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ABSTRACT. Let h: X — Y be a finite morphism of smooth connected
complete curves over C,. We show h extends to a finite morphism
between semi-stable models of X and Y.
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Let p be a prime. It is known that if C' is a smooth proper curve over a complete
subfield K of (), there exists a finite extension L of K in C, and a model of
the base extension of C' to L over the ring of integers, Ry, of L whose reduction
modulo the maximal ideal has at worst ordinary double points as singularities.
In fact, if g(C), the genus of C, is at least 2 or g(C') = 1 and C has a model
with good reduction, there is a minimal such model, which is called the stable
model. Indeed, if L' is any complete extension of L in C), the base extension
of a stable model over Ry, is the stable model over Ry..

Liu and Lorenzini showed [L-L; Proposition 4.4(a)] that a finite morphism
of curves extends to a morphism of stable models, but the extension is not in
general finite. E.g., Edixhoven has show that the natural map from X(p?) to
Xo(p) does not in general extend to a finite morphism of stable models [E] (see
also [C-M]). However, we show,

THEOREM. Suppose h: X — Y is a finite morphism of smooth connected com-
plete curves over Cp,. Then there are semi-stable models X and Y of X and Y
over the ring of integers of Cp, such that h extends to a finite morphism from
X to ).

(We work over C), to avoid having to worry about base extensions and
because reduced affinoids over C), have reduced reductions.)
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In fact, when X has a stable model (i.e., g(X) > 2 or g(X) = 1 and X
has good reduction) and either X/Y is Galois, or the model has irreducible
reduction and Y has a stable model, one can take X’ to be the stable model for
X. In the latter case ) will be the stable model for Y, which, a fortiori, will
have irreducible reduction.

Abbes has informed us that this result also follows from results of Raynaud
(in particular Proposition 5 of [R] (and its corollary)).

We say such a morphism is semi-stable, and stable if it is the minimal object
in the category of semi-stable morphisms from X to Y (which may not exist).
Terminology and Notation

If Z is a rigid space A(Z) will denote the ring of analytic functions on Z
and A%(Z) the subring of functions whose spectral norm is bounded by 1.

If X is an affinoid over C, X = SpecA’(X)/mA°(X), where m is the
maximal ideal of R, and if z € X(F,), R, will denote the corresponding
residue class in X. (Residue classes are also called formal fibers.)

By a REGULAR SINGULAR POINT on a curve we mean a singular point which
is an ordinary double point. If C'is a curve, let S(C') denote the set of irregular
singular points on C.

1. WIDE OPENS

In this section, we review and extend the results on wide open spaces discussed
in [RLC].

A (smooth one-dimensional) WIDE OPEN is a rigid space conformal to C— D
where C' is a smooth complete curve and D is a finite disjoint union of affinoid
disks in C, which contains at least one in each connected component. A wide
open disk is the complement of one affinoid disk in P! (it is conformal to
B(0,1)) and a wide open annulus is conformal to the complement of two disjoint
such disks (it is conformal to A(r,1) where r € |Cp|, 0 < r < 1).

An UNDERLYING AFFINOID Z of a wide open W is an affinoid subdomain
Z of W such that W\Z is a finite disjoint union of annuli none of which is
contained in an affinoid subdomain of W. An end of W is an element of the
inverse limit of of the set of connected components of W\Z where Z ranges
over subaffinoids of W.

We slightly modify the definition of basic wide open given in [RLC] and
say a wide open W is BASIC if it has an underlying affinoid Z such that Z is
irreducible and has at worst regular singular points.

Suppose X is a smooth one dimensional affinoid over C, and x € X. Be-
cause A°(R,) is the completion of A%(X) at x, we have,

LEMMA 1.1. Then x is a smooth point of X if and only if R, is a wide open
disk and a regular singular point if and only if R, is a wide open annulus.

We have the following generalization of Proposition 3.3(ii) of [RLC],
LEMMA 1.2. The residue class, R, is a connected wide open and its ends can

naturally be put in 1-1 correspondence to the branches of X through x.
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Proof. That R, is connected is a consequence of Satz 6 of [B].

