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100 Laurent Berger

Introduction

In his article [Ka93] on L-functions and rings of p-adic periods, K. Kato wrote:

I believe that there exist explicit reciprocity laws for all p-
adic representations of Gal(K/K), though I can not formulate
them. For a de Rham representation V , this law should be
some explicit description of the relationship between DdR(V )
and the Galois cohomology of V , or more precisely, some ex-
plicit descriptions of the maps exp and exp∗ of V .

In this paper, we explain how results of Benois, Cherbonnier-Colmez, Colmez,
Fontaine, Kato, Kato-Kurihara-Tsuji, Perrin-Riou, Wach and the author give
such an explicit description when V is a crystalline representation of an un-
ramified field.

Let p be a prime number, and let V be a p-adic representation of GK =
Gal(K/K) whereK is a finite extension ofQp. Such objects arise (for example)
as the étale cohomology of algebraic varieties, hence their interest in arithmetic
algebraic geometry.

Let Bcris and BdR be the rings of periods of Fontaine, and let Dcris(V ) and
DdR(V ) be the invariants attached to V by Fontaine’s construction. Bloch
and Kato have defined in [BK91, §3], for a de Rham representation V , an
“exponential” map,

expK,V : DdR(V )/Fil0 DdR(V )→ H1(K,V ).

It is obtained by tensoring the so-called fundamental exact sequence:

0→ Qp → B
ϕ=1
cris → BdR/B

+
dR → 0

with V and taking the invariants under the action of GK . The exponential map
is then the connecting homomorphism DdR(V )/Fil0 DdR(V )→ H1(K,V ).

The reason for their terminology is the following (cf. [BK91, 3.10.1]): if G
is a formal Lie group of finite height over OK , and V = Qp ⊗Zp

T where
T is the p-adic Tate module of G, then V is a de Rham representation and
DdR(V )/Fil0 DdR(V ) is identified with the tangent space tan(G(K)) of G(K).
In this case, we have a commutative diagram:

tan(G(K))
expG−−−−→ Q⊗Z G(OK)

=

y δG

y

DdR(V )/Fil0 DdR(V )
expK,V
−−−−−→ H1(K,V ),

where δG is the Kummer map, the upper expG is the usual exponential map,
and the lower expK,V is Bloch-Kato’s exponential map.
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Bloch and Kato’s Exponential Map 101

The cup product ∪ : H1(K,V )×H1(K,V ∗(1))→ H2(K,Qp(1)) ≃ Qp defines
a perfect pairing, which we can use (by dualizing twice) to define Bloch and
Kato’s dual exponential map exp∗K,V ∗(1) : H

1(K,V )→ Fil0 DdR(V ). Kato has

given in [Ka93] a very simple formula for exp∗K,V ∗(1), see proposition II.5 below.

When K is an unramified extension of Qp and V is a crystalline representa-
tion of GK , Perrin-Riou has constructed in [Per94] a period map ΩV,h which
interpolates the expK,V (k) as k runs over the positive integers. It is a crucial
ingredient in the construction of p-adic L functions, and is a vast generaliza-
tion of Coleman’s map. Perrin-Riou’s constructions were further generalized
by Colmez in [Col98].

Let us recall the main properties of her map. For that purpose we need
to introduce some notation which will be useful throughout the article. Let
HK = Gal(K/K(µp∞)), let ∆K be the torsion subgroup of ΓK = GK/HK =
Gal(K(µp∞)/K) and let Γ1

K = Gal(K(µp∞)/K(µp)) so that ΓK ≃ ∆K × Γ1
K .

Let ΛK = Zp[[ΓK ]] and H(ΓK) = Qp[∆K ]⊗Qp
H(Γ1

K) where H(Γ1
K) is the set

of f(γ1 − 1) with γ1 ∈ Γ1
K and where f(T ) ∈ Qp[[T ]] is a power series which

converges on the p-adic open unit disk.

Recall that the Iwasawa cohomology groups of V are the projective limits for
the corestriction maps of theHi(Kn, V ) whereKn = K(µpn). More precisely, if
T is any lattice of V then Hi

Iw(K,V ) = Qp⊗Zp
Hi

Iw(K,T ) where H
i
Iw(K,T ) =

lim
←−n

Hi(Kn, T ) so that Hi
Iw(K,V ) has the structure of a Qp ⊗Zp

ΛK-module

(see §II.4 for more details). Roughly speaking, these cohomology groups are
where Euler systems live (at least locally).

The main result of [Per94] is the construction, for a crystalline representation
V of GK of a family of maps (parameterized by h ∈ Z):

ΩV,h : H(ΓK)⊗Qp
Dcris(V )→ H(ΓK)⊗ΛK

H1
Iw(K,V )/V HK ,

whose main property is that they interpolate Bloch and Kato’s exponential
map. More precisely, if h, j ≫ 0, then the diagram:

(
H(ΓK)⊗Qp

Dcris(V (j))
)∆=0 ΩV (j),h

−−−−−→ H(ΓK)⊗ΛK
H1

Iw(K,V (j))/V (j)HK

Ξn,V (j)

y prKn,V (j)

y

Kn ⊗K Dcris(V )
(h+j−1)!×
−−−−−−−→
expKn,V (j)

H1(Kn, V (j))

is commutative where ∆ and Ξn,V are two maps whose definition is rather
technical. Let us just say that the image of ∆ is finite-dimensional over Qp

and that Ξn,V is a kind of evaluation-at-(ε(n) − 1) map (see §II.5 for a precise
definition).

Using the inverse of Perrin-Riou’s map, one can then associate to an Euler
system a p-adic L-function (see for example [Per95]). For an enlightening survey
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102 Laurent Berger

of this, see [Col00]. If one starts with V = Qp(1), then Perrin-Riou’s map is
the inverse of the Coleman isomorphism and one recovers Kubota-Leopoldt’s
p-adic L-functions. It is therefore important to be able to construct the maps
ΩV,h as explicitly as possible.

The goal of this article is to give formulas for expK,V , exp
∗
K,V ∗(1), and ΩV,h

in terms of the (ϕ,Γ)-module associated to V by Fontaine. As a corollary, we
recover a theorem of Colmez which states that Perrin-Riou’s map interpolates
the exp∗K,V ∗(1−k) as k runs over the negative integers. This is equivalent to

Perrin-Riou’s conjectured reciprocity formula (proved by Benois, Colmez and
Kato-Kurihara-Tsuji). Our construction of ΩV,h is actually a slight improve-
ment over Perrin-Riou’s (one does not have to kill the ΛK-torsion, see remark
II.14). In addition, our construction should generalize to the case of de Rham
representations, to families and to settings other than cyclotomic.

We refer the reader to the text itself for a statement of the actual formulas
(theorems II.3, II.6 and II.13) which are rather technical.

This article does not really contain any new results, and it is mostly a re-
interpretation of formulas of Cherbonnier-Colmez (for the dual exponential
map), and of Benois and Colmez and Kato-Kurihara-Tsuji (for Perrin-Riou’s
map) in the language of the author’s article [Ber02] on p-adic representations
and differential equations.

Acknowledgments. This research was partially conducted for the Clay
Mathematical Institute, and I thank them for their support. I would also
like to thank P. Colmez and the referee for their careful reading of earlier ver-
sions of this article. It is P. Colmez who suggested that I give a formula for
Bloch-Kato’s exponential in terms of (ϕ,Γ)-modules.

Finally, it is a pleasure to dedicate this article to Kazuya Kato on the occasion
of his fiftieth birthday.

I. Periods of p-adic representations

Throughout this article, k will denote a finite field of characteristic p > 0, so
that if W (k) denotes the ring of Witt vectors over k, then F =W (k)[1/p] is a
finite unramified extension of Qp. Let Qp be the algebraic closure of Qp, let

K be a finite totally ramified extension of F , and let GK = Gal(Qp/K) be the
absolute Galois group of K. Let µpn be the group of pn-th roots of unity; for

every n, we will choose a generator ε(n) of µpn , with the additional requirement

that (ε(n))p = ε(n−1). This makes lim
←−n

ε(n) into a generator of lim
←−n

µpn ≃

Zp(1). We set Kn = K(µpn) and K∞ = ∪+∞
n=0Kn. Recall that the cyclotomic

character χ : GK → Z∗
p is defined by the relation: g(ε(n)) = (ε(n))χ(g) for all
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Bloch and Kato’s Exponential Map 103

g ∈ GK . The kernel of the cyclotomic character is HK = Gal(Qp/K∞), and χ
therefore identifies ΓK = GK/HK with an open subgroup of Z∗

p.

A p-adic representation V is a finite dimensional Qp-vector space with a con-
tinuous linear action of GK . It is easy to see that there is always a Zp-lattice
of V which is stable by the action of GK , and such lattices will be denoted by
T . The main strategy (due to Fontaine, see for example [Fo88b]) for studying
p-adic representations of a group G is to construct topological Qp-algebras B
(rings of periods), endowed with an action of G and some additional structures
so that if V is a p-adic representation, then

DB(V ) = (B ⊗Qp
V )G

is a BG-module which inherits these structures, and so that the functor V 7→
DB(V ) gives interesting invariants of V . We say that a p-adic representation
V of G is B-admissible if we have B ⊗Qp

V ≃ Bd as B[G]-modules.

In the next two paragraphs, we will recall the construction of a number of rings
of periods. The relations between these rings are mapped in appendix C.

I.1. p-adic Hodge theory. In this paragraph, we will recall the definitions
of Fontaine’s rings of periods. One can find some of these constructions in
[Fo88a] and most of what we will need is proved in [Col98, III] to which the
reader should refer in case of need. He is also invited to turn to appendix C.

