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1. Introduction

Throughout this paper, let p be a fixed odd prime number. For an elliptic curve
E over Q with good ordinary reduction at p, Mazur’s Main Conjecture predicts
that the Mazur-Swinnerton-Dyer p-adic L-function LMSD associated with E
can be interpreted as an element of the Iwasawa-algebra Λ = Zp[[Gal(Qcyc/Q)]]
of the cyclotomic Zp-extension Qcyc of Q and is a generator of the characteristic
ideal of the Pontryagin dual Xf (Qcyc) of the Selmer group of E over Qcyc

char(Xf (Qcyc)) = (LMSD).

Kato [K] has proved a partial result towards it showing that, for some m ≥ 0,
the function pmLMSD lies in Λ and is divided by the algebraic L-function
of Xf (Qcyc). In particular, up to a power of p, the p-adic L-function LMSD

annihilates Xf (Qcyc) modulo pseudo-null modules: “LMSD Xf (Qcyc) ≡ 0.”
Moreover, if Xf (Qcyc) does not contain any pseudo-null submodule, then
LMSDXf (Qcyc) = 0. Thus, in classical Iwasawa theory the p-adic L-function is
closely related to the annihilator ideal AnnΛ(Xf (Qcyc)) of Xf (Qcyc).
Now, the challenging aim of noncommutative Iwasawa theory is to find and
eventually prove a main conjecture over certain field extensions k∞ of some
number field k whose Galois group G = G(k∞/k) is a (non-abelian) p-adic
Lie group, e.g. over the field k∞ = k(Ep∞) which arises by adjoining to k
all p-power division points Ep∞ . If there should exist some p-adic L-function
adapted to this situation, it would thus be natural to expect that it has the
property of annihilating the dual of the Selmer group Xf (k∞) over k∞. One
could even hope that investigating the global annihilator ideal

AnnΛ(G)(Xf (k∞)) := {λ ǫ Λ(G)|λx = 0 for all x ǫ Xf (k∞)}
gives some hints for candidates of such a hypothetic L-function in this noncom-
mutative setting, where Λ(G) = Zp[[G]] denotes the Iwasawa-algebra of G. This
question, which motivated the present paper, was already posed by Harris in
[Ha2], whereas Coates, Schneider and Sujatha [CSS1] defined a characteristic
ideal of Xf (k∞) in case AnnΛ(G)(Xf (k∞)) is not zero.
The first main result of this article however tells that in general, over arbitrary
p-adic Lie-extensions, such a link between global annihilator elements and p-
adic L-functions is not possible (but we should stress that this result is no
obstruction to the existence of p-adic L-functions in which we nevertheless still
believe). Indeed, we prove that Xf (k∞) over some infinite Kummer extension
k∞ of k is a finitely generated Λ(G)-torsion module, but with vanishing global
annihilator ideal, i.e. though any single element of Xf (k∞) is annihilated by
some element of Λ there is no “global” λ ǫ Λ which annihilates the whole
dual of the Selmer group. In our example, the Galois group G = G(k∞/k) is
isomorphic to the semidirect product of two copies of the p-adic integers Zp.
Before stating the precise result we recall that a Λ-module M is called faithful
if AnnΛ(M) = 0 and bounded otherwise. These notions extend to objects of the
quotient category Λ-mod/C of Λ-mod by the full subcategory C of pseudo-null
modules and an objectM of this latter category is called completely faithful if
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all its non-zero subquotient objects are faithful.
Now assume that the number field k contains the pth roots of unity and that
E is an elliptic curve over a k which has good ordinary reduction at all places
above p. Further, assume G = G(k∞/k) ∼= H ⋊ Γ where both H and Γ are
isomorphic to Zp and Γ acts non-trivially on H, i.e. G is non-abelian.

Theorem (Theorem 3.7). Assume Xf (k∞) is non-zero and finitely generated
as a Λ(H)-module. Then, it is a faithful torsion Λ(G)-module which is not
pseudo-null. Even more, its image in the quotient category is completely faithful
and cyclic.

The purely algebraic fact that every Λ(G)-module - whether pseudo-null or not
- which is finitely generated over Λ(H) has a completely faithful, cyclic image
in the quotient category has been proved in [V3].
We should mention that e.g. for p = 5, the elliptic curve E = X1(11) of
conductor 11 which is defined by the equation

y2 + y = x3 − x2,
the assumptions of the theorem hold for k = Q(µ5) and k∞ = kcyc(

5∞
√
11).

Indeed, we prove that Xf (k∞) is free of rank 4 as Λ(H)-module where H =
G(k∞/kcyc) (theorem 6.2). Unfortunately, it is still not known even in a single
example of an elliptic curve without complex multiplication whether over the
“GL2”-extension k(Ep∞) of k the dual of the Selmer group is bounded or
faithful.
The above result suggests that it is worth considering Iwasawa theory over the
specified type of extensions whose Galois group is isomorphic to a semidirect
product Zp⋊Zp : This is the easiest non-commutative case and some questions
are attackable for the associated group algebra which can be identified with a
certain skew power series ring (cf. [V3]). Also our second main result, which de-
scribes the Euler characteristic of the Selmer group, confirms that this example
will serve as a good test candidate for further developments in noncommuta-
tive Iwasawa theory. A formula for this Euler characteristic was calculated over
Zp-extensions by Perrin-Riou and Schneider and over the “GL2”-extension by
Coates and Howson [CH].
Let ρp(E/k) be the p-Birch-Swinnerton-Dyer constant (see section 4 for the
definition). We assume that k contains the pth roots of unity and that k∞ is
a Galois extension of k containing the cyclotomic Zp -extension kcyc and such
that G(k∞/k) ∼= Zp ⋊ Zp.

Theorem (Theorem 4.1). Assume (i) p ≥ 5, (ii) E has good ordinary reduc-
tion at all primes above p and (iii) Selp∞(E/k) is finite. Then the G-Euler
characteristic χ(G, Selp∞(E/k∞)) is defined and

χ(G, Selp∞(E/k∞)) = ρp(E/k)×
∏

v ǫ M

|Lv(E, 1)|p,

where Lv(E, 1) is the local Euler-factor of the L-function of E evaluated at 1
and M denotes a certain set of places of k which is defined in section 4.
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We note that under the assumptions of the theorem Xf (k∞) is Λ-torsion. In
section 4 we also treat the case when k does not contain µp. This result fol-
lows from the explicit calculations of the local and global Galois cohomology,
see Theorem 4.2 as well as subsections 4.3 and 4.2. We also calculate the
“truncated” G-Euler characteristics introduced by Coates-Schneider-Sujatha
([CSS2]) under some milder conditions (Theorem 4.10).
We keep the assumption that k∞ is a Galois extension of k which contains
all p-power roots of unity and whose Galois group is isomorphic to Zp ⋊ Zp.
Then - as Coates and Sujatha pointed out to us - another striking phenomenon
in comparison with the GL2-theory is the fact that the validity of Mazur’s
conjecture (i.e. that assuming E has good ordinary reduction at all primes
above p the dual of Selmer Xf (kcyc) over the cyclotomic Zp -extension is Λ(Γ)-
torsion where Γ = G(kcyc/k)) implies the torsionness of Xf (k∞) over Λ(G)
unconditionally; in particular, the vanishing of the µ-invariant of Xf (kcyc) has
not to be assumed, see theorem 2.8. As a consequence one obtains a quite
general asymptotic bound for the rank of the Mordell-Weil group. Let α be
any non-zero element of k which is not a root of unity and let kn be the field
obtained by adjoining to k the pnth root of unity and the pnth root of α.

Theorem (Corollary 2.9). Assume that (i) E has good ordinary reduction at
all primes ν of k dividing p, and (ii) Xf (kcyc) is Λ(Γ)-torsion. Then there
exists a constant C > 0 such that the rank of E(kn) is at most C · pn for all
n ≥ 0.

