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Abstract. Let h:X → Y be a finite morphism of smooth connected
complete curves over Cp. We show h extends to a finite morphism
between semi-stable models of X and Y .
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Let p be a prime. It is known that if C is a smooth proper curve over a complete
subfield K of Cp, there exists a finite extension L of K in Cp and a model of
the base extension of C to L over the ring of integers, RL, of L whose reduction
modulo the maximal ideal has at worst ordinary double points as singularities.
In fact, if g(C), the genus of C, is at least 2 or g(C) = 1 and C has a model
with good reduction, there is a minimal such model, which is called the stable
model. Indeed, if L′ is any complete extension of L in Cp, the base extension
of a stable model over RL is the stable model over RL′ .

Liu and Lorenzini showed [L-L; Proposition 4.4(a)] that a finite morphism
of curves extends to a morphism of stable models, but the extension is not in
general finite. E.g., Edixhoven has show that the natural map from X0(p

2) to
X0(p) does not in general extend to a finite morphism of stable models [E] (see
also [C-M]). However, we show,

Theorem. Suppose h:X → Y is a finite morphism of smooth connected com-

plete curves over Cp. Then there are semi-stable models X and Y of X and Y
over the ring of integers of Cp such that h extends to a finite morphism from

X to Y.

(We work over Cp to avoid having to worry about base extensions and
because reduced affinoids over Cp have reduced reductions.)
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218 Robert F. Coleman

In fact, when X has a stable model (i.e., g(X) ≥ 2 or g(X) = 1 and X
has good reduction) and either X/Y is Galois, or the model has irreducible
reduction and Y has a stable model, one can take X to be the stable model for
X. In the latter case Y will be the stable model for Y , which, a fortiori, will
have irreducible reduction.

Abbes has informed us that this result also follows from results of Raynaud
(in particular Proposition 5 of [R] (and its corollary)).

We say such a morphism is semi-stable, and stable if it is the minimal object
in the category of semi-stable morphisms from X to Y (which may not exist).
Terminology and Notation

If Z is a rigid space A(Z) will denote the ring of analytic functions on Z
and A0(Z) the subring of functions whose spectral norm is bounded by 1.

If X is an affinoid over Cp, X = SpecA0(X)/mA0(X), where m is the
maximal ideal of Rp and if x ∈ X(F̄p), Rx will denote the corresponding
residue class in X. (Residue classes are also called formal fibers.)

By a regular singular point on a curve we mean a singular point which
is an ordinary double point. If C is a curve, let S(C) denote the set of irregular
singular points on C.

1. Wide Opens

In this section, we review and extend the results on wide open spaces discussed
in [RLC].

A (smooth one-dimensional) wide open is a rigid space conformal to C−D
where C is a smooth complete curve and D is a finite disjoint union of affinoid
disks in C, which contains at least one in each connected component. A wide
open disk is the complement of one affinoid disk in P 1 (it is conformal to
B(0, 1)) and a wide open annulus is conformal to the complement of two disjoint
such disks (it is conformal to A(r, 1) where r ∈ |Cp|, 0 < r < 1).

An underlying affinoid Z of a wide open W is an affinoid subdomain
Z of W such that W\Z is a finite disjoint union of annuli none of which is
contained in an affinoid subdomain of W . An end of W is an element of the
inverse limit of of the set of connected components of W\Z where Z ranges
over subaffinoids of W .

We slightly modify the definition of basic wide open given in [RLC] and
say a wide open W is basic if it has an underlying affinoid Z such that Z is
irreducible and has at worst regular singular points.

Suppose X is a smooth one dimensional affinoid over Cp and x ∈ X. Be-
cause A0(Rx) is the completion of A0(X) at x, we have,

Lemma 1.1. Then x is a smooth point of X if and only if Rx is a wide open

disk and a regular singular point if and only if Rx is a wide open annulus.