Let Cp be the completion of Qp for the p-adic topology and let

Ẽ = lim
←−
x 7→xp

Cp = {(x
(0), x(1), · · · ) | (x(i+1))p = x(i)},

and let Ẽ+ be the set of x ∈ Ẽ such that x(0) ∈ OCp
. If x = (x(i)) and

y = (y(i)) are two elements of Ẽ, we define their sum x+ y and their product
xy by:

(x+ y)(i) = lim
j→+∞

(x(i+j) + y(i+j))p
j

and (xy)(i) = x(i)y(i),

which makes Ẽ into an algebraically closed field of characteristic p. If x =

(x(n))n≥0 ∈ Ẽ, let vE(x) = vp(x
(0)). This is a valuation on Ẽ for which Ẽ is

complete; the ring of integers of Ẽ is Ẽ+. Let Ã+ be the ring W (Ẽ+) of Witt

vectors with coefficients in Ẽ+ and let

B̃+ = Ã+[1/p] = {
∑

k≫−∞

pk[xk], xk ∈ Ẽ+}

where [x] ∈ Ã+ is the Teichmüller lift of x ∈ Ẽ+. This ring is endowed with a

map θ : B̃+ → Cp defined by the formula

θ

(
∑

k≫−∞

pk[xk]

)
=

∑

k≫−∞

pkx
(0)
k .
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The absolute Frobenius ϕ : Ẽ+ → Ẽ+ lifts by functoriality of Witt vectors to

a map ϕ : B̃+ → B̃+. It’s easy to see that ϕ(
∑
pk[xk]) =

∑
pk[xpk] and that ϕ

is bijective.

Let ε = (ε(i))i≥0 ∈ Ẽ+ where ε(n) is defined above, and define π = [ε] − 1,

π1 = [ε1/p] − 1, ω = π/π1 and q = ϕ(ω) = ϕ(π)/π. One can easily show that

ker(θ : Ã+ → OCp
) is the principal ideal generated by ω.

The ringB+
dR is defined to be the completion of B̃+ for the ker(θ)-adic topology:

B+
dR = lim

←−
n≥0

B̃+/(ker(θ)n).

It is a discrete valuation ring, whose maximal ideal is generated by ω; the
series which defines log([ε]) converges in B+

dR to an element t, which is also a

generator of the maximal ideal, so that BdR = B+
dR[1/t] is a field, endowed

with an action of GK and a filtration defined by Fili(BdR) = tiB+
dR for i ∈ Z.

We say that a representation V of GK is de Rham if it is BdR-admissible which
is equivalent to the fact that the filtered K-vector space

DdR(V ) = (BdR ⊗Qp
V )GK

is of dimension d = dimQp
(V ).

Recall that the topology of B̃+ is defined by taking the collection of open

sets {([π]k, pn)Ã+}k,n≥0 as a family of neighborhoods of 0. The ring B+
max is

defined as being

B+
max = {

∑

n≥0

an
ωn

pn
where an ∈ B̃+ is sequence converging to 0},

and Bmax = B+
max[1/t]. The ring Bmax was defined in [Col98, III.2] where a

number of its properties are established. It is closely related to Bcris but tends
to be more amenable (loc. cit.). One could replace ω by any generator of

ker(θ) in Ã+. The ring Bmax injects canonically into BdR and, in particular, it
is endowed with the induced Galois action and filtration, as well as with a con-

tinuous Frobenius ϕ, extending the map ϕ : B̃+ → B̃+. Let us point out that

ϕ does not extend continuously to BdR. One also sets B̃+
rig = ∩+∞

n=0ϕ
n(B+

max).

We say that a representation V of GK is crystalline if it is Bmax-admissible or

(which is the same) B̃+
rig[1/t]-admissible (the periods of crystalline representa-

tions live in finite dimensional F -vector subspaces of Bmax, stable by ϕ, and so
in fact in ∩+∞

n=0ϕ
n(B+

max)[1/t]); this is equivalent to requiring that the F -vector
space

Dcris(V ) = (Bmax ⊗Qp
V )GK = (B̃+

rig[1/t]⊗Qp
V )GK

be of dimension d = dimQp
(V ). Then Dcris(V ) is endowed with a Frobenius ϕ

induced by that of Bmax and (BdR ⊗Qp
V )GK = DdR(V ) = K ⊗F Dcris(V ) so

that a crystalline representation is also de Rham and K⊗FDcris(V ) is a filtered
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Bloch and Kato’s Exponential Map 105

K-vector space. Note that this definition of Dcris(V ) is compatible with the
“usual” one (via Bcris) because ∩

+∞
n=0ϕ

n(B+
max) = ∩

+∞
n=0ϕ

n(B+
cris).

If V is a p-adic representation, we say that V is Hodge-Tate, with Hodge-
Tate weights h1, · · · , hd, if we have a decomposition Cp⊗Qp

V ≃ ⊕dj=1Cp(hj).
We will say that V is positive if its Hodge-Tate weights are negative (the
definition of the sign of the Hodge-Tate weights is unfortunate; some peo-
ple change the sign and talk about geometrical weights). By using the map
θ : B+

dR → Cp, it is easy to see that a de Rham representation is Hodge-
Tate and that the Hodge-Tate weights of V are those integers h such that
Fil−hDdR(V ) 6= Fil−h+1

DdR(V ).

To summarize, let us recall that crystalline implies de Rham implies Hodge-
Tate. Of course, the significance of these definitions is to be found in geomet-
rical applications. For example, if V is the Tate module of an abelian variety
A, then V is de Rham and it is crystalline if and only if A has good reduction.

I.2. (ϕ,Γ)-modules. The results recalled in this paragraph can be found in
[Fo91], and the version which we use here is described in [CC98] and [CC99].

Let Ã be the ring of Witt vectors with coefficients in Ẽ and B̃ = Ã[1/p]. Let

AF be the completion of OF [π, π
−1] in Ã for this ring’s topology, which is also

the completion of OF [[π]][π
−1] for the p-adic topology (π being small in Ã).

This is a discrete valuation ring whose residue field is k((ε − 1)). Let B be
the completion for the p-adic topology of the maximal unramified extension

of BF = AF [1/p] in B̃. We then define A = B ∩ Ã, B+ = B ∩ B̃+ and

A+ = A ∩ Ã+. These rings are endowed with an action of Galois and a

Frobenius deduced from those on Ẽ. We set AK = AHK and BK = AK [1/p].
When K = F , the two definitions are the same. Let B+

F = (B+)HF as well as

A+
F = (A+)HF (those rings are not so interesting if K 6= F ). One can show

that A+
F = OF [[π]] and that B+

F = A+
F [1/p].

If V is a p-adic representation of GK , let D(V ) = (B⊗Qp
V )HK . We know by

[Fo91] that D(V ) is a d-dimensional BK-vector space with a slope 0 Frobenius
and a residual action of ΓK which commute (it is an étale (ϕ,ΓK)-module) and
that one can recover V by the formula V = (B⊗BK

D(V ))ϕ=1.

If T is a lattice of V , we get analogous statements with A instead of B: D(T ) =
(A⊗Zp

T )HK is a free AK -module of rank d and T = (A⊗AK
D(T ))ϕ=1.

The field B is a totally ramified extension (because the residual extension is
purely inseparable) of degree p of ϕ(B). The Frobenius map ϕ : B→ B is in-
jective but therefore not surjective, but we can define a left inverse for ϕ, which
will play a major role in the sequel. We set: ψ(x) = ϕ−1(p−1 TrB/ϕ(B)(x)).
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Let us now set K = F (i.e. we are now working in an unramified extension of
Qp). We say that a p-adic representation V of GF is of finite height if D(V )
has a basis over BF made up of elements of D+(V ) = (B+⊗Qp

V )HF . A result
of Fontaine ([Fo91] or [Col99, III.2]) shows that V is of finite height if and only
if D(V ) has a sub-B+

F -module which is free of finite rank d, and stable by ϕ.
Let us recall the main result (due to Colmez, see [Col99, théorème 1] or also
[Ber02, théorème 3.10]) regarding crystalline representations of GF :

Theorem I.1. If V is a crystalline representation of GF , then V is of finite
height.

If K 6= F or if V is no longer crystalline, then it is no longer true in general that
V is of finite height, but it is still possible to say something about the periods of

V . Every element x ∈ B̃ can be written in a unique way as x =
∑
k≫−∞ pk[xk],

with xk ∈ Ẽ. For r > 0, let us set:

B̃†,r =

{
x ∈ B̃, lim

k→+∞
vE(xk) +

pr

p− 1
k = +∞

}
.

This makes B̃†,r into an intermediate ring between B̃+ and B̃. Let us set

B†,r = B∩ B̃†,r, B̃† = ∪r≥0B̃
†,r, and B† = ∪r≥0B

†,r. If R is any of the above
rings, then by definition RK = RHK .

We say that a p-adic representation V is overconvergent if D(V ) has a basis
over BK made up of elements of D†(V ) = (B† ⊗Qp

V )HK . The main result on
the overconvergence of p-adic representations of GK is the following (cf [CC98,
corollaire III.5.2]):

Theorem I.2. Every p-adic representation V of GK is overconvergent, that is
there exists r = r(V ) such that D(V ) = BK ⊗B

†,r
K

D†,r(V ).

The terminology “overconvergent” can be explained by the following propo-

sition, which describes the rings B
†,r
K . Let eK be the ramification index of

K∞/F∞ and let F ′ be the maximal unramified extension of F contained in
K∞ (note that F ′ can be larger than F ):

Proposition I.3. Let BαF ′ be the set of power series f(X) =
∑
k∈Z akX

k

such that ak is a bounded sequence of elements of F ′, and such that f(X) is
holomorphic on the p-adic annulus {p−1/α ≤ |T | < 1}.

There exist r(K) and πK ∈ B
†,r(K)
K such that if r ≥ r(K), then the map

f 7→ f(πK) from BeKrF ′ to B
†,r
K is an isomorphism. If K = F , then F ′ = F and

one can take πF = π.

I.3. p-adic representations and differential equations. We shall now
recall some of the results of [Ber02], which allow us to recover Dcris(V ) from
the (ϕ,Γ)-module associated to V . Let HαF ′ be the set of power series f(X) =
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Bloch and Kato’s Exponential Map 107

∑
k∈Z akX

k such that ak is a sequence (not necessarily bounded) of elements

of F ′, and such that f(X) is holomorphic on the p-adic annulus {p−1/α ≤ |T | <
1}.

For r ≥ r(K), defineB†,r
rig,K as the set of f(πK) where f(X) ∈ HeKrF ′ . Obviously,

B
†,r
K ⊂ B

†,r
rig,K and the second ring is the completion of the first one for the

natural Fréchet topology. If V is a p-adic representation, let

D
†,r
rig(V ) = B

†,r
rig,K ⊗B

†,r
K

D†,r(V ).