The following special case is an example of the deep unconditional results which
follows from Kato’s work. Assume now that E is defined over the rational
numbers Q and that α is any non-zero element of the maximal abelian extension
Qab of Q which is not a root of unity. Then there exists a constant C such that

rkZ E(Q(µpn ,
pn
√
α)) ≤ C · pn

for all n ≥ 0.
For the sake of completeness we also discuss other properties of the Selmer
group such as having non-zero pseudo-null submodules (theorem 2.6), being
(non-) trivial (see subsection 4.6, in particular proposition 4.12) or having non-
vanishing µ-invariants (corollary 5.2 and an example in section 6 ). In section
5 we study the behavior of the µ-invariant under isogeny and we compare the
µ-invariants of the duals of Selmer over k∞ and kcyc.
We hope that these results for the “false Tate curves” are indications of what
might be true in general for non-abelian p-adic Lie extensions.

Acknowledgments. We are most grateful to John Coates. It was his kind
invitation of both of us to DPMMS and his inspiring questions which gave the
impulse to this work. Also we would like to express our warmest thanks to
both him and R. Sujatha for suggesting several improvements of our results
and keeping us fully informed on their joint work. We would like to thank
Kazuo Matsuno for reading parts of the manuscript.
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2. Non-existence of pseudo-null submodules

We consider an elliptic curve E over a number field k. Let S be a finite set
of places of k containing all places Sp above p, all places Sbad at which E
has bad reduction and all places S∞ above infinity. Then we write kS for the
maximal outside S unramified extension of k and denote by GS(L) = G(kS/L)
the Galois group of kS over L for any intermediate extension kS |L|k.
Throughout the whole paper we assume that E has good reduction at all places
in Sp.
The main object under consideration in this article, the p-Selmer group, is
classically defined as

Selp∞(E/L) := ker(H1(L,Ep∞)→
⊕

w

H1(Lw, E(Lw))p∞)

∼= ker(H1(GS(L), Ep∞)→
⊕

w ǫ S(L)

H1(Lw, E(Lw))p∞).

Here, L is a finite extension of k and, in the first line, w runs through all places
of L while, in the second line, S(L) denotes the set of all places of L lying
above some place of S. As usual, Lw denotes the completion of L at the place
w and for any field K we fix an algebraic closure K̄. For infinite extensions K
of k, Selp∞(E/K) is defined to be the direct limit of Selp∞(E/L) over all finite
intermediate extensions L.
Now, let k∞ be a Galois extension of k contained in kS such that its Galois
group G := G(k∞/k) is a pro-p p-adic Lie group of cohomological p-dimension
cdpG = 2. With other words, the set Sram(k∞/k) of all places which ramify in
k∞|k is contained in S. Note that G is soluble, because its Lie algebra over Qp
is 2-dimensional, and has no element of finite order. The last fact implies that
the Iwasawa algebra, i.e. the completed group algebra

Λ(G) := Zp[[G]]

of G is a Noetherian ring without zero-divisors and thus has a skewfield Q(G)
of fractions by Goldie’s theorem. Moreover, Λ(G) is an Auslander regular ring
(see [V1] for the definition and the proof of this property) of global dimension
d = cdp(G) + 1 = 3. For Auslander regular rings there exists a nice dimension
theory for modules over it which coincides with the Krull dimension of the
support if Λ is commutative. For a detailed treatment we refer the reader to
[V1]. We recall that a Λ-module M is called pseudo-null if E0M = E1M = 0
where we use the following

Notation 2.1. For a Λ-module M ,

Ei(M) := ExtiΛ(M,Λ)

for any integer i and Ei(M) = 0 for i < 0 by convention.
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Also, by the rank rkΛ(G)M of a (left) Λ(G)-module M we denote its dimension
over Q(G) after extension of scalars

rkΛM := dimQ(G)Q(G)⊗Λ(G) M.

Now, the Selmer group Selp∞(E/k∞) bears a natural structure as an discrete
(left) G-module. For some purposes it is more convenient to deal with (left)
compact G-modules, thus we take the Pontryagin duals −∨ and set

Xν :=

{
H1(k∞,ν , Ep∞)∨ for ν ǫ S \ Sp,
H1(k∞,ν , (Ẽν)p∞)∨ for ν ǫ Sp,

US :=
⊕

S

IndGν

G Xν ,

XS := H1(GS(k∞), Ep∞)∨ and

Xf := (Selp∞(E/k∞))∨.

Here we define Ẽν to be the reduction of E at the prime ν. It is well known
that US , XS and Xf are all finitely generated (compact) Λ(G)-modules.
The following two conditions will be crucial for our considerations
Assumption WLS: H2(GS(k∞), Ep∞) = 0.
The validity of this assumption is the statement of a generalized weak Leopoldt
conjecture for E, k∞ and S.
Assumption SEQS: The “defining sequence” for the Selmer group is exact, i.e.
also left exact:

0→ US → XS → Xf → 0.

Note that the (dual of) US is indeed isomorphic to the local conditions occurring
in the above definition of the Selmer group by the work of Coates-Greenberg
[CG] and by Mattuck’s theorem (see [V2, §4] for details).
We will show in section 7.1 that if E(k∞)p∞ is finite and Xf a torsion Λ(G)-
module, then both assumptions hold and, in particular, are independent of S.
On the other hand, if k is totally imaginary and both conditions hold for some
S (e.g. S = Σ := Sp ∪ Sbad ∪ Sram(k∞/k) ∪ S∞), then - as we will see below -
the rank of Xf is equal to

(2.1) rkΛ(G)Xf =
∑

Ss
p

[kν : Qp],

where Ssp denotes the set of places above p at which E has good supersingular
reduction. In particular, if E has good ordinary reduction at all places over p,
then the dual of its Selmer group Xf must be a Λ(G)-torsion module assuming
WLS and SEQS for some S. We refer the reader to theorem 2.8 at the end
of this section for a further discussion about cases in which the equation (2.1)
holds.

Remark 2.2. If the cyclotomic Zp-extension kcyc of k is contained in
k∞, then assumption WLS would be a consequence of the vanishing of
H2(GS(kcyc), Ep∞), which is conjecturally true, see e.g. [P3, section 1.3.3].
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Indeed, as G is a Poincaré group of cohomological dimension 2 with quo-
tient Γ = G(kcyc/k) ∼= Zp a Poincaré group of dimension 1, it follows from
[NSW, thm. 3.7.4] that H = G(k∞/kcyc), which is as p-adic Lie group with-
out element of order p also a Poincaré group, has cohomological dimension
cdpH = 1. Now the Hochschild-Serre spectral sequence supplies a surjection
H2(GS(kcyc)) ։ H2(GS(k∞))H which implies the claim. We should mention
that the vanishing over kcyc was shown by Kato [K] for abelian extensions k of
Q for elliptic curves which are defined over Q (and hence modular).

In order to avoid frequent repetition we define two further assumptions. The
first one concerns the base field.
Assumption BASE:

k contains the pth root of unity µp.

We write Gν ⊆ G and Tν ⊆ Gν for the decomposition group and inertia group
at a place ν, respectively. We shall denote by Sordp the set of places in Sp at
which E has good ordinary reduction. The second assumption concerns the
dimensions of these local groups.
Assumption DIMS :

a) dimGν = 2 for all finite places ν ǫ Sbad ∪ Sram(k∞/k) and
dimGν ≥ 1 for all ν ǫ S \ Sp.

b) dimGν = 2 for all ν ǫ Sordp .

c) dimTν = 2 for all ν ǫ Sordp .

Part c) implies

c’) Ẽp∞(k∞,ν) is finite for all ν ǫ Sordp .

Indeed, Ẽp∞(k∞,ν) ∼= Ẽp∞(κ∞,ν), where κ∞,ν denotes the residue class field of
k∞,ν which is finite if DIMS c) holds. But an projective variety over a finite
field κ has only finitely many κ- rational points.
Note also that for sets of places S′ ⊇ S ⊇ Σ, the condition DIMS′ implies
DIMS and in particular DIMΣ.
To recover properties of Xf we first have to consider the local modules Xν .