Theorem A-1 of [pAl] and its proof naturally generalizes to SEMI-DAGGER
ALGEBRAS. These are quotients of the rings of series -, ; ay jz'y” in
Klz1,...,ZnyY1,- -, Ym], where K is a complete non-Archimedean valued field,
such that there exists rcg > 1 so that

lim |a17J|r5(J)

0
s(I,J)—o0 ’

where I and J range over Z2, and ZZ} and s(M), where M is a multi-index,
is the sum of its entries. What this implies in our context is that if R is an
affinoid over C},, whose reduction is equal to the normalization of X and S is

the set of points of R above T, the singular points of X, then the rings

li_r>n A(R\M) and lim A(X\N)
—
M N

are isomorphic, where M ranges over the subaffinoids of (J,.g Rs and N ranges
over the subaffinoids of |J,.p Re. Since J,cg Rs is a union of wide open
disks which correspond to the set, B, of branches of X through points in T,
this, in turn, implies that there exists a subaffinoid N of (J ., R. such that
UIET R, — N is a finite union of wide open annuli which correspond to the
elements of B. One can now glue affinoid disks to | J, ., R. to make a smooth
complete curve, using [B; Satz 6.1] and the direct image theorem of [K], as in
the proof of Proposition 3.3 of [RLC]. The result follows. g

It follows from Lemmas 3.1 and 3.2 of [RLC] that,

LEMMA 1.3. if A and B are disjoint wide open annuli or disjoint affinoids in a
smooth curve C over C,,, then A is disconnected from B in C.

If W is a wide open space
Hpp(W) = Qy /dAW),

where Q};; is the A(W)-module of rigid analytic differentials on W. It follows
from Theorem 4.2 of [RLC] that H} 5 (W) is finite dimensional over C,,.

LEMMA 1.4. Suppose f:W — V is a finite morphism of wide opens. Then, if
W is a disk or annulus, the same is true for V.

Proof. Suppose W is a disk and f has degree d. Then V has only one end.
Suppose w is a differential on V. Then f*w = dg for some function g € A(W)
since dim H}, (W) = 0, in this case. Hencew = d Tr (g/d). Thus H}, (V) = 0.
Let C be a proper curve obtained by glueing a wide open disk D to V along the
end, as in the proof of Proposition 3.3 of [RLC ]. From the Meyer-Vietoris long
exact sequence, we see that C' has genus zero and as B := D\V is an affinoid
disk V = C\B is a wide open disk.

The argument in the case where W is an annulus is similar, except one has
to use residues. g
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PROPOSITION 1.5. Suppose f: X — Y is a finite map of smooth one dimen-
sional affinoids over C,. Then, if the reduction of X has only regular singular
points, the same is true of Y.

Proof. We know the map f induces a finite morphism f: X — Y. Let y be
a point of Y. Let € X such that f(z) = y. Then f restricts to a finite
morphism R, — R,. But R, is a disk or annulus. It follows from Lemma 1.2
that R, is a wide open and hence by Lemma 1.4 is a disk or annulus, as well.
Hence y is either smooth or regular singular by Lemma 1.1. g

This implies the well known result that if h: X — Y is a finite morphism
of curves and X has good reduction so does Y. In fact, it implies the result of
Lorenzini-Liu, [L-L; Corollary 4.10], that, in this case if g(Y') > 1, h extends to
a finite morphism between the unique models of good reduction. It also implies
that if X has a stable model with irreducible reduction, so does Y.

LEMMA 1.6. Suppose ¢: X — Y is a non-constant rigid morphism of smooth
one dimension affinoids over C,,. Suppose G is a finite group acting on X such
that ¢ = ¢ foro € G and X = U,cq V7 where V is an irreducible component
of X. Then ¢ surjects onto an affinoid subdomain of Y.

Proof. Let © € X. Because ¢ is non-constant we can find an element f of
A(Y) such that f(¢(z)) =0 and |¢*f|x = 1. We can and will replace Y with
the affinoid subdomain {y € Y:|f(y)| < 1}. Then ¢|y is non-constant. Since
¢X = ¢V and V is irreducible, ¢ factors through the inclusion of an irreducible
component S of Y. Let S° be the complement in S of the other irreducible
components of Y. Then, Z = red 'S is an affinoid subdomain of ¥ whose
reduction is S°. Let X’ be the affinoid subdomain of X, ¢~'Z. This is just
X minus a finite number of residue classes stable under the action of G so
its reduction is the union of the G-conjugates of V' = V\ail(S\So) which is
irreducible. Suppose s € X N S°. We claim that R, C ¢(X).

Suppose yo € Rs;\¢(X). Since the class group of Z is torsion, there exists
an h € A(Z) such that yo is the only zero of h. Because Z is irreducible, we can
also suppose |h|z = 1. Since h(yg) = 0, it follows that |h(y)| < 1 for y € Rs.
Let g = ¢*h € A°(X'). If yo € ¢(X), 1/g € A(X') but |1/g|x’ = |c| > 1, for
some ¢ € Cy, since s is in the image of 57. However,

l9(1/cg)lxr = |7 <1 = |glx|(1/cg)lx-
This implies gy = 0 or (1/cg),, = 0, but as X’ = [, o V', this implies the
contradiction that g =0 or (1/cg) = 0.