One of the main technical tools of [Ber02] is the construction of a large ring

B̃
†
rig, which contains B̃+

rig and B̃†. This ring is a bridge between p-adic Hodge

theory and the theory of (ϕ,Γ)-modules.

As a consequence of the two above inclusions, we have:

Dcris(V ) ⊂ (B̃†
rig[1/t]⊗Qp

V )GK and D
†
rig(V )[1/t] ⊂ (B̃†

rig[1/t]⊗Qp
V )HK .

One of the main results of [Ber02] is then (cf. [Ber02, theorem 3.6]):

Theorem I.4. If V is a p-adic representation of GK then: Dcris(V ) =

(D†
rig(V )[1/t])ΓK . If V is positive, then Dcris(V ) = D

†
rig(V )ΓK .

Note that one does not need to know what B̃
†
rig looks like in order to state

the above theorem. We will not give the rather technical construction of that

ring, but recall that B
†,r
rig,K is the completion of B†,r

K for that ring’s natural

Fréchet topology and that B
†
rig,K is the union of the B

†,r
rig,K . Similarly, there

is a natural Fréchet topology on B̃†,r, B̃†,r
rig is the completion of B̃†,r for that

topology, and B̃
†
rig = ∪r≥0B̃

†,r
rig . Actually, one can show that B̃+

rig ⊂ B̃
†,r
rig for

any r and there is an exact sequence (see [Ber02, lemme 2.18]):

0→ B̃+ → B̃+
rig ⊕ B̃†,r → B̃

†,r
rig → 0,

which the reader can take as providing a definition of B̃†,r
rig .

Recall that if n ≥ 0 and rn = pn−1(p− 1), then there is a well-defined injective

map ϕ−n : B̃†,rn → B+
dR, and this map extends (see for example [Ber02, §2.2])

to an injective map ϕ−n : B̃†,rn
rig → B+

dR.

The reader who feels that he needs to know more about those constructions
and theorem I.4 above is invited to read either [Ber02] or the expository paper
[Col01] by Colmez. See also appendix C.

Let us now return to the case when K = F and V is a crystalline representation
of GF . In this case, Colmez’s theorem tells us that V is of finite height so that

one can write D
†,r
rig(V ) = B

†,r
rig,F ⊗B

+
F
D+(V ) and theorem I.4 above therefore

says that Dcris(V ) = (B†,r
rig,F [1/t]⊗B

+
F
D+(V ))ΓF .
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One can give a more precise result. Let B+
rig,F be the set of f(π) where f(X) =∑

k≥0 akX
k with ak ∈ F , and such that f(X) is holomorphic on the p-adic

open unit disk. Set D+
rig(V ) = B+

rig,F ⊗B
+
F
D+(V ). One can then show (see

[Ber03, §II.2]) the following refinement of theorem I.4:

Proposition I.5. We have Dcris(V ) = (D+
rig(V )[1/t])ΓF and if V is positive

then Dcris(V ) = D+
rig(V )ΓF .

Indeed if N(V ) denotes, in the terminology of [loc. cit.], the Wach module
associated to V , then N(V ) ⊂ D+(V ) when V is positive and it is shown in
[loc. cit., §II.2] that under that hypothesis, Dcris(V ) = (B+

rig,F ⊗B
+
F
N(V ))ΓF .

I.4. Construction of cocycles. The purpose of this paragraph is to recall
the constructions of [CC99, §I.5] and extend them a little bit. In this paragraph,
V will be an arbitrary p-adic representation of GK . Recall that in loc. cit.,
a map h1K,V : D(V )ψ=1 → H1(K,V ) was constructed, and that (when ΓK is

torsion free at least) it gives rise to an exact sequence:

0 −−−−→ D(V )ψ=1
ΓK

h1
K,V

−−−−→ H1(K,V ) −−−−→
(

D(V )
ψ−1

)ΓK

−−−−→ 0.

We shall extend h1K,V to a map h1K,V : D†
rig(V )ψ=1 → H1(K,V ). We will first

need a few facts about the ring of periods B̃†
rig and the modules D†,r

rig(V ).

Lemma I.6. If r is large enough and γ ∈ ΓK then

1− γ : D†,r
rig(V )ψ=0 → D

†,r
rig(V )ψ=0

is an isomorphism.

Proof. We will first show that 1− γ is injective. By theorem I.4, an element in
the kernel of 1− γ would have to be in Dcris(V ) and therefore in Dcris(V )ψ=0

which is obviously 0.

We will now prove surjectivity. Recall that by [CC98, II.6.1], if r is large enough
and γ ∈ ΓK then 1− γ : D†,r(V )ψ=0 → D†,r(V )ψ=0 is an isomorphism whose
inverse is uniformly continuous for the Fréchet topology of D†,r(V ).

In order to show the surjectivity of 1 − γ it is therefore enough to show that

D†,r(V )ψ=0 is dense in D
†,r
rig(V )ψ=0 for the Fréchet topology. For r large

enough, D†,r(V ) has a basis in ϕ(D†,r/p(V )) so that

D†,r(V )ψ=0 = (B†,r
K )ψ=0 · ϕ(D†,r/p(V ))

D
†,r
rig(V )ψ=0 = (B†,r

rig,K)ψ=0 · ϕ(D†,r/p(V )).

The fact that D†,r(V )ψ=0 is dense in D
†,r
rig(V )ψ=0 for the Fréchet topology

will therefore follow from the density of (B†,r
K )ψ=0 in (B†,r

rig,K)ψ=0. This last
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statement follows from the facts that by definition B
†,r/p
K is dense in B

†,r/p
rig,K

and that:

(B†,r
K )ψ=0 = ⊕p−1

i=1 [ε]
iϕ(B

†,r/p
K ) and (B†,r

rig,K)ψ=0 = ⊕p−1
i=1 [ε]

iϕ(B
†,r/p
rig,K).

�

Lemma I.7. The following maps are all surjective and their kernel is Qp:

1− ϕ : B̃† → B̃†, 1− ϕ : B̃+
rig → B̃+

rig and 1− ϕ : B̃†
rig → B̃

†
rig.

Proof. We’ll start with the assertion on the kernel of 1− ϕ. Since B̃+
rig ⊂ B̃

†
rig

and B̃† ⊂ B̃
†
rig it is enough to show that (B̃†

rig)
ϕ=1 = Qp. If x ∈ (B̃†

rig)
ϕ=1,

then [Ber02, prop 3.2] shows that actually x ∈ (B̃+
rig)

ϕ=1, and therefore x ∈

(B̃+
rig)

ϕ=1 = (B+
max)

ϕ=1 = Qp by [Col98, III.3].

The surjectivity of 1 − ϕ : B̃†
rig → B̃

†
rig results from the surjectivity of 1 − ϕ

on the first two spaces since by [Ber02, lemme 2.18], one can write α ∈ B̃
†
rig as

α = α+ + α− with α+ ∈ B̃+
rig and α− ∈ B̃†.

The surjectivity of 1 − ϕ : B̃+
rig → B̃+

rig follows from the facts that 1 − ϕ :

B+
max → B+

max is surjective (see [Col98, III.3]) and that B̃+
rig = ∩+∞

n=0ϕ
n(B+

max).

The surjectivity of 1− ϕ : B̃† → B̃† follows from the facts that 1− ϕ : B̃→ B̃

is surjective (it is surjective on Ã as can be seen by reducing modulo p and

using the fact that Ẽ is algebraically closed) and that if β ∈ B̃ is such that

(1− ϕ)β ∈ B̃†, then β ∈ B̃† as we shall see presently.

If x =
∑+∞
i=0 p

i[xi] ∈ Ã, let us set wk(x) = infi≤k vE(xi) ∈ R ∪ {+∞}. The

definition of B̃†,r shows that x ∈ B̃†,r if and only if limk→+∞ wk(x) +
pr
p−1k =

+∞. A short computation also shows that wk(ϕ(x)) = pwk(x) and that wk(x+
y) ≥ inf(wk(x), wk(y)) with equality if wk(x) 6= wk(y).

It is then clear that

lim
k→+∞

wk((1− ϕ)x) +
pr

p− 1
k = +∞ =⇒ lim

k→+∞
wk(x) +

p(r/p)

p− 1
k = +∞

and so if x ∈ Ã is such that (1 − ϕ)x ∈ B̃†,r then x ∈ B̃†,r/p and likewise for

x ∈ B̃ by multiplying by a suitable power of p. �

The torsion subgroup of ΓK will be denoted by ∆K . We also set ΓnK =
Gal(K∞/Kn). When p 6= 2 and n ≥ 1 (or p = 2 and n ≥ 2), ΓnK is tor-
sion free. If x ∈ 1 + pZp, then there exists k ≥ 1 such that logp(x) ∈ p

kZ∗
p and

we’ll write log0p(x) = logp(x)/p
k.
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If K and n are such that ΓnK is torsion-free, then we will construct maps h1Kn,V

such that corKn+1/Kn
◦h1Kn+1,V

= h1Kn,V
. If ΓnK is no longer torsion free, we’ll

therefore define h1Kn,V
by the relation h1Kn,V

= corKn+1/Kn
◦h1Kn+1,V

. In the

following proposition, we therefore assume that ΓK is torsion free (and therefore
procyclic), and we let γ denote a topological generator of ΓK . Recall that if
M is a ΓK-module, it is customary to write MΓK

for M/ im(γ − 1).

Proposition I.8. If y ∈ D
†
rig(V )ψ=1, then there exists b ∈ B̃

†
rig ⊗Qp

V such

that (γ − 1)(ϕ− 1)b = (ϕ− 1)y and the formula

h1K,V (y) = log0p(χ(γ))

[
σ 7→

σ − 1

γ − 1
y − (σ − 1)b

]

then defines a map h1K,V : D†
rig(V )ψ=1

ΓK
→ H1(K,V ) which does not depend

either on the choice of a generator γ of ΓK or on the choice of a particular

solution b, and if y ∈ D(V )ψ=1 ⊂ D
†
rig(V )ψ=1, then h1K,V (y) coincides with the

cocycle constructed in [CC99, I.5].