Proposition 2.3. (i) Xν is a Λ(Gν)-torsion module for every ν in S\Sp
and assuming DIMS a) it holds Xν = 0 for all ν ǫ Sbad.

(ii) Let ν ǫ Sordp . Then one has rkΛ(Gν)Xν = [kν : Qp]. If we assume DIMS

b), then there is an exact sequence of Λ(Gν)-modules

0→ Xν → Rν → E2E1Xν → 0,

where Rν is a reflexive, hence torsionfree Λ(Gν)-module.Furthermore,
for the projective dimension of Xν it holds that pdΛ(Gν)Xν ≤ 1 and

E1E1Xν = 0. If, in addition, DIMS c’) holds, then E2E1Xν = 0
vanishes, too.

(iii) For all ν ǫ Ssp, the module Xν is obviously trivial.

Proof. For ν ∤ p the module Xν is torsion by [OV2, thm. 4.1] and even vanishes
if dim(Gν) = 2 by prop. 4.5 (loc.cit.). Now let ν be in Sordp . The statement
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concerning the rank is again thm. 4,1 (loc.cit.). It is easily seen using the

diagram of [OV1, lem. 4.5, rem. 3], that EiXν
∼= Ei+2(Ẽνp∞(k∞,ν)

∨) = 0 for
i ≥ 2 because pdΛ(Gν) = 3 by assumption DIMS b). Thus pdΛ(Gν)Xν ≤ 1

using [V1, 6.3,6.4] and hence the module E1E1Xν coincides with torΛ(Gν)Xν =
0 (see [V1, §2]) while the short exact sequence of the statement is taken from
[V2, prop. 3.4]. Now assume that DIMS c’) holds. Then E2E1Xν = 0 by [V2,
lem. 3.1, prop. 3.4] (Note that the additional condition in an earlier version
of lemma 3.1 (loc.cit.) in the case cdp(G) = 2 is superfluous, since in any case
pdXν ≤ 1 by the above). �

It follows immediately that rkΛ(G)US =
∑
Sord
p

[kν : Qp], and under assumptions

DIMΣ a) and DIMΣ b) that pdΛ(G)UΣ ≤ 1 and that UΣ is torsionfree where

Σ = Sp ∪ Sbad ∪ Sram(k∞/k) ∪ S∞ as above.
With respect to the global modules we have the following

Proposition 2.4. (i) Assume WLS. Then the projective dimension of
XS is at most one: pdΛ(G)XS ≤ 1, and, if k is totally imaginary, its

rank is rkΛ(G)XS = [k : Q].
(ii) Assuming DIMΣ a), b), WLΣ and SEQΣ the projective dimension of

Xf is less or equal to two: pdΛ(G)Xf ≤ 2.

Proof. As in the proof of proposition 2.3 we obtain immediately that

EiXS
∼= Ei+2(Ep∞(k∞)∨) = 0

for i ≥ 2 which implies that the projective dimension of XS is less or equal
to 1. The statement about the rank is well known, see (sub)section 7.3 for a
sketch of the proof. Since both pdXS , pdUS ≤ 1, it follows by homological
algebra that pdXf ≤ 2. �

Remark 2.5. Let k be totally imaginary. Then we obtain from the results above
that assumption SEQS for some S implies the following equality: rkΛ(G)Xf =∑
Ss
p
[kν : Qp], where Ssp denotes the set of places above p at which E has good

supersingular reduction. On the other hand, if we assume DIMΣ a), DIMΣ b)
and WLΣ, then it follows easily from the long exact Poitou-Tate sequence that
condition SEQΣ is equivalent to the validity of this rank formula. Indeed, the
latter condition forces the kernel of UΣ → XΣ to be torsion. But since UΣ is a
torsionfree Λ(G)-module, the kernel must be zero (see[V2, prop. 4.32, 4.33]).

Theorem 2.6. (i) [OV1, thm 4.6] Assume WLS. Then XS does not con-
tain any non-zero pseudo-null submodule.

(ii) Assume DIMS a), b), c’), WLS and SEQS for some S ⊇ Σ. Then Xf

does not contain any non-zero pseudo-null submodule.

For the proof of (ii) we need the following characterization on the non-existence
of pseudo-null submodules:

Lemma 2.7. [OV1, prop 2.4 1(b)] A finitely generated Λ(G)-module M has
zero maximal pseudo-null submodule if and only if EiEiM = 0 for all i ≥ 2. In
particular, if pdΛ(G)M ≤ 2, this is equivalent to E2E2M = 0.
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Proof of the theorem. The proof of (ii) is analogous to that of [OV1, thm 5.2].
Since some calculations are different we nevertheless give it completely: Since
pdΛ(G)Xf ≤ 2 it suffices by lemma 2.7 to show that E2E2Xf = 0 vanishes. We
consider the long exact E•-sequence associated with the sequence in condition
SEQS :

E1XS →
⊕

Sord
p

IndGν

G E1Xν → E2Xf → E2XS = 0,

where the last identity follows from proposition 2.4 while the compatibility of
Ind and E· is the content of [OV1, lem 5.5]. Splitting this into short exact
sequences we obtain

0→ B →
⊕

Sord
p

IndGν

G E1Xν → E2Xf → 0 and

0→ C → E1XS → B → 0,

where the modules B and C are defined by exactness. Again via the long exact
E•-sequence and using lemma 2.7 with (i) we obtain

0 =
⊕

Sord
p

IndGν

G E1E1Xν → E1B → E2E2Xf →
⊕

Sord
p

IndGν

G E2E1Xν = 0 and

0 = E0C → E1B → E1E1XS ,

where the vanishing of the local modules follows from proposition 2.3. Also
note that C ⊆ E1XS is a Λ(G)-torsion module, hence E0C = 0. We conclude
that the pseudo-null module E2E2Xf is contained in the pure module E1E1XS

(see [V1, propb 3.5 (v)(a)]) and thus zero. �

For the rest of this section we assume BASE and that k∞ contains the cyclo-
tomic Zp-extension kcyc of k. As before we put Γ = G(kcyc/k), H = G(k∞/k)
and recall that both groups are isomorphic to Zp.
We are very grateful to John Coates and Sujatha for pointing out to us that
an analogue of their proposition 2.9 in [CSS2] also holds in our situation.
In fact the following result is even stronger since their vanishing condition
“H2(H, Selp∞(E/k∞)) = 0” is always satisfied in this situation because now H
has p-cohomological dimension one.

Theorem 2.8. Assume rkΛ(Γ)Xf (kcyc) =
∑
Ss
p
[kν : Qp]. Then

rkΛ(G)Xf (k∞) =
∑

Ss
p

[kν : Qp].

In particular, if E has good ordinary reduction at all primes ν of k dividing p
and Xf (kcyc) is Λ(Γ)-torsion, then Xf (k∞) is Λ(G)-torsion.

The striking point of this result (in ordinary case) is that one does not have
to assume the vanishing of the µ-invariant of Xf (kcyc) as we did in our earlier
version of this theorem and as all results in this direction in the GL2-case did
until the work of Coates and Sujatha [CSS2].
Examples in which the assumption of the Theorem holds arise by the results
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of Kato, if k is abelian over Q and E is defined over Q. Alternatively, by the
(strong) Nakayama lemma, Xf (kcyc) is Λ(Γ)-torsion in the good ordinary case,
if Selp∞(E/k) is finite (and k is arbitrary).