We will finish the proof by showing X = X'.

Let Y’ be the affinoid obtained by glueing in disks to red™'S at the ends of
the wide open red ~S\S corresponding to irreducible components of Y distinct
from S. The reduction of this affinoid is naturally isomorphic to S. Then as ¢
factors through the inclusion of red 'S in Y we naturally obtain a morphism
¢': X — Y. Since by construction, for each point s € S\S°, there is a point in
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the residue class of Y/ not in the image of X the above argument implies no
point in this residue class is in the image of X and so ¢’'(X) in the reduction
inverse in Y’ of SY. As this latter is naturally isomorphic to Z, X = X'. g

Suppose W is a wide open annulus. If o:W — W is a rigid analytic
morphism, define p(c) by

p(0) Resw = Reso*w.

The restriction of p to the group of rigid analytic automorphisms of W is a ho-
momorphism from Aut(W) onto {+1}. We say o is ORIENTATION PRESERVING
if p(o) = 1.

LEMMA 1.7. Suppose G is a finite group of rigid automorphisms of the wide
open annulus W = A(r,1) of order m. Then there is a rigid morphism
¢:W — V of degree m such that AW)Y = ¢*A(V), where V.= A(r™,1)
if G is orientation preserving and V- = A(B(0, 1)) if not.

Proof. First, if 0 € G
0T = ¢ TP ho(T),

where ho(T) € A(W), |hs(t) — 1| < 1, for t € W, and ¢, € C,,
o= {1 iale)=1
T r ifplo)=-1"

Let G° = Kerp and n = |G°|. Let S =] 7*T. Then

TG
S(T) =T1"g(T),
where |g(t)| = 1. Let a: W — A(r", 1), be the map
t— S(t).

It is easy to see this map has degree n and R := a*A(A(r",1)) C A(W)%. In
particular, R is an integral domain and its fraction field is K¢ where K is the
fraction field of A(W). Since, R and A(W) are Dedekind domains, it follows
that R = A(W)%. If G is orientation preserving, G = G° and taking ¢ = «
completes the proof, in this case.

Suppose now G is not orientation preserving. Then G/G° has order 2.

Using, the result of the last paragraph we can replace W with A(r™,1) and
assume G° is trivial. Let G = {1,0} and

UT)=T+0*T =T+ coeT *ho(T).
Now, if we define ¢: W — B(0,1) to be the morphism
t— U(t),

we can apply the same argument, as above, to complete the proof. g
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REMARK. One can show:

PROPOSITION. Suppose p is odd G is a finite group of automorphisms of

A(r,R). Then there is a natural homomorphsm of G into Aut Ghr whose
kernel is the unique p-Sylow subgroup of G°. Moreover, the exact sequence,

1-G°—>G—G/G° =1,

splits.

For example: Suppose p = 3, 1 > |r| > |27 and V = A(r,1) . Let s be
the parameter on A'. Then the integral closure of A(V) in the splitting field
of X3+ sX = s over K(V) is the ring of analytic functions on an annulus W
which is an étale Galois cover of V. If G is the Galois group, G = G° = S3.

2. SEMI-STABLE COVERINGS

A SEMI-STABLE COVERING of a curve C' is a finite admissible covering D of C'
by connected wide opens such that

(i) ifU#V €D, UNV is a finite collection of disjoint wide open annuli,

(i) if T,U,V € D are pairwise distinct, TNU NV = 0.
(iii

iii) for U € D, if
vr=u\( |J V),

veD

VAU
U" is a non-empty affinoid whose reduction is irreducible and has at worst
regular singular points.

In particular, if U € D, U is a basic wide open and U" is an underlying

affinoid of U. We let E(U) denote the set of connected components of U\U™.
These are all wide open annuli.

PROPOSITION 2.1. Semi-stable models of C' whose reductions have at least two
components correspond to semi-stable covers of C'.

Proof. Suppose C is a semi-stable model for C' whose reduction C has at least
two components. Let I denote the set of irreducible components of C. If

Zelclet Z° = Z\ |J A and Wy := red'Z. As every singular point of
AEI
oy

C is regular it follows from Lemma 1.2 that Wy is a basic wide open with
underlying affinoid red=1Z° and {Wy: Z € I¢} is a semi-stable cover.