Proof. Our construction closely follows [CC99, I.5]; to simplify the notations,
we can assume that log0p(χ(γ)) = 1. The fact that if we start from a different

γ, then the two h1K,V we get are the same is left as an easy exercise for the
reader.

Let us start by showing the existence of b ∈ B̃
†
rig ⊗Qp

V . If y ∈ D
†
rig(V )ψ=1,

then (ϕ− 1)y ∈ D
†
rig(V )ψ=0. By lemma I.6, there exists x ∈ D

†
rig(V )ψ=0 such

that (γ − 1)x = (ϕ− 1)y. By lemma I.7, there exists b ∈ B̃
†
rig ⊗Qp

V such that

(ϕ− 1)b = x.

Recall that we define h1K,V (y) ∈ H
1(K,V ) by the formula:

h1K,V (y)(σ) =
σ − 1

γ − 1
y − (σ − 1)b.

Notice that, a priori, h1K,V (y) ∈ H
1(K, B̃†

rig ⊗Qp
V ), but

(ϕ− 1)h1K,V (y)(σ) =
σ − 1

γ − 1
(ϕ− 1)y − (σ − 1)(ϕ− 1)b

=
σ − 1

γ − 1
(γ − 1)x− (σ − 1)x

= 0,

so that h1K,V (y)(σ) ∈ (B†
rig)

ϕ=1 ⊗Qp
V = V . In addition, two different choices

of b differ by an element of (B̃†
rig)

ϕ=1 ⊗Qp
V = V , and therefore give rise to

two cohomologous cocycles.
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It is clear that if y ∈ D(V )ψ=1 ⊂ D
†
rig(V )ψ=1, then h1K,V (y) coincides with the

cocycle constructed in [CC99, I.5], as can be seen by their identical construc-

tion, and it is immediate that if y ∈ (γ − 1)D†
rig(V ), then h1K,V (y) = 0. �

Lemma I.9. We have corKn+1/Kn
◦h1Kn+1,V

= h1Kn,V
.

Proof. The proof is exactly the same as that of [CC99, §II.2] and in any case
it is rather easy. �

II. Explicit formulas for exponential maps

Recall that expK,V : DdR(V )/Fil0 DdR(V )→ H1(K,V ) is obtained by tensor-
ing the fundamental exact sequence (see [Col98, III.3]):

0→ Qp → Bϕ=1
max → BdR/B

+
dR → 0

with V and taking the invariants under the action of GK (note once again that

B
ϕ=1
cris = Bϕ=1

max). The exponential map is then the connecting homomorphism

DdR(V )/Fil0 DdR(V )→ H1(K,V ).

The cup product ∪ : H1(K,V )×H1(K,V ∗(1))→ H2(K,Qp(1)) ≃ Qp defines
a perfect pairing, which we use (by dualizing twice) to define Bloch and Kato’s
dual exponential map exp∗K,V ∗(1) : H

1(K,V )→ Fil0 DdR(V ).

The goal of this chapter is to give explicit formulas for Bloch-Kato’s maps for
a p-adic representation V , in terms of the (ϕ,Γ)-module D(V ) attached to V .
Throughout this chapter, V will be assumed to be a crystalline representation
of GF .

II.1. Preliminaries on some Iwasawa algebras. Recall that (cf [CC99,

III.2] or [Ber02, §2.4] for example) we have maps ϕ−n : B̃†,rn
rig → B+

dR whose

restriction to B+
rig,F satisfy ϕ−n(B+

rig,F ) ⊂ Fn[[t]] and which can then charac-

terized by the fact that π maps to ε(n) exp(t/pn)− 1.

If z ∈ Fn((t))⊗F Dcris(V ), then the constant coefficient (i.e. the coefficient of
t0) of z will be denoted by ∂V (z) ∈ Fn ⊗F Dcris(V ). This notation should not
be confused with that for the derivation map ∂ defined below.

We will make frequent use of the following fact:

Lemma II.1. If y ∈ (B+
rig,F [1/t] ⊗F Dcris(V ))ψ=1, then for any m ≥ n ≥ 0,

the element p−m TrFm/Fn
∂V (ϕ

−m(y)) ∈ Fn⊗F Dcris(V ) does not depend on m
and we have:

p−m TrFm/Fn
∂V (ϕ

−m(y)) =

{
p−n∂V (ϕ

−n(y)) if n ≥ 1

(1− p−1ϕ−1)∂V (y) if n = 0.
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Proof. Recall that if y = t−ℓ
∑+∞
k=0 akπ

k ∈ B+
rig,F [1/t]⊗F Dcris(V ), then

ϕ−m(y) = pmℓt−ℓ
+∞∑

k=0

ϕ−m(ak)(ε
(m) exp(t/pm)− 1)k,

and that by the definition of ψ, ψ(y) = y means that:

ϕ(y) =
1

p

∑

ηp=1

y(η(1 + T )− 1).

The lemma then follows from the fact that if m ≥ 2, then the conjugates of
ε(m) under Gal(Fm/Fm−1) are the ηε(m), where ηp = 1, while if m = 1, then
the conjugates of ε(1) under Gal(F1/F ) are the η, where ηp = 1 but η 6= 1. �

We will also need some facts about the Iwasawa algebra of ΓF and some dif-
ferential operators which it contains. Recall that since F is an unramified
extension of Qp, ΓF ≃ Z∗

p and that ΓnF = Gal(F∞/Fn) is the set of elements
γ ∈ ΓF such that χ(γ) ∈ 1 + pnZp.

The completed group algebra of ΓF is ΛF = Zp[[ΓF ]] ≃ Zp[∆F ] ⊗Zp
Zp[[Γ

1
F ]],

and we set H(ΓF ) = Qp[∆F ] ⊗Qp
H(Γ1

F ) where H(Γ1
F ) is the set of f(γ − 1)

with γ ∈ Γ1
F and where f(X) ∈ Qp[[X]] is convergent on the p-adic open unit

disk. Examples of elements of H(ΓF ) are the ∇i (which are Perrin-Riou’s ℓi’s),
defined by

∇i = ℓi =
log(γ)

logp(χ(γ))
− i.

We will also use the operator ∇0/(γn − 1), where γn is a topological generator
of ΓnF . It is defined (see [Ber02, §4.1]) by the formula:

∇0

γn − 1
=

log(γn)

logp(χ(γn))(γn − 1)
=

1

logp(χ(γn))

∑

i≥1

(1− γn)
i−1

i
,

or equivalently by

∇0

γn − 1
= lim
η∈Γn

F
η→1

η − 1

γn − 1

1

logp(χ(η))
.

It is easy to see that ∇0/(γn − 1) acts on Fn by 1/ logp(χ(γn)).

Note that “∇0/(γn− 1)” is a suggestive notation for this operator but it is not
defined as a (meaningless) quotient of two operators.

The algebra H(ΓF ) acts on B+
rig,F and one can easily check that:

∇i = t
d

dt
− i = log(1 + π)∂ − i, where ∂ = (1 + π)

d

dπ
.

In particular, ∇0B
+
rig,F ⊂ tB

+
rig,F and if i ≥ 1, then

∇i−1 ◦ · · · ◦ ∇0B
+
rig,F ⊂ t

iB+
rig,F .
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Lemma II.2. If n ≥ 1, then ∇0/(γn − 1)(B+
rig,F )

ψ=0 ⊂ (t/ϕn(π))(B+
rig,F )

ψ=0

so that if i ≥ 1, then:

∇i−1 ◦ · · · ◦ ∇1 ◦
∇0

γn − 1
(B+

rig,F )
ψ=0 ⊂

(
t

ϕn(π)

)i
(B+

rig,F )
ψ=0.

Proof. Since ∇i = t ·d/dt− i, the second claim follows easily from the first one,
which we will now show. By the standard properties of p-adic holomorphic
functions, what we need to do is to show that if x ∈ (B+

rig,F )
ψ=0, then

∇0

γn − 1
x(ε(m) − 1) = 0

for all m ≥ n+ 1.

On the one hand, up to a scalar factor, one has for m ≥ n+ 1:

∇0

γn − 1
x(ε(m) − 1) = TrFm/Fn

x(ε(m) − 1)

as can be seen from the fact that

∇0

γn − 1
= lim
η∈Γn

F
η→1

η − 1

γn − 1
·

1

logp(χ(η))
.

On the other hand, the fact that ψ(x) = 0 implies that for every m ≥ 2,
TrFm/Fm−1

x(ε(m) − 1) = 0. This completes the proof. �

Finally, let us point out that the actions of any element of H(ΓF ) and of ϕ
commute. Since ϕ(t) = pt, we also see that ∂ ◦ ϕ = pϕ ◦ ∂.

We will henceforth assume that logp(χ(γn)) = pn, so that log0p(χ(γn)) = 1, and

in addition ∇0/(γn − 1) acts on Fn by p−n.

II.2. Bloch-Kato’s exponential map. The goal of this paragraph is to
show how to compute Bloch-Kato’s map in terms of the (ϕ,Γ)-module of V .

Let h ≥ 1 be an integer such that Fil−hDcris(V ) = Dcris(V ).

Recall that we have seen that Dcris(V ) = (D+
rig(V )[1/t])ΓF and that by [Ber03,

§II.3] there is an isomorphism:

B+
rig,F [1/t]⊗F Dcris(V ) = B+

rig,F [1/t]⊗F D+
rig(V ).

If y ∈ B+
rig,F ⊗F Dcris(V ), then the fact that Fil−hDcris(V ) = Dcris(V ) implies

by the results of [Ber03, §II.3] that thy ∈ D+
rig(V ), so that if

y =

d∑

i=0

yi ⊗ di ∈ (B+
rig,F ⊗F Dcris(V ))ψ=1,
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then

∇h−1 ◦ · · · ◦ ∇0(y) =

d∑

i=0

th∂hyi ⊗ di ∈ D+
rig(V )ψ=1.

One can then apply the operator h1Fn,V
to ∇h−1 ◦ · · · ◦ ∇0(y), and the main

result of this paragraph is:

Theorem II.3. If y ∈ (B+
rig,F ⊗F Dcris(V ))ψ=1, then

h1Fn,V (∇h−1 ◦ · · · ◦ ∇0(y)) =

(−1)h−1(h− 1)!