Proof. First note that the assumption implies the validity of the weak Leopoldt
conjecture WLS(kcyc) over kcyc and thus, by remark 2.2, the weak Leopoldt
conjecture WLS(k∞) over k∞. Thus it is easily seen that the lemmas 2.3-2.5 as
well as remark 2.6 (loc.cit.) hold also in our situation. In fact their proofs are
even easier due to the smaller p-cohomological dimension of G and H. Thus by
literally the same proof as that of prop. 2.9 (loc.cit.) one derives SEQS , i.e.
the surjectivity of the defining sequence of Xf (k∞). Now the claim follows by
remark 2.5.
We give a second proof: First, rkΛ(G)Xf (k∞) ≥ r :=

∑
Ss
p
[kν : Qp] is

shown easily. Next, since the kernel and cokernel of the natural restriction
Selp∞(E/kcyc) → Selp∞(E/k∞)H is Λ(Γ)-torsion (see the proof of Theorem
3.1), rkΛ(Γ)(Xf (k∞)H) = r. By Lemma 7.3 below, we have rkΛ(G)Xf (k∞) ≤ r.
This shows the Theorem. �

One consequence of this result is the following asymptotic bound of the Mordell-
Weil rank. Let α be any non-zero element of k which is not a root of unity
and let kn be the field obtained by adjoining to k the pnth root of unity and
the pnth root of α. We are interested in the Z-ranks of the Mordell-Weil group
E(kn) when n varies.

Corollary 2.9. Assume that (i) E has good ordinary reduction at all primes ν
of k dividing p, and (ii) Xf (kcyc) is Λ(Γ)-torsion. Then there exists a constant
C > 0 such that the rank of E(kn) is at most C · pn for all n ≥ 0.

Proof. In the next section we will see that k∞ =
⋃
n kn is a Galois extension

of k with Galois group G isomorphic to the semidirect product of two copies
of Zp. Thus the theorem implies that Xf (k∞) is a Λ(G)-torsion module. We
denote by Gn the normal subgroup of G which consists precisely of the pnth
powers of elements of G. Then its index in G is p2n and, since G is uniform,
Gn is nothing else than the lower p-central series, see [DSMS, thm. 3.6]. Now
[Ha1, thm. 1.10] (see also [Ha3]) or [Ho1, thm. 2.22] prove the existence of
some constant C such that rkZp

Xf (k∞)Gn
≤ C · pn for all n ≥ 0. Since Gn

is contained in the normal subgroup G′
n := G(k∞/kn) of G this gives also a

bound for rkZE(kn) ≤ rkZp
Xf (kn) ≤ Xf (k∞)G′

n
, because the cokernel of the

natural map Xf (k∞)G′

n
→ Xf (kn) is finite by lemma 3.12. �

Combined with one of Kato’s deepest results one obtains the following striking
and general estimate which was suggested to us by John Coates: Assume now
that E is defined over the rational numbers Q and that α is any non-zero
element of the maximal abelian extension Qab of Q which is not a root of unity.
Taking as base field the abelian extension k = Q(µp, α) of Q, Kato’s work
on Euler systems tells us that Xf (kcyc) is a torsion Λ(G)-module. Thus the
corollary applies: there exists a constant C (depending on E and α but not on
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n) such that

rkZ E(Q(µpn ,
pn
√
α)) ≤ C · pn

for all n ≥ 0.

3. Completely faithful Selmer groups

Throughout this section, we assume BASE for k. We consider the following
k∞ in this section: k∞ is a Galois extension of k unramified outside a finite
set of primes of k containing Sp. Further we assume k∞ contains kcyc and
H := Gal(k∞/kcyc) is isomorphic to Zp.
In this section, we study the case when Xf (k∞) = Selp∞(E/k∞)∨ for an el-
liptic curve E/k is finitely generated over Λ(H). The remarkable fact is the
completely faithfulness over Λ(G) if G is non-abelian (Theorem 3.7).
One of the examples of k∞ is a “false Tate curve” extension. We collect some
facts on such k∞ in subsection 3.3.

3.1. Λ(H)-structure of Xf (k∞). Let E/k be an elliptic curve which has
good ordinary reduction at all primes above p. Denote by P0 = P0(k∞/kcyc)
the set of all primes of kcyc which are not lying above p and ramified in k∞/kcyc.
Note this is a finite set. Put

P1(k∞/kcyc, E) := {u ǫ P0| E/kcyc has split multiplicative reduction at u},
P2(k∞/kcyc, E) := {u ǫ P0| E has good reduction at u and E(kcyc,u)p∞ 6= 0}.

Let Γ = Gal(kcyc/k). We prove the following.

Theorem 3.1. Let p ≥ 5. Assume E has good ordinary reduction at p. Then,

(i) Xf (k∞) is finitely generated over Λ(H) if and only if Xf (kcyc) is
finitely generated over Zp, in other words, Xf (kcyc) is Λ(Γ)-torsion
and its µ-invariant vanishes.

(ii) When Xf (k∞) is finitely generated over Λ(H), then Xf (k∞) is Λ(H)-
torsionfree of rank λ + m1 + 2m2, where λ := rankZp

Xf (kcyc),
mi = ♯Pi (i = 1, 2). More precisely, there exists an injective Λ(H)-
homomorphism

Xf (k∞) →֒ Λ(H)λ+m1+2m2

with finite cokernel.

Remark 3.2. By [V3], (ii) implies that Xf (k∞) has no non-trivial pseudo-null
submodule. This gives another proof of Theorem 2.6 in special cases. We
remark that we did not assume E is ordinary at p nor that Xf is finitely
generated over Λ(H) in Theorem 2.6 while we do not need the Assumptions
DIMS a), b) and c’) in the above theorem.

We note that Λ(H) is isomorphic to Zp[[X]]. Let Hn := Hpn for n ≥ 0 and Fn
the intermediate field of k∞/kcyc corresponding to Hn. To prove the Theorem,
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we need the following usual fundamental diagram:

(3.2)

0−→ Selp∞(E/Fn) −→ H1(kS/Fn, Ep∞) −→
λFn

⊕
u ǫ Scyc

J ′
u(Fn)

yr′n
yg′n

y⊕
h′

n,u

0−→Selp∞(E/k∞)Hn−→H1(kS/k∞, Ep∞)Hn−→⊕u ǫ Scyc
J ′
u(k∞)Hn .

Here, S is a finite set of primes of k containing Sp ∪Sbad ∪Sram, where Sram is
the set of all primes which are ramified in k∞/k. We denote by Scyc the set of
primes of kcyc above S. For a prime u of kcyc, put

J ′
u(Fn) :=

⊕

un|u

H1(Fn,un
, E(Fn,un

))p∞

and put J ′
u(k∞) := lim−→Fn

J ′
u(Fn).

By Nakayama’s lemma, Xf (k∞) is finitely generated over Λ(H) if and only if
Xf (k∞)H is finitely generated over Zp. From the above diagram for n = 0 (note
that H0 = H and F0 = kcyc), we see that Ker(r′0) ⊂ Ker(g′0) and Coker(r′0) is a
subquotient of Ker(

⊕
h′0,u). Both are cofinitely generated over Zp, as we will

see in Lemma 3.3 and 3.4. Thus, we have Selp∞(E/k∞)H is cofinitely generated
over Zp if and only if so is Selp∞(E/kcyc). This implies Theorem 3.1 (i).
For Theorem 3.1 (ii), we first have Xf (Fn) = Selp∞(E/Fn)

∨ is finitely gen-
erated over Zp since so is Xf (kcyc) by (i) (cf. [HM] Theorem 3.1). Then the
map λFn

is surjective (cf. [HM] Prop. 2.3, note that Fn is the cyclotomic
Zp-extension of some field). Thus, from (3.2), we obtain the exact sequences
(3.3)

0→ Ker(r′n)→ Ker(g′n)→
⊕

u ǫ Scyc

Ker(h′u,n)→ Coker(r′n)→ Coker(g′n),

(3.4) 0→ Ker(r′n)→ Selp∞(E/Fn)→ Selp∞(E/k∞)Hn → Coker(r′n)→ 0.

By the inflation-restriction exact sequence we have

Ker(g′n) = H1(Hn, E(k∞)p∞) and Coker(g′n) →֒ H2(Hn, E(k∞)p∞).

We have H2(Hn, E(k∞)p∞) = 0 because cdp(Hn) = 1.

Lemma 3.3. ♯H1(Hn, E(k∞)p∞) is finite and bounded for all n. Hence,
♯Ker(g′n) and ♯Ker(r′n) are finite and bounded for all n.

