=0 Kej,rig with Frobenius

Φ(erig) := erig +
n∑

j=1

(−1)j+1ℓ
(p)
j,c (z0)ej,rig.

(iii) pc is the isomorphism given by

pc(edR) = erig ⊗ 1 +

n∑

j=1

ej,rig ⊗ (−1)j(Dj,c(z) −Dj,c(z0)).

As a corollary, we obtain the following result.

Corollary 8.4 Let z be a torsion point of order pr. Then

i∗z pol(n)c = ((−1)j Lij(z)ej,dR)j≥1

in

Ext1S(OK)(K(0), i∗zLog(1)) =

n∏

j=0

Ext1S(OK)(K(0),K(j)),

where we view (−1)j Lij.c(z)ej,dR as an element in Ext1S(OK)(K(0),K(j))
through the isomorphism of lemma 7.1
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