{
expFn,V (p

−n∂V (ϕ
−n(y))) if n ≥ 1

expF,V ((1− p
−1ϕ−1)∂V (y)) if n = 0.

Proof. Because the diagram

Fn+1 ⊗F Dcris(V )
expFn+1,V

−−−−−−−→ H1(Fn+1, V )

TrFn+1/Fn

y corFn+1/Fn

y

Fn ⊗F Dcris(V )
expFn,V
−−−−−→ H1(Fn, V )

is commutative, it is enough to prove the theorem under the further assumption
that ΓnF is torsion free. Let us then set yh = ∇h−1 ◦ · · · ◦ ∇0(y). Since we are

assuming for simplicity that log0p(χ(γn)) = 1, the cocycle h1Fn,V
(yh) is defined

by:

h1Fn,V (yh)(σ) =
σ − 1

γn − 1
yh − (σ − 1)bn,h

where bn,h is a solution of the equation (γn − 1)(ϕ − 1)bn,h = (ϕ − 1)yh. In
lemma II.2 above, we proved that:

∇i−1 ◦ · · · ◦ ∇1 ◦
∇0

γn − 1
(B+

rig,F )
ψ=0 ⊂

(
t

ϕn(π)

)i
(B+

rig,F )
ψ=0.

It is then clear that if one sets

zn,h = ∇h−1 ◦ · · · ◦
∇0

γn − 1
(ϕ− 1)y,

then

zn,h ∈

(
t

ϕn(π)

)h
(B+

rig,F )
ψ=0 ⊗F Dcris(V )

⊂ ϕn(π−h)D+
rig(V )ψ=0

⊂ D
†
rig(V )ψ=0.

Recall that q = ϕ(π)/π. By lemma II.4 (which will be stated and proved

below), there exists an element bn,h ∈ ϕ
n−1(π−h)B̃+

rig ⊗Qp
V such that

(ϕ− ϕn−1(qh))(ϕn−1(πh)bn,h) = ϕn(πh)zn,h,
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so that (1− ϕ)bn,h = zn,h with bn,h ∈ ϕ
n−1(π−h)B̃+

rig ⊗Qp
V .

If we set

wn,h = ∇h−1 ◦ · · · ◦
∇0

γn − 1
y,

then wn,h and bn,h ∈ Bmax ⊗Qp
V and the cocycle h1Fn,V

(yh) is then given by

the formula h1Fn,V
(yh)(σ) = (σ − 1)(wn,h − bn,h). Now (ϕ− 1)bn,h = zn,h and

(ϕ− 1)wn,h = zn,h as well, so that wn,h − bn,h ∈ Bϕ=1
max ⊗Qp

V .

We can also write h1Fn,V
(yh)(σ) = (σ − 1)(ϕ−n(wn,h) − ϕ

−n(bn,h)). Since we

know that bn,h ∈ ϕ
n−1(π−h)B+

max ⊗Qp
V , we have ϕ−n(bn,h) ∈ B+

dR ⊗Qp
V .

The definition of the Bloch-Kato exponential gives rise to the following con-
struction: if x ∈ DdR(V ) and x̃ ∈ Bϕ=1

max ⊗Qp
V is such that x− x̃ ∈ B+

dR⊗Qp
V

then expK,V (x) is the class of the cocyle g 7→ g(x̃)− x̃.

The theorem will therefore follow from the fact that:

ϕ−n(wn,h)− (−1)h−1(h− 1)!p−n∂V (ϕ
−n(y)) ∈ B+

dR ⊗Qp
V,

since we already know that ϕ−n(bn,h) ∈ B+
dR ⊗Qp

V .

In order to show this, first notice that

ϕ−n(y)− ∂V (ϕ
−n(y)) ∈ tFn[[t]]⊗F Dcris(V ).

We can therefore write

∇0

γn − 1
ϕ−n(y) = p−n∂V (ϕ

−n(y)) + tz1

and a simple recurrence shows that

∇i−1 ◦ · · · ◦
∇0

1− γn
ϕ−n(y) = (−1)i−1(i− 1)!p−n∂V (ϕ

−n(y)) + tizi,

with zi ∈ Fn[[t]]⊗F Dcris(V ). By taking i = h, we see that

ϕ−n(wn,h)− (−1)h−1(h− 1)!p−n∂V (ϕ
−n(y)) ∈ B+

dR ⊗Qp
V,

since we chose h such that thDcris(V ) ⊂ B+
dR ⊗Qp

V . �

We will now prove the technical lemma which was used above:

Lemma II.4. If α ∈ B̃+
rig, then there exists β ∈ B̃+

rig such that

(ϕ− ϕn−1(qh))β = α.

Proof. By [Ber02, prop 2.19] applied to the case r = 0, the ring B̃+ is dense in

B̃+
rig for the Fréchet topology. Hence, if α ∈ B̃+

rig, then there exists α0 ∈ B̃+

such that α−α0 = ϕn(πh)α1 with α1 ∈ B̃+
rig (one may also show this directly;

the point is that when one completes all the localizations are the same).
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The map ϕ−ϕn−1(qh) : B̃+ → B̃+ is surjective, because ϕ−ϕn−1(qh) : Ã+ →

Ã+ is surjective, as can be seen by reducing modulo p and using the fact that

Ẽ is algebraically closed and that Ẽ+ is its ring of integers.

One can therefore write α0 = (ϕ − ϕn−1(qh))β0. Finally by lemma I.7,

there exists β1 ∈ B̃+
rig such that α1 = (ϕ − 1)β1, so that ϕn(πh)α1 =

(ϕ− ϕn−1(qh))(ϕn−1(πh)β1). �

II.3. Bloch-Kato’s dual exponential map. In the previous paragraph, we
showed how to compute Bloch-Kato’s exponential map for V . We will now do
the same for the dual exponential map. The starting point is Kato’s formula
[Ka93, §II.1], which we recall below (it is valid for any field K):

Proposition II.5. If V is a de Rham representation, then the map from
DdR(V ) to H1(K,BdR ⊗Qp

V ) defined by x 7→ [g 7→ log(χ(g))x] is an iso-

morphism, and the dual exponential map exp∗V ∗(1) : H1(K,V ) → DdR(V ) is

equal to the composition of the map H1(K,V )→ H1(K,BdR ⊗Qp
V ) with the

inverse of this isomorphism.

Let us point out that the image of exp∗V ∗(1) is included in Fil0 DdR(V ) and that

its kernel is H1
g (K,V ), the subgroup of H1(K,V ) corresponding to classes of

de Rham extensions of Qp by V .

Let us now return to a crystalline representation V of GF . We then have the
following formula, which is proved in much more generality (i.e. for de Rham
representations) in [CC99, IV.2.1]:

Theorem II.6. If y ∈ D
†
rig(V )ψ=1 and y ∈ D+

rig(V )[1/t] (so that in particular

y ∈ (B+
rig,F [1/t]⊗F Dcris(V ))ψ=1), then

exp∗Fn,V ∗(1)(h
1
Fn,V (y)) =

{
p−n∂V (ϕ

−n(y)) if n ≥ 1

(1− p−1ϕ−1)∂V (y) if n = 0.

Note that by theorem A.3, we know that D†(V )ψ=1 ⊂ D+
rig(V )[1/t].

Proof. Since the following diagram

H1(Fn+1, V )
exp∗

Fn+1,V ∗(1)

−−−−−−−−−→ Fn+1 ⊗F Dcris(V )

corFn+1/Fn

y TrFn+1/Fn

y

H1(Fn, V )
exp∗

Fn,V ∗(1)
−−−−−−−−→ Fn ⊗F Dcris(V )

is commutative, we only need to prove the theorem when ΓnF is torsion free.

We then have (bearing in mind that we are assuming that log0p(χ(γn)) = 1 for
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simplicity):

h1Fn,V (y)(σ) =
σ − 1

γn − 1
y − (σ − 1)b,

where (γn − 1)(ϕ − 1)b = (ϕ − 1)y. Recall that B̃
†
rig = ∪r>0B̃

†,r
rig . Since

b ∈ B̃
†
rig ⊗Qp

V , there exists m ≫ 0 such that b ∈ B̃
†,rm
rig ⊗Qp

V . Recall also

that we have seen in I.3 that the map ϕ−m embeds B̃
†,rm
rig into B+

dR. We can
then write

h1(y)(σ) =
σ − 1

γn − 1
ϕ−m(y)− (σ − 1)ϕ−m(b),

and ϕ−m(b) ∈ B+
dR ⊗Qp

V . In addition, ϕ−m(y) ∈ Fm((t)) ⊗F Dcris(V ) and

γn − 1 is invertible on tkFm ⊗F Dcris(V ) for every k 6= 0. This shows that the
cocycle h1Fn,V

(y) is cohomologous in H1(Fn,BdR ⊗Qp
V ) to

σ 7→
σ − 1

γn − 1
(∂V (ϕ

−m(y)))

which is itself cohomologous (since γn − 1 is invertible on F
TrFm/Fn=0
m ) to

σ 7→
σ − 1

γn − 1

(
pn−m TrFm/Fn

∂V (ϕ
−m(y))

)

= σ 7→ p−n log(χ(σ))pn−m TrFm/Fn
∂V (ϕ

−m(y)).

It follows from this and Kato’s formula (proposition II.5) that

exp∗Fn,V ∗(1)(h
1
Fn,V (y)) = p−m TrFm/Fn

∂V (ϕ
−m(y))

=

{
p−n∂V (ϕ

−n(y)) if n ≥ 1

(1− p−1ϕ−1)∂V (y) if n = 0.

�

II.4. Iwasawa theory for p-adic representations. In this specific para-
graph, V can be taken to be an arbitrary representation of GK . Recall
that the Iwasawa cohomology groups Hi

Iw(K,V ) are defined by Hi
Iw(K,V ) =

Qp ⊗Zp
Hi

Iw(K,T ) where T is any GK -stable lattice of V , and where

Hi
Iw(K,T ) = lim

←−
corKn+1/Kn

Hi(Kn, T ).