Proof. Since H1(Hn, E(k∞)p∞) ∼= (E(k∞)p∞)Hn
, Lemma follows from the

facts that E(k∞)p∞ is cofinitely generated and (E(k∞)p∞)Hn = E(Fn)p∞ is
finite. The latter fact is a Theorem of Imai[I]. �

By Shapiro’s lemma, we have

Ker(h′n,u) =
⊕

un|u

H1(Hn,w, E(k∞,w))p∞ .

Here, we choose w a prime of k∞ above un and Hn,w denotes the decomposition
group of w in Hn. We will prove later the following.
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Lemma 3.4. (i) Let u be a prime of kcyc such that u ∤ p. Let un and w
be primes above u of Fn and k∞ respectively such that w|un|u. Then
H1(Hn,w, E(k∞,w))p∞ ∼= H1(Hn,w, E(k∞,w)p∞) and

H1(Hn,w, E(k∞,w)p∞) ∼=





Qp/Zp if u ǫ P1(k∞/kcyc, E),

(Qp/Zp)2 if u ǫ P2(k∞/kcyc, E),

0 otherwise

as an abelian group.
(ii) If u|p, then ♯H1(Hn,w, E(k∞,w))p∞ is finite and bounded for all n.

Note that the number of primes of Fn dividing p such that

H1(Hn,w, E(k∞,w))p∞ 6= 0

is bounded if n varies, becauseH1(Hn,w, E(k∞,w))p∞ = 0 if u splits completely.
By this fact and Lemma 3.4, we have ⊕uKer(h′n,u)

∼= (Qp/Zp)tn ⊕Dn where

tn =
∑

u ǫ P1

∑

un|u

1 +
∑

u ǫ P2

∑

un|u

2

and ♯Dn is finite and bounded for n. Since the kernel and cokernel of the map
⊕uKer(h′u,n)→ Coker(r′n) are finite, we have that

(3.5) Coker(r′n)
∼= (Qp/Zp)

tn ⊕D′
n

where ♯D′
n is finite and bounded. Next, we need the following which is a result

of Matsuno [M] on finite Λ(Γ)-submodules of Selmer groups.

Lemma 3.5 (Matsuno [M]). Let F be a totally imaginary algebraic number field
and Γ = Gal(Fcyc/F ). Let E be an elliptic curve over F which has good ordi-
nary reduction at all primes above p. If the dual of the Selmer group Xf (Fcyc)
is Λ(Γ)-torsion and its µ-invariant vanishes, then it is Zp-torsionfree.

Combining this with [HM] Theorem 3.1, we have the following.

Lemma 3.6. Under the assumptions of the Theorem, Selp∞(E/Fn) ∼=
(Qp/Zp)en where

en = pnλ+
∑

u ǫ P1

∑

un|u

(pn/dn(u)− 1) + 2
∑

u ǫ P2

∑

un|u

(pn/dn(u)− 1).

Here, we put dn(u) = min(pn, [H : Hw]) where w is a prime of k∞ above u and
Hw is the decomposition group of w in H.

Proof. By [HM] Theorem 3.1,

corankZp
Selp∞(E/Fn) = pnλ+

∑

u ǫ P1

∑

un|u

(e(un)− 1) + 2
∑

u ǫ P2

∑

un|u

(e(un)− 1)

where e(un) is the ramification index of un|u. For u ∤ p, the decomposition
group of un|u coincides with its inertia group. Thus,

e(un) = [Hw : (Hn ∩Hw)] = pn/dn(u).

The cofreeness of Selp∞(E/Fn) follows from Lemma 3.5. �
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Thus, from (3.4), we have

(3.6) Selp∞(E/k∞)Hn ∼= (Qp/Zp)
sn ⊕D′′

n

where
sn = corankZp

Selp∞(E/Fn) + corankZp
Coker(r′n),

and ♯D′′
n is finite and bounded for n, because ♯D′

n in (3.5) is bounded and
Selp∞(E/Fn) is cotorsion-free. By (3.5) and Lemma 3.6, we have

sn =pnλ+
∑

u ǫ P1

∑

un|u

(pn/dn(u)) + 2
∑

u ǫ P2

∑

un|u

(pn/dn(u)) = pn(λ+m1 + 2m2)

since we see that dn(u) = ♯{un|u}.
From the well known structure theory of modules over Λ(H)(∼= Zp[[X]]), we see
that Xf (k∞) is pseudo-isomorphic to Λ(H)λ+m1+2m2 by (3.6). Since Xf (Fn)
is Zp-torsionfree by Lemma 3.5, we have Xf (k∞) = lim←−Xf (Fn) is also Zp-
torsionfree. Therefore it can not have non-trivial finite Λ(H)-submodules. This
proves the Theorem.
Finally, we give a proof of Lemma 3.4. The first assertion of (i) is proved by
a standard argument (cf. [CH] §5.1 (59)). If u is unramified in k∞/k, then u
splits completely, so Hn,w = 0. Thus, H1(Hn,w, E(k∞,w)p∞) = 0. Note that
the type of reduction at any prime does not change in k∞/kcyc since p ≥ 5.
Assume u is not contained in P1∪P2. Then we have E(Fn,un

)p∞ = 0 (cf. [HM]
Prop. 5.1 (i),(iii); note that µp ⊆ Fn,un

). Thus H1(Hn,w, E(k∞,w)p∞) = 0.
Assume u ǫ P2. Then E(Fn,un

)p∞ ∼= (Qp/Zp)⊕2 (cf. [HM] Prop. 5.1 (i)), so
we have H1(Hn,w, E(k∞,w)p∞) = Hom(Hn,w, E(k∞,w)p∞) ∼= (Qp/Zp)2. Next,
assume u ǫ P1. Then, E(Fn,un

)p∞ ∼= Qp/Zp⊕(finite group) (cf. [HM] Prop. 5.1
(ii)). We have E(k∞)p∞ ∼= Ep∞ because k∞ is the maximal tame p-extension.
Thus we have

H1(Hn,w, E(k∞,w)p∞) ∼= (E(k∞,w)p∞)Hn,w
∼= Qp/Zp.

We prove Lemma 3.4 (ii). If u splits completely, H1(Hn,w, E(k∞,w)p∞) = 0.
If u is finitely decomposed, then Hn,w

∼= Zp. Since Fn is a deeply ramified
extension, we have by Coates-Greenberg([CG])

H1(Hn,w, E)p∞ ∼= H1(Hn,w, Ẽu(κ∞,w)p∞)

where Ẽu is the reduction at u of E and κ∞,w is the residue field of k∞,w. Thus
we have H1(Hn,w, E)p∞ is finite and its order is bounded for n by the same

argument of Lemma 3.3 because of the facts that Ẽu(κ∞,w)p∞ is cofinitely

generated and that Ẽu(κn,un
)p∞ is finite where κn,un

is the residue field of
Fn,un

.

3.2. Completely faithfulness of Xf (k∞). Henceforth we assume that G
is non-abelian. In [V3], some properties of Λ(G)-modules for this specific group
G ∼= Zp ⋊ Zp, in particular the global annihilator ideal AnnΛ(G)M of a Λ(G)-
torsion module M, were studied. Recall that a module is called faithful if its
annihilator ideal is identical zero. Furthermore, an object M of the quotient
category Λ-mod/C of the category of finitely generated Λ-modules by the Serre
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subcategory C of pseudo-null modules is faithful, by definition, if every lift M
(Q(M) ∼= M) of M is a faithful Λ-module. If this condition holds for every
non-zero subquotient, thenM is called completely faithful.
The following result is a direct consequence of theorem 6.3 (loc.cit.) and theo-
rem 3.1:

Theorem 3.7. Suppose that G is non-abelian. If Xf is non-zero and finitely
generated as a Λ(H)-module, then Xf is a faithful, but torsion Λ(G)-module
which is not pseudo-null. Even more, its image in the quotient category is
completely faithful and thus cyclic.