Conversely, suppose D is a semi-stable cover of C'. For U,V € D, let
Zy = SpfA°(Z) and Zyy = Spf(UNV). Then the formal schemes Zyy glue
by means of the glueing data

ZU,V — ZU H ZV
into a model Sp of C. g
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If we have semi-stable coverings Dx and Dy such that for every W,V € Dy,
h(W) € Dy and there exist W', V' € Dx such that hA(W)Nh(V) = h(W'NV’),
then f extends to a finite morphism from Sp, to Sp,. We say h induces a
FINITE MORPHISM OF SEMI-STABLE COVERS from Dx to Dy.

3. PROOF OF THEOREM

First, let h’/: X’ — Y be the Galois closure of h with Galois group G. Let D be
a semistable cover X’ of such that Y ¢ C where

¢ = {I(U):U e D}.

Then we claim C is a semi-stable cover of Y. Clearly C is a finite admissible
open cover. By Lemma 1.7, if W € D and A € E(W), h/(A) is a wide open
disk or annulus. Since /(W) # Y, h'(A) cannot be a disk for all A € E(W).
It follows by a glueing argument, as in the proof of Lemma 1.2, that h'(W) is
a connected wide open. Now suppose U,V € D and h'(W) # h/(V). We must
show h/(W) N k'(V) is a finite union of disjoint annuli. First, we remark that
B (W*) and A/ (V") are disjoint affinoids in Y, using Lemma 1.6. Suppose A is
a component of W NV so A€ E(W)N E(V). Suppose (x,) is a sequence of
points in A. If x,, — W*", b/(z,) — K/ (W") and if z,, = V¥, b/ (x,,) = B/ (V").
It follows that h'(A) is an annulus. Also, we know that if U is a connected com-
ponent of b/ (W)NA' (V), U = U, cg h'(As) where the A, are in E(W)NE(V7),
for some subset S of G. Now it follows from Lemma 1.3 that if S has more
than one element and ¢ € S there must be a 7 € S such that 7 # ¢ and
A,NA; #0. Then A, U A, is an annulus, arguing as in the proof of Corollary
3.6a of [RLC] (A, U A, # Y since W* N (A, U A;) = (). The fact that A,
and A, are connected to both W* and V* implies A, = A, UA, = A,. We
conclude that all the A, equal U, for ¢ € S and so U is a wide open annulus.
Suppose U, V,W € D are such that »'(U), ' (V), (W) are distinct. If
y € M (U)NK(V)NK (W), there exist 0,7 € G and x € UNV?NWT such that
y = h/(z). But this implies U, V7, W7 are not distinct which in turn implies
R (U), W (V),h' (W) are not distinct.
We must show for U € D, h/(U)*, which equals

nOoN U V),

vec
V#h!/(U)

is an affinoid whose reduction is irreducible and only has regular singular points.
Now,

Por=rlJwon Y A4
ce@ A€E(U)NE(V)
VED,VAUT ,7€G

and also
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= (U U U W (A).
AEE(U)NE(U?)
T+£1 €q,

It follows from the first equality that A'(U)" is an affinoid using Lemma 1.6 and
Proposition 3.3 of [RLC]. Its reduction is irreducible as the reduction U* is,
and from Proposition 1.5 it has at worst only regular singular points. Finally,
since all the h/(A) are disks or annuli by Lemma 1.7 whose ends are connected
to B/ (U™), h(U)* is an affinoid and these h'(A) must, by Lemma 1.1, be smooth
or regular singular classes of h'(U)%, and thus, in particular, '(U)* must have
irreducible reduction. Thus C is a semi-stable cover and clearly A’ induces a
finite map of semi-stable covers from D to C.

We also know X’/X is Galois and if r: X’ — X is the corresponding mor-
phism,

E:={rU):U € D}

does not contain X so is a semi-stable cover of X and r induces a finite map of
semi-stable covers from D to £. It follows that h induces a finite map of semi-
stable covers from £ to C and hence extends to the corresponding semi-stable
models.

Now we must explain how we can find a cover D of X’ with the required
properties. If X’ has a stable model X, then X is preserved by G. Let D
be a wide open disk in X’ such that D N D =  for all 0; € G and B an
affinoid ball in D. Let X’ be the minimal semi-stable refinement of X such
that no two elements of {D?:0 € G} are contained in the same residue class.
Let E = J,cq B?. Then we can take for D,

{(red"'Z)\E:Z is an irreducible component of f/} U{D%:0 € G}.

If g(X’) < 1 and the set of ramified points S C X’ contains at least 3 — 2¢g(X”)
elements we do the same thing starting with the minimal semi-stable model
with the property that S injects into the smooth points of the reduction of this
model. The remaining cases are easier.
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