We have the following generalization of Proposition 3.3(ii) of [RLC],

Lemma 1.2. The residue class, Rx, is a connected wide open and its ends can

naturally be put in 1-1 correspondence to the branches of X through x.
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Proof. That Rx is connected is a consequence of Satz 6 of [B].
Theorem A-1 of [pAI] and its proof naturally generalizes to semi-dagger

algebras. These are quotients of the rings of series
∑

I,J aI,Jx
IyJ in

K[x1, . . . , xn, y1, . . . , ym], where K is a complete non-Archimedean valued field,
such that there exists r∈R > 1 so that

lim
s(I,J)→∞

|aI,J |r
s(J) = 0,

where I and J range over Zn
≥0 and Zm

≥0 and s(M), where M is a multi-index,
is the sum of its entries. What this implies in our context is that if R is an
affinoid over Cp whose reduction is equal to the normalization of X and S is
the set of points of R above T , the singular points of X, then the rings

lim
→
M

A(R\M) and lim
→
N

A(X\N)

are isomorphic, where M ranges over the subaffinoids of
⋃

s∈S Rs and N ranges
over the subaffinoids of

⋃

x∈T Rx. Since
⋃

s∈S Rs is a union of wide open

disks which correspond to the set, B, of branches of X through points in T ,
this, in turn, implies that there exists a subaffinoid N of

⋃

x∈T Rx such that
⋃

x∈T
Rx − N is a finite union of wide open annuli which correspond to the

elements of B. One can now glue affinoid disks to
⋃

x∈T Rx to make a smooth
complete curve, using [B; Satz 6.1] and the direct image theorem of [K], as in
the proof of Proposition 3.3 of [RLC]. The result follows.

It follows from Lemmas 3.1 and 3.2 of [RLC] that,

Lemma 1.3. if A and B are disjoint wide open annuli or disjoint affinoids in a

smooth curve C over Cp, then A is disconnected from B in C.

If W is a wide open space

H1
DR(W ) = Ω1

W /dA(W ),

where Ω1
W is the A(W )-module of rigid analytic differentials on W . It follows

from Theorem 4.2 of [RLC] that H1
DR(W ) is finite dimensional over Cp.

Lemma 1.4. Suppose f :W → V is a finite morphism of wide opens. Then, if

W is a disk or annulus, the same is true for V .

Proof. Suppose W is a disk and f has degree d. Then V has only one end.
Suppose ω is a differential on V . Then f∗ω = dg for some function g ∈ A(W )
since dimH1

DR(W ) = 0, in this case. Hence ω = d Tr (g/d). ThusH1
DR(V ) = 0.

Let C be a proper curve obtained by glueing a wide open disk D to V along the
end, as in the proof of Proposition 3.3 of [RLC ]. From the Meyer-Vietoris long
exact sequence, we see that C has genus zero and as B := D\V is an affinoid
disk V = C\B is a wide open disk.

The argument in the case where W is an annulus is similar, except one has
to use residues.
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Proposition 1.5. Suppose f :X → Y is a finite map of smooth one dimen-

sional affinoids over Cp. Then, if the reduction of X has only regular singular

points, the same is true of Y .

Proof. We know the map f induces a finite morphism f̄ : X̄ → Ȳ . Let y be
a point of Ȳ . Let x ∈ X̄ such that f̄(x) = y. Then f restricts to a finite
morphism Rx → Ry. But Rx is a disk or annulus. It follows from Lemma 1.2
that Ry is a wide open and hence by Lemma 1.4 is a disk or annulus, as well.
Hence y is either smooth or regular singular by Lemma 1.1.

This implies the well known result that if h:X → Y is a finite morphism
of curves and X has good reduction so does Y . In fact, it implies the result of
Lorenzini-Liu, [L-L; Corollary 4.10], that, in this case if g(Y ) ≥ 1, h extends to
a finite morphism between the unique models of good reduction. It also implies
that if X has a stable model with irreducible reduction, so does Y .

Lemma 1.6. Suppose φ:X → Y is a non-constant rigid morphism of smooth

one dimension affinoids over Cp. Suppose G is a finite group acting on X such

that φσ = φ for σ ∈ G and X =
⋃

σ⊂G V σ where V is an irreducible component

of X. Then φ surjects onto an affinoid subdomain of Y .