Recall that here the cyclicity in the quotient category means that there exists a
cyclic submodule C of Xf with pseudo-null cokernel, see [CSS1, lem 2.7]. The
following implication is arithmetically by no means obvious:

Corollary 3.8. Under the assumptions of the theorem the Pontryagin dual
X(E/k∞)(p)∨ of the (p-primary part of the) Tate-Shafarevich group contains
a cyclic submodule with pseudo-null cokernel.

Proof. Subobjects of completely faithful objects are again completely faithful.
�

3.3. The “false Tate curve” case. The typical examples of k∞ in previous
subsections which we keep in our mind are the extensions of the type

k∞ = kcyc(α
p−∞

)

where kcyc denotes the cyclotomic Zp-extension of k and α is in k∗ which is not
any root of unity. (We call this the “false Tate curve case”.) Then by Kummer
theory, the Galois group G = G(k∞/k) is isomorphic to the semi-direct product
G = H ⋊Γ of H = G(k∞/kcyc) ∼= Zp and Γ = G(kcyc/k) ∼= Zp the latter group
acting on the prior by the cyclotomic character, see [V3].
In this subsection, we collect some facts on k∞.
First we consider DIMS . Before we determine the dimensions of the decompo-
sition groups we would like to remark that in the actual situation

DIMS b)⇒ DIMS c) ⇒ DIMS c’).

Indeed, if dimTν(k∞/kcyc) were finite, hence zero, k∞,ν would be the composi-
tum of the Zp -extensions kcyc,ν and knrν which denotes the maximal unramified
extension of kν inside k∞,ν . With other words, Gν would be an 2-dimensional
abelian subgroup of G, a contradiction.
For α ǫ k∗ \µ we write Sα for the set of finite places of k which divide (α) and

set as before k∞ = kcyc(α
p−∞

).

Lemma 3.9. (i) If S = Sα∪Sp∪S∞, then k∞ is outside S unramified, i.e.
contained in kS . In other words Sram(k∞/k) is contained in Sα ∪ Sp.

(ii) Let ν ǫ Sp. Then dimGν = 2. If, in addition, α ǫ Q∗, k = Q(µp) and α
is not contained in (Qp

∗)p, then the extension k∞|Q is totally ramified
at p.
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(iii) Assume that α is not a pth power in kcyc and let ν ǫ Sα \ Sp. Then,
for all places ω∞ of k∞ lying above ν the local extension k∞,ω∞

|kcyc,ω,
where ω denotes the place of kcyc induced by ω∞, is a totally ram-
ified Zp -extension, i.e. ω is almost totally ramified in k∞|kcyc. The
number of primes which are over kcyc conjugate to ω∞ equals the max-
imal power of p which divides ν(α), where ν is normalized such that
ν(kν) = Z. In particular, dimGν = dimG = 2 and the places of Sα\Sp
decompose only into finitely many ones at k∞.

Remark 3.10. Assume that for some ν ǫ Sα \ Sp it holds ν(α) < p. Then α is
not a pth power in kcyc. Indeed, by [B, lem. 6] k( p

√
α)|k ramifies totally at ν,

thus cannot be contained in kcyc.

Proof. [B, lem. 5] tells us that k∞ is outside S unramified. In order to prove

the first statement of (ii) it suffices to show that if k(αp
−n

) is contained in
kcyc for all n ≥ 0, then α is a root of unity. Using the long exact cohomology
sequence for the diagram

1 // µpn // k∗cyc
pn

// (k∗cyc)
pn // 1

1 // µpn // µp∞
pn

//
?�

OO

µp∞ //
?�

OO

1

and Hilbert’s theorem 90 one easily sees that the canonical map µ(k)(p) ։

(k∗cyc)
pn ∩ k∗/(k∗)pn is surjective. Now, if α is contained in (k∗cyc)

pn ∩ k∗ there

exist ζn ǫ µ(k)(p) = µpn0 and bn ǫ (k∗)p
n

such that α = ζn · bn and hence

αp
n0

ǫ (k∗)p
n

. Since this holds for all n ≥ 0, the element αp
n0

must be in⋂
n(k

∗)p
n

= µq, the roots of unity of order prime to p in k, thus α is a root of
unity as we had to show.

Now we consider the local extensions K = Qp(µpn) and L = K(αp
−n

) of

Qp. Since the extension Qp(αp
−1

)/Qp is not Galois, no pth root of α can be
contained in the cyclic extension K/Qp. Hence, it follows from Kummer theory

that the degree of L over K is [L : K] = pn, i.e. [L : Qp] = [Q(µpn , α
p−n

) :

Q](= (p − 1)p2n−1) and in particular p does not split in k(µpn , α
p−n

). Since
the maximal abelian quotient Gab of G = G(L/Qp) ∼= G(L/K) ⋊ G(K/Qp) is
isomorphic to

Gab ∼= G(L/K)G(K/Qp) ⊕G(K/Qp) = G(K/Qp)

(note that G(L/K) ∼= Z/pn(1) has no non-zero G(K/Qp)-invariant quotient
because G(K/Qp) acts via the cyclotomic character on G(L/K)), the only
cyclic extensions of Qp in L are contained in K and cannot be unramified.

Hence p is totally ramified in k(µpn , α
p−n

) for all n and the second statement
of (ii) follows.
Finally, we prove (iii): It follows from [B, lem. 6] that for sufficiently large n the

extension kn(α
p−n

)|kn, where kn := k(µpn), is non-trivial and ramified at ωn =
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ω|kn and thus not contained in kcyc. Since kcyc,ω is the maximal unramified
p-extension of kν , the local extension k∞,ω∞

|kcyc,ω must be a totally ramified
Zp -extension. Let Hν denote the decomposition group of H = G(k∞/kcyc) at
ω∞ and set L = (k∞)Hν . For sufficiently large n the extensions kcyc|kn and

kn(α
p−n

)|kn are linearly disjoint and thus

[L : kcyc] =
[kn(α

p−n

) : kn]

[kn,ωn
(αp−n) : kn,ωn

]
=

pn

[kn,ωn
(αp−n) : kn,ωn

]
,

by assumption and Kummer theory. On the other hand, since

kn,ωn
(αp

−n

)|kn,ωn
has no unramified intermediate extension, the order of

α in k∗n,ωn
/(k∗n,ωn

)p
n

, which is by Kummer theory the same as the degree

[kn,ωn
(αp

−n

) : kn,ωn
], is equal to the order of ωn(α) in Z/pn (Note that

k∗n,ν/(k
∗
n,ν)

pn ∼= Z/pn × µpn , where we assume without lost of generality that

µpn+1 * kn,ν , and that the subgroups of µpn correspond to the unramified
extensions of kn,ν of exponent dividing pn). Since kcyc|k is unramified at ν,
ν(α) = ωn(α) and thus the claim follows. �

Put

ME =
∏

l, ν|l for some ν ǫ Sbad

l

and note that ME is prime to p under our general assumption. The lemma
above now implies

Lemma 3.11. For all α ǫ Z \ {0} such that ME divides α, k∞ = kcyc(α
p−∞

) is
contained in kS and the assumption DIMS holds with respect to S = Sα ∪ Sp ∪
S∞ ⊇ Σ.

Proof. Condition DIMS b) follows from (ii) of lemma 3.9. By definition Sbad
is contained in Sα. Since α is a rational number it follows easily from Kummer
theory that for sufficiently big n none pnth root of α is a pth power in kcyc.
Applying lemma 3.9 (iii) to such a root shows DIMS a). �

At the end of this section, we consider the torsion group of an elliptic curve.
Let E/k be an elliptic curve. The following result is quoted as the Assumption
FIN for E and k∞ in section 4. Recall that by lemma 3.9 the conditions DIMS

b), c), c’) are always satisfied in the false Tate curve case.

Lemma 3.12. Let v be a prime of k above p. Assume E has good ordinary

reduction at v. Then, for k∞ = kcyc(α
p−∞

), we have E(k∞,w)p∞ is finite for
w|v. In particular, E(k∞)p∞ is finite.