Each of the Hi(Kn, T ) is a Zp[ΓK/Γ
n
K ]-module, and Hi

Iw(Kn, T ) is then en-
dowed with the structure of a ΛK-module where

ΛK = Zp[[ΓK ]] = Zp[∆K ]⊗Zp
Zp[[Γ

1
K ]].

The Hi
Iw(K,V ) have been studied in detail by Perrin-Riou, who proved the

following (see for example [Per94, §3.2]):

Proposition II.7. If V is a p-adic representation of GK , then Hi
Iw(K,V ) = 0

whenever i 6= 1, 2. In addition:
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(1) the torsion sub-module of H1
Iw(K,V ) is a Qp⊗Zp

ΛK-module isomorphic

to V HK and H1
Iw(K,V )/V HK is a free Qp ⊗Zp

ΛK-module whose rank
is [K : Qp]d;

(2) H2
Iw(K,V ) =

(
V ∗(1)HK

)∗
.

If y ∈ D(T )ψ=1 (where T is still a lattice of V ), then the sequence of
{h1Fn,V

(y)}n is compatible for the corestriction maps, and therefore defines

an element of H1
Iw(K,T ). The following theorem is due to Fontaine and is

proved in [CC99, §II.1]:

Theorem II.8. The map y 7→ lim
←−n

h1Kn,V
(y) defines an isomorphism from

D(T )ψ=1 to H1
Iw(K,T ) and from D(V )ψ=1 to H1

Iw(K,V ).

Notice that V HK ⊂ D(V )ψ=1, and it is its Qp ⊗Zp
ΛK-torsion submodule.

In addition, it is shown in [CC99, §II.3] that the modules D(V )/(ψ − 1) and
H2

Iw(K,V ) are naturally isomorphic. One can summarize the above results as
follows:

Corollary II.9. The complex of Qp ⊗Zp
ΛK-modules

0 −−−−→ D(V )
1−ψ
−−−−→ D(V ) −−−−→ 0

computes the Iwasawa cohomology of V .

There is a natural projection map prKn,V : Hi
Iw(K,V )→ Hi(Kn, V ) and when

i = 1 it is of course equal to the composition of:

H1
Iw(K,V ) −−−−→ D(V )ψ=1

h1
Kn,V
−−−−→ H1(Kn, V ).

II.5. Perrin-Riou’s exponential map. By using the results of the previous
paragraphs, we can give a “uniform” formula for the image of an element
y ∈ (B+

rig,F ⊗F Dcris(V ))ψ=1 in H1(Fn, V (j)) under the composition of the
following maps:

(
B+

rig,F ⊗F Dcris(V )
)ψ=1 ∇h−1◦···◦∇0

−−−−−−−−→ D
†
rig(V )ψ=1 ⊗ej

−−−−→

D
†
rig(V (j))ψ=1

h1
Fn,V (j)
−−−−−→ H1(Fn, V (j)).

Here ej is a basis of Qp(j) such that ej+k = ej ⊗ ek so that if V is a p-
adic representation, then we have compatible isomorphisms of Qp-vector spaces
V → V (j) given by v 7→ v ⊗ ej .

Documenta Mathematica · Extra Volume Kato (2003) 99–129



Bloch and Kato’s Exponential Map 119

Theorem II.10. If y ∈ (B+
rig,F ⊗F Dcris(V ))ψ=1, and h ≥ 1 is such that

Fil−hDcris(V ) = Dcris(V ), then for all j with h+ j ≥ 1, we have:

h1Fn,V (j)(∇h−1 ◦ · · · ◦ ∇0(y)⊗ ej) = (−1)h+j−1(h+ j − 1)!

×

{
expFn,V (j)(p

−n∂V (j)(ϕ
−n(∂−jy ⊗ t−jej))) if n ≥ 1

expF,V (j)((1− p
−1ϕ−1)∂V (j)(∂

−jy ⊗ t−jej)) if n = 0,

while if h+ j ≤ 0, then we have:

exp∗Fn,V ∗(1−j)(h
1
Fn,V (j)(∇h−1 ◦ · · · ◦ ∇0(y)⊗ ej)) =

1

(−h− j)!

{
p−n∂V (j)(ϕ

−n(∂−jy ⊗ t−jej)) if n ≥ 1

(1− p−1ϕ−1)∂V (j)(∂
−jy ⊗ t−jej) if n = 0.

Proof. If h+ j ≥ 1, then the following diagram is commutative:

D+
rig(V )ψ=1 ⊗ej

−−−−→ D+
rig(V (j))ψ=1

∇h−1◦···◦∇0

x ∇h+j−1◦···◦∇0

x
(
B+

rig,F ⊗F Dcris(V )
)ψ=1 ∂−j⊗t−jej

−−−−−−−→
(
B+

rig,F ⊗F Dcris(V (j))
)ψ=1

.

and the theorem is then a straightforward consequence of theorem II.3 applied
to ∂−jy ⊗ t−jej , h+ j and V (j) (which are the j-th twists of y, h and V ).

If on the other hand h+ j ≤ 0, and ΓnF is torsion free, then theorem II.6 shows
that

exp∗Fn,V ∗(1−j)(h
1
Fn,V (j)(∇h−1 ◦ · · · ◦ ∇0(y)⊗ ej)) =

p−n∂V (j)(ϕ
−n(∇h−1 ◦ · · · ◦ ∇0(y)⊗ ej))

in Dcris(V (j)), and a short computation involving Taylor series shows that

p−n∂V (j)(ϕ
−n(∇h−1 ◦ · · · ◦ ∇0(y)⊗ ej)) =

(−h− j)!−1p−n∂V (j)(ϕ
−n(∂−jy ⊗ t−jej)).

Finally, to get the case n = 0, one just needs to use the corresponding statement
of theorem II.6 or equivalently to corestrict. �

Remark II.11. The notation ∂−j is somewhat abusive if j ≥ 1 as ∂ is not
injective on B+

rig,F (it is surjective as can be seen by “integrating” directly a

power series) but the reader can check for himself that this leads to no ambiguity
in the formulas of theorem II.10 above.

We will now use the above result to give a construction of Perrin-Riou’s ex-
ponential map. If f ∈ B+

rig,F ⊗F Dcris(V ), we define ∆(f) to be the image of
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⊕hk=0∂
k(f)(0) in ⊕hk=0(Dcris(V )/(1−pkϕ))(k). There is then an exact sequence

of Qp ⊗Zp
ΛF -modules (see [Per94, §2.2] for a proof):

0 −−−−→ ⊕hk=0t
kDcris(V )ϕ=p

−k

−−−−→
(
B+

rig,F ⊗F Dcris(V )
)ψ=1 1−ϕ

−−−−→

(B+
rig,F )

ψ=0 ⊗F Dcris(V )
∆

−−−−→ ⊕hk=0

(
Dcris(V )
1−pkϕ

)
(k) −−−−→ 0.

If f ∈ ((B+
rig,F )

ψ=0 ⊗F Dcris(V ))∆=0, then by the above exact sequence there
exists

y ∈ (B+
rig,F ⊗F Dcris(V ))ψ=1

such that f = (1 − ϕ)y, and since ∇h−1 ◦ · · · ◦ ∇0 kills ⊕h−1
k=0t

kDcris(V )ϕ=p
−k

we see that ∇h−1 ◦ · · · ◦ ∇0(y) does not depend upon the choice of such a y

unless Dcris(V )ϕ=p
−h

6= 0.

Definition II.12. Let h ≥ 1 be an integer such that Fil−hDcris(V ) = Dcris(V )

and such that Dcris(V )ϕ=p
−h

= 0. One deduces from the above construction a
well-defined map:

ΩV,h : ((B+
rig,F )

ψ=0 ⊗F Dcris(V ))∆=0 → D+
rig(V )ψ=1,

given by ΩV,h(f) = ∇h−1 ◦ · · · ◦ ∇0(y) where y ∈ (B+
rig,F ⊗F Dcris(V ))ψ=1 is

such that f = (1− ϕ)y.

If Dcris(V )ϕ=p
−h

6= 0 then we get a map:

ΩV,h : ((B+
rig,F )

ψ=0 ⊗F Dcris(V ))∆=0 → D+
rig(V )ψ=1/V GF=χh

.

Theorem II.13. If V is a crystalline representation and h ≥ 1 is such that we
have Fil−hDcris(V ) = Dcris(V ), then the map

ΩV,h : ((B+
rig,F )

ψ=0 ⊗F Dcris(V ))∆=0 → D+
rig(V )ψ=1/V HF

which takes f ∈ ((B+
rig,F )

ψ=0 ⊗F Dcris(V ))∆=0 to ∇h−1 ◦ · · · ◦ ∇0((1− ϕ)
−1f)

is well-defined and coincides with Perrin-Riou’s exponential map.

Proof. The map ΩV,h is well defined because as we have seen above, the kernel

of 1 − ϕ is killed by ∇h−1 ◦ · · · ◦ ∇0, except for thDcris(V )ϕ=p
−h

, which is
mapped to copies of Qp(h) ⊂ V

HF .

The fact that ΩV,h coincides with Perrin-Riou’s exponential map follows di-
rectly from theorem II.10 above applied to those j’s for which h+j ≥ 1, and the
fact that by Perrin-Riou’s [Per94, théorème 3.2.3], the ΩV,h are uniquely deter-
mined by the requirement that they satisfy the following diagram for h, j ≫ 0
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(see remark II.17 about the signs however):

(
H(ΓF )⊗Qp

Dcris(V (j))
)∆=0 ΩV (j),h

−−−−−→ H(ΓF )⊗ΛF
H1

Iw(F, V (j))/V (j)HF

Ξn,V (j)

y prFn,V (j)

y

Fn ⊗F Dcris(V )
(h+j−1)!×
−−−−−−−→
expFn,V (j)

H1(Fn, V (j)).

Here Ξn,V (j)(g) = p−n(ϕ⊗ ϕ)−n(f)(ε(n) − 1) where f is such that

(1− ϕ)f = g(γ − 1)(1 + π) ∈ (B+
rig,F ⊗F Dcris(V ))ψ=0

and the ϕ on the left of ϕ ⊗ ϕ is the Frobenius on B+
rig,F while the ϕ on the

right is the Frobenius on Dcris(V ). Our Fn is Perrin-Riou’s Hn−1.