Proof. Let x ∈ X. Because φ is non-constant we can find an element f of
A(Y ) such that f(φ(x)) = 0 and |φ∗f |X = 1. We can and will replace Y with
the affinoid subdomain {y ∈ Y : |f(y)| ≤ 1}. Then φ|V is non-constant. Since
φX = φV and V is irreducible, φ factors through the inclusion of an irreducible
component S of Y . Let S0 be the complement in S of the other irreducible
components of Y . Then, Z = red−1S0 is an affinoid subdomain of Y whose
reduction is S0. Let X ′ be the affinoid subdomain of X, φ−1Z. This is just
X minus a finite number of residue classes stable under the action of G so
its reduction is the union of the G-conjugates of V ′ = V \φ

−1
(S\S0) which is

irreducible. Suppose s ∈ φX ∩ S0. We claim that Rs ⊂ φ(X).
Suppose y0 ∈ Rs\φ(X). Since the class group of Z is torsion, there exists

an h ∈ A(Z) such that y0 is the only zero of h. Because Z is irreducible, we can
also suppose |h|Z = 1. Since h(y0) = 0, it follows that |h(y)| < 1 for y ∈ Rs.
Let g = φ∗h ∈ A0(X ′). If y0 6∈ φ(X), 1/g ∈ A(X ′) but |1/g|X′ = |c| > 1, for
some c ∈ Cp, since s is in the image of φ

X
′ . However,

|g(1/cg)|X′ = |c−1| < 1 = |g|X′ |(1/cg)|X′ .

This implies gV = 0 or (1/cg)V = 0, but as X ′ =
⋃

σ∈G V ′σ, this implies the

contradiction that g = 0 or (1/cg) = 0.
We will finish the proof by showing X = X ′.
Let Y ′ be the affinoid obtained by glueing in disks to red−1S at the ends of

the wide open red−1S\S0 corresponding to irreducible components of Y distinct
from S. The reduction of this affinoid is naturally isomorphic to S. Then as φ
factors through the inclusion of red−1S in Y we naturally obtain a morphism
φ′:X → Y ′. Since by construction, for each point s ∈ S\S0, there is a point in
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the residue class of Y ′ not in the image of X the above argument implies no
point in this residue class is in the image of X and so φ′(X) in the reduction
inverse in Y ′ of S0. As this latter is naturally isomorphic to Z, X = X ′.

Suppose W is a wide open annulus. If σ:W → W is a rigid analytic
morphism, define ρ(σ) by

ρ(σ) Resω = Resσ∗ω.

The restriction of ρ to the group of rigid analytic automorphisms of W is a ho-
momorphism from Aut(W ) onto {±1}. We say σ is orientation preserving

if ρ(σ) = 1.

Lemma 1.7. Suppose G is a finite group of rigid automorphisms of the wide

open annulus W = A(r, 1) of order m. Then there is a rigid morphism

φ:W → V of degree m such that A(W )G = φ∗A(V ), where V = A(rm, 1)
if G is orientation preserving and V = A(B(0, 1)) if not.

Proof. First, if σ ∈ G
σ∗T = cσT

ρ(σ)hσ(T ),

where hσ(T ) ∈ A(W ), |hσ(t)− 1| < 1, for t ∈ W , and cσ ∈ Cp,

|cσ| =

{

1 if ρ(σ) = 1
r if ρ(σ) = −1

.

Let Go = Ker ρ and n = |Go|. Let S =
∏

τ∈Go τ∗T . Then

S(T ) = Tng(T ),

where |g(t)| = 1. Let α:W → A(rn, 1), be the map

t 7→ S(t).

It is easy to see this map has degree n and R := α∗A(A(rn, 1)) ⊆ A(W )G. In
particular, R is an integral domain and its fraction field is KG where K is the
fraction field of A(W ). Since, R and A(W ) are Dedekind domains, it follows
that R = A(W )G0 . If G is orientation preserving, G = Go and taking φ = α
completes the proof, in this case.

Suppose now G is not orientation preserving. Then G/Go has order 2.
Using, the result of the last paragraph we can replace W with A(rn, 1) and
assume Go is trivial. Let G = {1, σ} and

U(T ) = T + σ∗T = T + cσT
−1hσ(T ).