Proof. Let Êv be the formal group law of E and Ẽv be the reduction at v.
Then we have

0→ Êv(M(k∞,w))p∞ → E(k∞,w)p∞ → Ẽv(κ∞,w)p∞ → 0

where M(k∞,w) is the maximal ideal of k∞,w and κ∞,w is the residue field

of k∞,w. Since κ∞,w is a finite field, Ẽv(κ∞,w)p∞ is a finite group. So we
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show Êv(M(k∞,w))p∞ is finite. Since E has good ordinary reduction at v,

Êv(M(kv))p∞ is isomorphic to Qp/Zp where M(kv) is the maximal ideal of kv.

Thus, the field kv(Êv,p∞) is abelian extension of kv. By a theorem of Imai ([I]),

kcyc,u ∩ kv(Êv,p∞) is a finite extension of kv where u|w. Since the maximal
abelian extension of kv in k∞,w is kcyc,u, we have

k∞,w ∩ kv(Êv,p∞) = kcyc,u ∩ kv(Êv,p∞)

This means Êv(M(k∞,w))p∞ is finite. �

4. Euler Characteristics

In this section, we do not assume the Assumption BASE, i.e. k does not nec-
essarily contain the p-th roots of unity. Put

K = k(µp) and Kcyc = k(µp)cyc = k(µp∞).

Let k∞ be a Galois extension of k unramified outside a finite set of primes of
k such that k∞ ⊃ Kcyc and H := Gal(k∞/Kcyc) is isomorphic to Zp. Assume
further k∞ satisfies DIM c).
For an elliptic curve E/k and k∞, with good ordinary reduction at p, we
consider the following.
Assumption FIN: E(k∞)p∞ is a finite group.
When k∞/k is a “false Tate curve” extension (see subsection 3.3), DIM c) and
FIN are always satisfied (Lemma 3.11 and 3.12).
We denote G = Gal(k∞/k) and Γ = G/H. Note that G may not be a pro-p
group.

4.1. G-Euler Characteristics. For an discrete G-module M , we define its
Euler characteristic by

χ(G,M) :=

2∏

i=0

(♯Hi(G,M))(−1)i

if this is defined. In this section, we calculate the Euler characteristics of Selmer
groups. The formula as well as its proof is similar to that obtained in [CH]
Theorem 1.1 for GL2-case.
Let E be an elliptic curve defined over k which has good reduction at all primes
above p.
We define the p-Birch-Swinnerton-Dyer constant as

ρp(E/k) :=
♯X(E/k)p∞

(♯E(k)p∞)2
∏
v |cv|p

×
∏

v|p

(♯Ẽv(κv)p∞)2.

Here, X(E/k) is the Tate-Shafarevich group of E over k, κv is the residue

field of k at v and Ẽv is the reduction of E over κv. We denote by cv the local
Tamagawa factor at v, [E(kv) : E0(kv)], where E0(kv) is the subgroup of E(kv)
consisting from all of the points which maps to smooth points by reduction
modulo v. | ∗ |p denotes the p-adic valuation normalized such that |p|p = 1

p . For

any prime v of k, let Lv(E, s) be the local L-factor of E at v. Let P0(k∞/k) be
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the set of all primes of k which are not lying above p and ramified in k∞/Kcyc.
We put

P1(k∞/k,E) := {v ǫ P0(k∞/k)| E/K has

split multiplicative reduction at any w|v of K = k(µp)},

P2(k∞/k,E) := {v ǫ P0(k∞/k)| E/K has good reduction

at any w|v of K and E(Kw)p∞ 6= 0.}

and M = M(k∞/k,E) := P1(k∞/k,E)∪P2(k∞/k,E). We prove the following:

Theorem 4.1. Under DIM c) and FIN, assume (i) p ≥ 5, (ii) E has good
ordinary reduction at all primes above p, (iii) Selp∞(E/k) is finite and (iv)
Xf (k∞) := Selp∞(E/k∞)∨ is Λ(G0)-torsion where G0 = Gal(k∞/K) and K =
k(µp). Then χ(G, Selp∞(E/k∞)) is defined and equals

ρp(E/k)×
∏

v ǫ M

|Lv(E, 1)|p.

Note that condition (iv) is already a consequence of (i)-(iii), whenever G itself
happens to be a pro-p-group since the strong Nakayama’s lemma holds for G.
In fact, we prove more. Let us consider the usual fundamental diagram.

(4.7)

0−→ Selp∞(E/k) −→ H1(kS/k,Ep∞) −→
λk

⊕
v ǫ S Jv(k)

yr
yg

y⊕hv

0−→Selp∞(E/k∞)G−→H1(kS/k∞, Ep∞)G−→
ψ∞

⊕
v ǫ S Jv(k∞)G.

Here, S is a finite set of primes of k containing Sp ∪ Sbad ∪ Sram where Sram

is the set of primes which is ramified in k∞/k, kS is the maximal unramified
extension of k outside S. For any finite extension L of k, we put

Jv(L) :=
⊕

w|v

H1(Lw, E(Lw))p∞

and for infinite extension M , put Jv(M) := lim−→L
Jv(L) where L runs over all

finite extensions of k contained in M . Note that IndGw

G Xw(k∞) defined in §2
is the Pontryagin dual of Jv(k∞).
We have the following and we get Theorem 4.1 as an immediate corollary of
this.

Theorem 4.2. Assume the same hypothesis of Theorem 4.1. Then we have

(i) ♯H0(G, Selp∞(E/k∞)) = ρp(E/k) ×
∏
v ǫ M

|Lv(E, 1)|p ×
♯(Coker(ψ∞)),

(ii) ♯H1(G, Selp∞(E/k∞)) = ♯(Coker(ψ∞)),
(iii) Hi(G, Selp∞(E/k∞)) = 0 for i ≥ 2.

Documenta Mathematica · Extra Volume Kato (2003) 443–478



462 Y. Hachimori and O. Venjakob

We split the proof of Theorem 4.2 into some subsections.
Throughout this section, we assume the conditions of Theorem 4.1 except con-
dition (iv) if not explicitly stated.

4.2. Global cohomology. First, we consider about the map g. We prove

Lemma 4.3.
♯Ker(g)

♯Coker(g)
= ♯E(k)p∞

To prove this, we need the following lemma.

Lemma 4.4. If a G-module M is finite, then χ(G,M) is defined and equals to
1.

Proof. This is an immediate consequence of the Hochschild-Serre spectral se-
quence for

1→ H → G→ Γ→ 1

and the fact that the same statement of the Lemma holds if we replace G with
Γ. �

Proof of Lemma 4.3.
By the Hochschild-Serre spectral sequence, we have

0→ H1(G,E(k∞)p∞)→ H1(kS/k,Ep∞)→ H1(kS/k∞, Ep∞)G

→ H2(G,E(k∞)p∞)→ H2(kS/k,Ep∞).

Since Selp∞(E/k) is finite, H2(kS/k,Ep∞) = 0 (see [CH] Lemma 4.3 or
[CM]). Thus, we have that Ker(g) = H1(G,E(k∞)p∞) and Coker(g) =
H2(G,E(k∞)p∞), which are finite. This prove the Lemma by Lemma 4.4 be-
cause of FIN. �

Next, we consider the global cohomology of k∞. We first have the following.
(See section 7.1 for a proof.)

Theorem 4.5. Assume Xf (k∞) is Λ(G0)-torsion. Then we have

(i) H2(kS/k∞, Ep∞) = 0 and

(ii) The map H1(kS/k∞, Ep∞)
λk∞→

⊕
v ǫ S Jv(k∞) is surjective.

As a Corollary, we have

Corollary 4.6. If Xf (k∞) is Λ(G0)-torsion,

Hi(G,H1(kS/k∞, Ep∞)) = 0

for all i ≥ 1 (and still for all i ≥ 2 if Selp∞(E/k) is not assumed to be finite.)