Note that by theorem II.8, we have an isomorphism D(V )ψ=1 ≃ H1
Iw(F, V ) and

therefore we get a map H(ΓF ) ⊗ΛF
H1

Iw(F, V ) → D
†
rig(V )ψ=1. On the other

hand, there is a map

H(ΓF )⊗Qp
Dcris(V (j))→ (B+

rig,F ⊗F Dcris(V ))ψ=0

which sends
∑
fi(γ− 1)⊗ di to

∑
fi(γ− 1)(1+π)⊗ di. These two maps allow

us to compare the diagram above with the formulas given by theorem II.10. �

Remark II.14. By the above remarks, if V is a crystalline representation and
h ≥ 1 is such that we have Fil−hDcris(V ) = Dcris(V ) and Qp(h) 6⊂ V , then
the map

ΩV,h : ((B+
rig,F )

ψ=0 ⊗F Dcris(V ))∆=0 → D+
rig(V )ψ=1

which takes f ∈ ((B+
rig,F )

ψ=0⊗F Dcris(V ))∆=0 to ∇h−1 ◦· · ·◦∇0((1−ϕ)
−1f) is

well-defined, without having to kill the ΛF -torsion ofH1
Iw(F, V ) which improves

upon Perrin-Riou’s construction.

Remark II.15. It is clear from theorem II.10 that we have:

ΩV,h(x)⊗ ej = ΩV (j),h+j(∂
−jx⊗ t−jej) and ∇h ◦ ΩV,h(x) = ΩV,h+1(x),

and following Perrin-Riou, one can use these formulas to extend the definition
of ΩV,h to all h ∈ Z by tensoring all H(ΓF )-modules with the field of fractions
of H(ΓF ).

II.6. The explicit reciprocity formula. In this paragraph, we shall recall
Perrin-Riou’s explicit reciprocity formula and show that it follows easily from
theorem II.10 above.

There is a map H(ΓF ) → (B+
rig,Qp

)ψ=0 which sends f(γ − 1) to f(γ − 1)(1 +

π). This map is a bijection and its inverse is the Mellin transform so that
if g(π) ∈ (B+

rig,Qp
)ψ=0, then g(π) = Mel(g)(1 + π). See [Per00, B.2.8] for a

reference, where Perrin-Riou has also extended Mel to (B†
rig,Qp

)ψ=0. If f, g ∈

(B†
rig,Qp

)ψ=0 then we define f∗g by the formula Mel(f∗g) = Mel(f)Mel(g). Let
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[−1] ∈ ΓF be the element such that χ([−1]) = −1, and let ι be the involution of
ΓF which sends γ to γ−1. The operator ∂j on (B+

rig,Qp
)ψ=0 corresponds to Twj

on ΓF (Twj is defined by Twj(γ) = χ(γ)jγ). For instance, it is a bijection. We
will make use of the facts that ι◦∂j = ∂−j◦ι and that [−1]◦∂j = (−1)j∂j◦[−1].

If V is a crystalline representation, then the natural maps

Dcris(V )⊗F Dcris(V
∗(1)) −−−−→ Dcris(Qp(1))

TrF/Qp
−−−−−→ Qp

allow us to define a perfect pairing [·, ·]V : Dcris(V ) ×Dcris(V
∗(1)) which we

extend by linearity to

[·, ·]V : (B+
rig,F ⊗F Dcris(V ))ψ=0× (B+

rig,F ⊗F Dcris(V
∗(1)))ψ=0 → (B+

rig,Qp
)ψ=0

by the formula [f(π)⊗ d1, g(π)⊗ d2]V = (f ∗ g)(π)[d1, d2]V .

We can also define a semi-linear (with respect to ι) pairing

〈·, ·〉V : D+
rig(V )ψ=1 ×D+

rig(V
∗(1))ψ=1 → (B+

rig,Qp
)ψ=0

by the formula

〈y1, y2〉V = lim
←−
n

∑

τ∈ΓF /Γn
F

〈τ−1(h1Fn,V (y1)), h
1
Fn,V ∗(1)(y2)〉Fn,V · τ(1 + π)

where the pairing 〈·, ·〉Fn,V is given by the cup product:

〈·, ·〉Fn,V : H1(Fn, V )×H1(Fn, V
∗(1))→ H2(Fn,Qp(1)) ≃ Qp.

The pairing 〈·, ·〉V satisfies the relation 〈γ1x1, γ2x2〉V = γ1ι(γ2)〈x1, x2〉V .
Perrin-Riou’s explicit reciprocity formula (proved by Colmez [Col98], Benois
[Ben00] and Kato-Kurihara-Tsuji [KKT96]) is then:

Theorem II.16. If x1 ∈ (B+
rig,F ⊗F Dcris(V ))ψ=0 and x2 ∈ (B+

rig,F ⊗F
Dcris(V

∗(1)))ψ=0, then for every h, we have:

(−1)h〈ΩV,h(x1), [−1] · ΩV ∗(1),1−h(x2)〉V = −[x1, ι(x2)]V .

Proof. By the theory of p-adic interpolation, it is enough to prove that if
xi = (1 − ϕ)yi with y1 ∈ (B+

rig,F ⊗F Dcris(V ))ψ=1 and y2 ∈ (B+
rig,F ⊗F

Dcris(V
∗(1)))ψ=1 then for all j ≫ 0:

(
∂−j(−1)h〈ΩV,h(x1), [−1] · ΩV ∗(1),1−h(x2)〉V

)
(0) = −

(
∂−j [x1, ι(x2)]V

)
(0).

The above formula is equivalent to:

(1) (−1)h+j〈h1F,V (j)ΩV (j),h+j(∂
−jx1 ⊗ t

−jej),

h1F,V ∗(1−j)ΩV ∗(1−j),1−h−j(∂
jx2 ⊗ t

je−j)〉F,V (j)

= −[∂V (j)(∂
−jx1 ⊗ t

−jej), ∂V ∗(1−j)(∂
jx2 ⊗ t

je−j)]V (j).
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By combining theorems II.10 and II.13 with remark II.15 we see that for j ≫ 0:

h1F,V (j)ΩV (j),h+j(∂
−jx1 ⊗ t

−jej)

= (−1)h+j−1 expF,V (j)((h+ j − 1)!(1− p−1ϕ−1)∂V (j)(∂
−jy1 ⊗ t

−jej)),

and that

h1F,V ∗(1−j)ΩV ∗(1−j),1−h−j(∂
jx2 ⊗ t

je−j)

= (exp∗F,V ∗(1−j))
−1(h+ j − 1)!−1((1− p−1ϕ−1)∂V ∗(1−j)(∂

jy2 ⊗ t
je−j)).

Using the fact that by definition, if x ∈ Dcris(V (j)) and y ∈ H1(F, V (j)) then

[x, exp∗F,V ∗(1−j) y]V (j) = 〈expF,V (j) x, y〉F,V (j),

we see that:

(2) 〈h1F,V (j)ΩV (j),h+j(∂
−jx1 ⊗ t

−jej),

h1F,V ∗(1−j)ΩV ∗(1−j),1−h−j(∂
jx2 ⊗ t

je−j)〉F,V (j)

= (−1)h+j−1[(1− p−1ϕ−1)∂V (j)(∂
−jy1 ⊗ t

−jej),

(1− p−1ϕ−1)∂V ∗(1−j)(∂
jy2 ⊗ t

je−j)]V (j).

It is easy to see that under [·, ·], the adjoint of (1− p−1ϕ−1) is 1−ϕ, and that
if xi = (1− ϕ)yi, then

∂V (j)(∂
−jx1 ⊗ t

−jej) = (1− ϕ)∂V (j)(∂
−jy1 ⊗ t

−jej),

∂V ∗(1−j)(∂
jx2 ⊗ t

je−j) = (1− ϕ)∂V ∗(1−j)(∂
jy2 ⊗ t

je−j),

so that (2) implies (1), and this proves the theorem. �

Note that as I. Fesenko pointed out it is better to call the above statement an
“explicit reciprocity formula” rather than an “explicit reciprocity law” as the
latter terminology is reserved for statements of a more global nature.

Remark II.17. One should be careful with all the signs involved in those for-
mulas. Perrin-Riou has changed the definition of the ℓi operators from [Per94]
to [Per99] (the new ℓi is minus the old ℓi). The reciprocity formula which is
stated in [Per99, 4.2.3] does not seem (to me) to have the correct sign. On the
other hand, the formulas of [Ben00, Col98] do seem to give the correct signs,
but one should be careful that [Col98, IX.4.5] uses a different definition for
one of the pairings, and that the signs in [CC99, IV.3.1] and [Col98, VII.1.1]
disagree. Our definitions of ΩV,h and of the pairing agree with Perrin-Riou’s
ones (as they are given in [Per99]).
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Appendix A. The structure of D(T )ψ=1

The goal of this paragraph is to prove a theorem which says that for a crystalline
representation V , D(V )ψ=1 is quite “small”. See theorem A.3 for a precise
statement.

Let V be a crystalline representation of GF and let T denote a GF -stable lattice
of V . The following proposition, which improves slightly upon the results of
N. Wach [Wa96], is proved in detail in [Ber03, §II.1]:

Proposition A.1. If T is a lattice in a positive crystalline representation V ,
then there exists a unique sub A+

F -module N(T ) of D+(T ), which satisfies the
following conditions:

(1) N(T ) is an A+
F -module free of rank d = dimQp

(V );
(2) the action of ΓF preserves N(T ) and is trivial on N(T )/πN(T );
(3) there exists an integer r ≥ 0 such that πrD+(T ) ⊂ N(T ).

Furthermore, N(T ) is stable by ϕ, and the B+
F -module N(V ) = B+

F ⊗A
+
F
N(T )

is the unique sub-B+
F -module of D+(V ) satisfying the corresponding conditions.

The A+
F -module N(T ) is called the Wach module associated to T .

Notice that N(T (−1)) = πN(T )⊗ e−1. When V is no longer positive, we can
therefore define N(T ) as π−hN(T (−h))⊗eh, for h large enough so that V (−h)
is positive. Using the results of [Ber03, §III.4], one can show that:

Proposition A.2. If T is a lattice in a crystalline representation V of GF ,
whose Hodge-Tate weights are in [a; b], then N(T ) is the unique sub-A+

F -module
of D+(T )[1/π] which is free of rank d, stable by ΓF with the action of ΓF being
trivial on N(T )/πN(T ), and such that N(T )[1/π] = D+(T )[1/π].