Now, if we define φ:W → B(0, 1) to be the morphism

t 7→ U(t),

we can apply the same argument, as above, to complete the proof.
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Remark. One can show:

Proposition. Suppose p is odd G is a finite group of automorphisms of

A(r,R). Then there is a natural homomorphsm of G into AutG
Fp

m whose

kernel is the unique p-Sylow subgroup of Go. Moreover, the exact sequence,

1 → Go → G → G/Go → 1,

splits.

For example: Suppose p = 3, 1 > |r| > |27| and V = A(r, 1) . Let s be
the parameter on A1. Then the integral closure of A(V ) in the splitting field
of X3 + sX = s over K(V ) is the ring of analytic functions on an annulus W
which is an étale Galois cover of V . If G is the Galois group, G = Go ∼= S3.

2. Semi-stable Coverings

A semi-stable covering of a curve C is a finite admissible covering D of C
by connected wide opens such that
(i) if U 6= V ∈ D, U ∩ V is a finite collection of disjoint wide open annuli,
(ii) if T,U, V ∈ D are pairwise distinct, T ∩ U ∩ V = ∅.
(iii) for U ∈ D, if

Uu = U\
(

⋃

V ∈D
V 6=U

V
)

,

Uu is a non-empty affinoid whose reduction is irreducible and has at worst
regular singular points.

In particular, if U ∈ D, U is a basic wide open and Uu is an underlying
affinoid of U . We let E(U) denote the set of connected components of U\Uu.
These are all wide open annuli.

Proposition 2.1. Semi-stable models of C whose reductions have at least two

components correspond to semi-stable covers of C.

Proof. Suppose C is a semi-stable model for C whose reduction C has at least
two components. Let IC denote the set of irreducible components of C. If
Z ∈ IC let Z0 = Z\

⋃

A∈IC
A 6=Z

A and WZ := red−1Z. As every singular point of

C is regular it follows from Lemma 1.2 that WZ is a basic wide open with
underlying affinoid red−1Z0 and {WZ :Z ∈ IC} is a semi-stable cover.

Conversely, suppose D is a semi-stable cover of C. For U, V ∈ D, let
ZU = SpfA0(Z) and ZU,V = Spf (U ∩ V ). Then the formal schemes ZU glue
by means of the glueing data

ZU,V → ZU

∐

ZV

into a model SD of C.
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If we have semi-stable coverings DX and DY such that for everyW,V ∈ DX ,
h(W ) ∈ DY and there exist W ′, V ′ ∈ DX such that h(W )∩h(V ) = h(W ′∩V ′),
then f extends to a finite morphism from SDX

to SDY
. We say h induces a

finite morphism of semi-stable covers from DX to DY .

3. Proof of Theorem

First, let h′:X ′ → Y be the Galois closure of h with Galois group G. Let D be
a semistable cover X’ of such that Y 6∈ C where

C = {h′(U):U ∈ D}.

Then we claim C is a semi-stable cover of Y . Clearly C is a finite admissible
open cover. By Lemma 1.7, if W ∈ D and A ∈ E(W ), h′(A) is a wide open
disk or annulus. Since h′(W ) 6= Y , h′(A) cannot be a disk for all A ∈ E(W ).
It follows by a glueing argument, as in the proof of Lemma 1.2, that h′(W ) is
a connected wide open. Now suppose U, V ∈ D and h′(W ) 6= h′(V ). We must
show h′(W ) ∩ h′(V ) is a finite union of disjoint annuli. First, we remark that
h′(Wu) and h′(V u) are disjoint affinoids in Y , using Lemma 1.6. Suppose A is
a component of W ∩ V so A ∈ E(W ) ∩ E(V ). Suppose (xn) is a sequence of
points in A. If xn → Wu, h′(xn) → h′(Wu) and if xn → V u, h′(xn) → h′(V u).
It follows that h′(A) is an annulus. Also, we know that if U is a connected com-
ponent of h′(W )∩h′(V ), U =

⋃

σ∈S h′(Aσ) where the Aσ are in E(W )∩E(V σ),
for some subset S of G. Now it follows from Lemma 1.3 that if S has more
than one element and σ ∈ S there must be a τ ∈ S such that τ 6= σ and
Aσ ∩Aτ 6= ∅. Then Aσ ∪Aτ is an annulus, arguing as in the proof of Corollary
3.6a of [RLC] (Aσ ∪ Aτ 6= Y since Wu ∩ (Aσ ∪ Aτ ) = ∅). The fact that Aσ

and Aτ are connected to both Wu and V u implies Aτ = Aσ ∪ Aτ = Aσ. We
conclude that all the Aσ equal U , for σ ∈ S and so U is a wide open annulus.