Finally, we have ϕ(πbN(T )) ⊂ πbN(T ) and πbN(T )/ϕ∗(πbN(T )) is killed by
qb−a. The construction T 7→ N(T ) gives a bijection between Wach modules
over A+

F which are lattices in N(V ) and Galois lattices T in V .

We shall now show that D(V )ψ=1 is not very far from being included in N(V ).
Indeed:

Theorem A.3. If V is a crystalline representation of GF , whose Hodge-Tate
weights are in [a; b], then D(V )ψ=1 ⊂ πa−1N(V ).

If in addition V has no quotient isomorphic to Qp(a), then actually D(V )ψ=1 ⊂
πaN(V ).

Before we prove the above statement, we will need a few results concerning
the action of ψ on D(T ). In lemmas A.5 through A.7, we will assume that
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the Hodge-Tate weights of V are ≥ 0. In particular, N(T ) ⊂ ϕ∗N(T ) so that
ψ(N(T )) ⊂ N(T ).

Lemma A.4. If m ≥ 1, then there exists a polynomial Qm(X) ∈ Zp[X] such
that ψ(π−m) = π−m(pm−1 + πQm(π)).

Proof. By the definition of ψ, it is enough to show that if m ≥ 1, there exists
a polynomial Qm(X) ∈ Z[X] such that

1

p

∑

ηp=1

1

(η(1 +X)− 1)m
=
pm−1 + ((1 +X)p − 1)Qm((1 +X)p − 1)

((1 +X)p − 1)m
,

which is left as an exercise for the reader (or his students). �

Lemma A.5. If k ≥ 1, then ψ(pD(T ) + π−(k+1)N(T )) ⊂ pD(T ) + π−kN(T ).
In addition, ψ(pD(T ) + π−1N(T )) ⊂ pD(T ) + π−1N(T ).

Proof. If x ∈ N(T ), then one can write x =
∑
λiϕ(xi) with λi ∈ A+

F and

xi ∈ N(T ), so that ψ(π−(k+1)x) =
∑
ψ(π−(k+1)λi)xi. By the preceding lemma,

ψ(π−(k+1)λi) ∈ pAF +π−kA+
F whenever k ≥ 1. The lemma follows easily, and

the second claim is proved in the same way. �

Lemma A.6. If k ≥ 1 and x ∈ D(T ) has the property that ψ(x)−x ∈ pD(T )+
π−kN(T ), then x ∈ pD(T ) + π−kN(T ).

Proof. Let ℓ be the smallest integer ≥ 0 such that x ∈ pD(T ) + π−ℓN(T ). If
ℓ ≤ k, then we are done and otherwise lemma A.5 shows that

ψ(x) ∈ pD(T ) + π−(ℓ−1)N(T ),

so that ψ(x)−x would be in pD(T )+π−ℓN(T ) but not pD(T )+π−(ℓ−1)N(T ),
a contradiction if ℓ > k. �

Lemma A.7. We have D(T )ψ=1 ⊂ π−1N(T ).

Proof. We shall prove by induction that D(T )ψ=1 ⊂ pkD(T ) + π−1N(T ) for
k ≥ 1. Let us start with the case k = 1. If x ∈ D(T )ψ=1, then there exists some
j ≥ 1 such that x ∈ pD(T )+π−jN(T ). If j = 1 we are done and otherwise the
fact that ψ(x) = x combined with lemma A.5 shows that j can be decreased
by 1. This proves our claim for k = 1.

We will now assume our claim to be true for k and prove it for k + 1. If
x ∈ D(T )ψ=1, we can therefore write x = pky + n where y ∈ D(T ) and
n ∈ π−1N(T ). Since ψ(x) = x, we have ψ(n) − n = pk(ψ(y) − y) so that
ψ(y) − y ∈ π−1N(T ) (this is because pkD(T ) ∩N(T ) = pkN(T )). By lemma
A.6, this implies that y ∈ pD(T )+π−1N(T ), so that we can write x = pk(py′+
n′) + n = pk+1y′ + (pkn′ + n), and this proves our claim.
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Finally, it is clear that our claim implies the lemma: if one can write x =
pkyk +nk, then the nk will converge for the p-adic topology to a n ∈ π−1N(T )
such that x = n. �

Proof of theorem A.3. Clearly, it is enough to show that if T is a GF -stable
lattice of V , then D(T )ψ=1 ⊂ πa−1N(T ). It is also clear that we can twist V
as we wish, and we shall now assume that the Hodge-Tate weights of V are in
[0;h]. In this case, the theorem says that D(T )ψ=1 ⊂ π−1N(T ), which is the
content of lemma A.7 above.

Let us now prove that if a positive V has no quotient isomorphic to Qp, then
actually D(T )ψ=1 ⊂ N(T ). Recall that N(T ) ⊂ ϕ∗(N(T )), since the Hodge-
Tate weights of V are ≥ 0, so that if e1, · · · , ed is a basis of N(T ), then there

exists qij ∈ A+
F such that ei =

∑d
j=1 qijϕ(ej). If ψ(

∑d
i=1 αiei) =

∑d
i=1 αiei,

with αi ∈ π
−1A+

F , then this translates into ψ(
∑d
i=1 αiqij) = αj for 1 ≤ j ≤ d.

Let αi,n be the coefficient of πn in αi, and likewise for qij,n. Since ψ(1/π) = 1/π,

the equations ψ(
∑d
i=1 αiqij) = αj then tell us that for 1 ≤ j ≤ d:

d∑

i=1

αi,−1qij,0 = ϕ(αj,−1).

Since N(V )/πN(V ) ≃ Dcris(V ) as ϕ-modules by [Ber03, §III.4], the above
equations say that 1 is an eigenvalue of ϕ on Dcris(V ). It is easy to see that
if a representation has positive Hodge-Tate weights and Dcris(V )ϕ=1 6= 0, then
V has a quotient isomorphic to Qp. �

Remark A.8. It is proved in [Ber03, III.2] thatDcris(V ) = (B+
rig,F⊗B

+
F
N(V ))GF

and that if Fil−hDcris(V ) = Dcris(V ), then
(
t

π

)h
B+

rig,F ⊗B
+
F
Dcris(V ) ⊂ B+

rig,F ⊗B
+
F
N(V ).

In all the above constructions, one could therefore replace D+
rig(V ) by

B+
rig,F ⊗B

+
F
πhN(V ). For example, the image of the map ΩV,h is included

in (πhB+
rig,F ⊗B

+
F
N(V ))ψ=1 so that we really get a map:

ΩV,h : ((B+
rig,F )

ψ=0 ⊗F Dcris(V ))∆=0 → (πhB+
rig,F ⊗B

+
F
N(V ))ψ=1.

This slight refinement may be useful in order to prove Perrin-Riou’s δZp
con-

jecture.

Appendix B. List of notations

Here is a list of the main notations in the order in which they occur:
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I: p, k, W (k), F , K, GK , µpn , ε
(n), Kn, K∞, HK , ΓK , χ, V , T .

I.1: Cp, Ẽ, Ẽ+, vE, Ã
+, B̃+, θ, ϕ, ε, π, π1, ω, q, B

+
dR, BdR, DdR(V ), B+

max,

Bmax, Bcris, B̃
+
rig, Dcris(V ), h.

I.2: Ã, B̃, AF , B, BF , A, B+, A+, AK , BK , A+
F , B

+
F , D(V ), ψ, D+(V ),

B̃†,r, B†,r, B̃†, B†, D†(V ), D†,r(V ), eK , F ′, πK .

I.3: B†,r
rig,K , D†,r

rig(V ), B̃†
rig, B̃

†,r
rig , rn, ϕ

−n, B+
rig,F , D

+
rig(V ).

I.4: h1K,V , wk, ∆K , ΓnK , log0p, γ, MΓ.

II: expK,V , exp
∗
K,V ∗(1).

II.1: ∂V , ΛF , H(ΓF ), ∇i, ∇0/(γn − 1), ∂.

II.4: T , Hi
Iw(K,V ), prK,V .

II.5: ej , ∆, ΩV,h, Ξn,V .

II.6: Mel, Twj , [−1], ι, [·, ·]V , 〈·, ·〉V , ℓi.

A: T , N(V ).

Appendix C. Diagram of the rings of periods

The following diagram summarizes the relationships between the different rings
of periods. The arrows ending with // // are surjective, the dotted

arrow // is an inductive limit of maps defined on subrings (ϕ−n :

B̃
†,rn
rig → B+

dR), and all the other ones are injective.

B+
max

// B+
dR

θ

����

B̃
†
rig

55

B̃+
rig

oo

OO

B̃ B̃†oo

OO

B̃+oo

OO

θ // // Cp

Ã

OO

����

Ã†oo

OO

Ã+oo

OO

����

θ // // OCp

OO

����

Ẽ Ẽ+oo θ // // OCp
/p
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All the rings with tildes also have versions without a tilde: one goes from the
latter to the former by making Frobenius invertible and completing.

The three rings in the leftmost column (at least their tilde-free versions) are
related to the theory of (ϕ,Γ)-modules. The two rings on the top line are
related to p-adic Hodge theory. To go from one theory to the other, one goes
from one place to the other through all the intermediate rings but as the reader
will notice, one has to go “upstream”.

Let us finally review the different rings of power series which occur in this
article; let C[r; 1[ be the annulus{z ∈ Cp, p

−1/r ≤ |z|p < 1}. We then have:

A+
F OF [[π]]

B+
F F ⊗OF

OF [[π]]
AF

̂OF [[π]][π−1]

BF F ⊗OF
̂OF [[π]][π−1]

A
†,r
F Laurent series f(π), convergent on C[r; 1[, and bounded by 1

B
†,r
F Laurent series f(π), convergent on C[r; 1[, and bounded

B
†,r
rig,F Laurent series f(π), convergent on C[r; 1[

B+
rig,F f(π) ∈ F [[π]], f(π) converges on the open unit disk D[0; 1[
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Doc. Math. 4 (1999), 219–273 (electronic).
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