Suppose U, V,W ∈ D are such that h′(U), h′(V ), h′(W ) are distinct. If
y ∈ h′(U)∩h′(V )∩h′(W ), there exist σ, τ ∈ G and x ∈ U ∩V σ ∩W τ such that
y = h′(x). But this implies U, V σ,W τ are not distinct which in turn implies
h′(U), h′(V ), h′(W ) are not distinct.

We must show for U ∈ D, h′(U)u, which equals

h′(U)\
(

⋃

V ∈C

V 6=h′(U)

V
)

,

is an affinoid whose reduction is irreducible and only has regular singular points.
Now,

h′(U)u = h′
(

⋃

σ∈G

(Uσ\
⋃

A∈E(Uσ)∩E(V )

V ∈D,V 6=Uτ ,τ∈G

A
)

and also
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= h′(Uu) ∪
⋃

A∈E(U)∩E(Uσ)

σ 6=1∈G,

h′(A).

It follows from the first equality that h′(U)u is an affinoid using Lemma 1.6 and
Proposition 3.3 of [RLC]. Its reduction is irreducible as the reduction Uu is,
and from Proposition 1.5 it has at worst only regular singular points. Finally,
since all the h′(A) are disks or annuli by Lemma 1.7 whose ends are connected
to h′(Uu), h(U)u is an affinoid and these h′(A) must, by Lemma 1.1, be smooth
or regular singular classes of h′(U)u, and thus, in particular, h′(U)u must have
irreducible reduction. Thus C is a semi-stable cover and clearly h′ induces a
finite map of semi-stable covers from D to C.

We also know X ′/X is Galois and if r:X ′ → X is the corresponding mor-
phism,

E := {r(U):U ∈ D}

does not contain X so is a semi-stable cover of X and r induces a finite map of
semi-stable covers from D to E . It follows that h induces a finite map of semi-
stable covers from E to C and hence extends to the corresponding semi-stable
models.

Now we must explain how we can find a cover D of X ′ with the required
properties. If X ′ has a stable model X , then X is preserved by G. Let D
be a wide open disk in X ′ such that Dσ ∩ D = ∅ for all σ 6=1 ∈ G and B an
affinoid ball in D. Let X ′ be the minimal semi-stable refinement of X such
that no two elements of {Dσ:σ ∈ G} are contained in the same residue class.
Let E =

⋃

σ∈G Bσ. Then we can take for D,

{(red−1Z)\E: Z is an irreducible component of X
′
} ∪ {Dσ:σ ∈ G}.

If g(X ′) ≤ 1 and the set of ramified points S ⊂ X ′ contains at least 3− 2g(X ′)
elements we do the same thing starting with the minimal semi-stable model
with the property that S injects into the smooth points of the reduction of this
model. The remaining cases are easier.
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noider Räume, Math. Ann. 229 (1977) 25-45.

[pAI] Coleman, R., Torsion points on curves and p-adic Abelian integrals,
Ann. Math. 121 (1985), 111-168.

[RLC] , Reciprocity Laws on Curves, Compositio, 72, (1989) 205-235.
[C-M] and W. McCallum, Stable Reduction of Fermat Curves and

Local Components of Jacobi Sum Hecke Characters, vvJ. reine angew.
Math. 385 (1988) 41-101.

[E] Edixhoven, S., Stable models of modular curves and applications, PhD
thesis.

[K] Kiehl, R., Der Endlichkeitssatz fúr eigenliche Abbildungen in der
nichtarchimedischen Funktionentheorie, Math. 2, (1967) 191-214.

[L-L] Liu, Q. and D. Lorenzini, Models of curves and finite covers, Compositio,
118, (1999) 62-102.

[R] Raynaud, M., p-groupes et reduction semi-stable des courbes,
Grothendieck Festschrift III, Birkhäuser (1990) 179-197.
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