Proof. By the above Theorem, Hi(kS/k∞, Ep∞) = 0 for i ≥ 2. So, we have the
following by the Hochschild-Serre spectral sequence that

Hi+1(kS/k,Ep∞)→ Hi(G,H1(kS/k∞, Ep∞))→ Hi+2(G,Ep∞)

are exact for all i ≥ 1. If Selp∞(E/k) is finite, Hi(kS/k,Ep∞) = 0 for i ≥ 2
(see [CH] Lemma 4.3 or [CM]). Since the p-cohomological dimension of G is 2,
Hi(G,Ep∞) = 0 for i ≥ 3. These proves the Corollary. �
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4.3. Local cohomology. Next, we consider the cohomology of Jv(k∞) and
the kernel and cokernel of hv.

Proposition 4.7. For all i ≥ 1, we have Hi(G, Jv(k∞)) = 0.

Proof. By Shapiro’s lemma,

Hi(G, Jv(k∞)) ∼= Hi(Gw, H
1(k∞,w, E)p∞)

where w|v and Gw is the decomposition group Gal(k∞,w/kv) (see [CH] Lemma
2.8). Thus we show the latter is zero.
(i) The case when v does not divide p.
In this case, H1(k∞,w, E)p∞ ∼= H1(k∞,w, Ep∞) (cf. [CH] §5.1 (59)). We also
have Hi(k∞,w, Ep∞) = 0 for i ≥ 2 because the p-cohomological dimension of

Gal(kv/k∞,w) is less than or equals 1. So we have by the Hochschild-Serre
spectral sequence that

Hi+1(kv, Ep∞)→ Hi(G,H1(k∞,w, Ep∞))→ Hi+2(Gw, E(k∞)p∞)

are exact for all i ≥ 1. It is also known Hi(kv, Ep∞) = 0 for i ≥ 2. Further,
Hi(Gw, Ep∞) = 0 for i ≥ 3 since the p-cohomological dimension of Gw is less
than or equals 2. Thus we have the Lemma for v ∤ p.
(ii) The case when v divides p.
In this case, the proof is exactly same as that of [CH] Corollary 5.23 because
k∞,w is a deeply ramified extension. We have

H1(k∞,w, E)p∞ ∼= H1(k∞,w, Ẽv,p∞)

by [CG]. Then we get Hi(Gw, H
1(k∞,w, Ẽv,p∞)) = 0 by the same ar-

gument using the Hochschild-Serre spectral sequence as (i) above because
the p-cohomological dimension of Gal(kv/k∞,w) is less than or equals 1 and

Hi(kv, Ẽv,p∞) = 0 for i ≥ 2. �

Lemma 4.8. Let v be a prime which does not divide p. If v is in P1(k∞/k,E)∪
P2(k∞/k,E), then

♯Ker(hv)

♯Coker(hv)
=

∣∣∣∣
cv

Lv(E, 1)

∣∣∣∣
−1

p

,

while otherwise, ♯Ker(hv)/♯Coker(hv) = |cv|−1.

Proof. By Shapiro’s lemma, the kernel and cokernel of hv are isomorphic to
those of the restriction map

H1(kv, E)p∞
resw→ H1(k∞,w, E)p∞ .

Since v ∤ p, E can be replaced by Ep∞ . So, Ker(hv) ∼= H1(Gw, E(k∞,w)p∞)
and Coker(hv) ∼= H2(Gw, E(k∞,w)p∞).
First we consider the case v is not ramified in k∞/k. Then, we have k∞,w =
Kcyc,w. It is well known that ♯H1(Gal(Kcyc,w/kv), E(Kcyc,w)p∞) = |cv|−1

p and

H2(Gal(Kcyc,w/kv), E(Kcyc,w)p∞) = 0.
Next consider the case where E(Kw)p∞ = 0 or the case where v has bad
reduction which is not split multiplicative. In this case, E(Kcyc,w)p∞ = 0 (cf.
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[HM] Prop. 5.1), thus we have E(k∞,w)p∞ = 0. Thus H1(Gw, E(k∞,w)p∞) and
H2(Gw, E(k∞,w)p∞) are zero. Since we assume p ≥ 5, |cv|p = 1 in this case.
Finally, consider the case v ǫ P1(k∞/k,E) ∪ P2(k∞/k,E). Then k∞,w/Kw

should be the maximal tame p-extension and therefore k∞,w contains kv(Ep∞).
So we have H1(k∞,w, Ep∞) = 0 because there is no p-extension of k∞,w.
Thus, H1(Gw, E(k∞,w)) = H1(kv, Ep∞) and H2(Gw, E(k∞,w)) = 0. There-
fore, Lemma follows from the fact that ♯H1(kv, Ep∞) = |cv/Lv(E, 1)|−1

p (cf.
[CH] Lemma 5.6 or [CM]). �

Lemma 4.9. Let v be a prime above p. Then

♯Ker(hv)

♯Coker(hv)
= (♯Ẽv(κv)p∞)2.

Proof. By Shapiro’s lemma,

Ker(hv) ∼= H1(Gw, E(k∞,w))p∞ and Coker(hv) ∼= H2(Gw, E(k∞,w))p∞ .

Since k∞,w is a deeply ramified extension, we have that

Hi(Gw, E(k∞,w))p∞ ∼= Hi(Gw, Ẽv(κ∞,w)p∞)

for i ≥ 2 and

0→ H1(kv, Êv(M(kv)))p∞ → H1(Gw, E(k∞,w))p∞

→ H1(Gw, Ẽv(κ∞,w)p∞)→ 0

is exact by the exactly same way as [C] Lemma 3.14. Here Êv is the formal
group law for E, M(kv) is the maximal ideal of the integer ring of kv and κ∞,w

is the residue field of k∞,w. It is known that

♯H1(kv, Êv(M(kv))) = ♯Ẽv(κv)

(cf. [C] Lemma 3.13). Since Ẽv(κ∞,w)p∞ is finite by DIM c), we have

χ(Gw, Ẽv(κ∞,w)p∞) = 1 by the same way as Lemma 4.4. Thus we have

♯H1(Gw, Ẽv(κ∞,w)p∞)/♯H2(Gw, Ẽv(κ∞,w)p∞) = ♯Ẽv(κv)p∞ .

Combining them, we have the Lemma. �

4.4. Proof of Theorem 4.2. Now we are ready to prove Theorem 4.2. To
this aim let us assume conditions (i)-(iv). First, by Theorem 4.5,

0→ Selp∞(E/k∞)→ H1(kS/k∞, Ep∞)
λk∞→

⊕

v ǫ S

Jv(k∞)→ 0

is exact. Taking G-cohomology and by Lemma 4.6 and Proposition 4.7, we
have

Hi(G, Selp∞(E/k∞)) = 0
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for i ≥ 2. At the same time, we have that

0→ Selp∞(E/k∞)G → H1(kS/k∞, Ep∞)G
ψ∞→

⊕

v ǫ S

Jv(k∞)G

→ H1(G, Selp∞(E/k∞))→ 0

is exact, which means Cokerψ∞
∼= H1(G, Selp∞(E/k∞)).

Next, we calculate Selp∞(E/k∞)G. Consider the diagrams induced from the
fundamental diagram (4.7),

0−→ Selp∞(E/k) −→ H1(kS/k,Ep∞) −→
λk

Imλk −→0
yr

yg
y⊕hv

0−→Selp∞(E/k∞)G−→H1(kS/k∞, Ep∞)G−→
ψ∞

Imψ∞−→0,

0−→ Imλk −→
⊕

v ǫ S Jv(k) −→Cokerλk −→0
y

y⊕hv

y

0−→Imψ∞−→
⊕

v ǫ S Jv(k∞)G−→Cokerψ∞−→0.

Since Selp∞(E/k) is finite, ♯Cokerλk = ♯E(k)p∞ (cf. [CH] Lemma 2.7 or [CM]).
The kernel and cokernel of ⊕hv are finite by Lemma 4.8 and 4.9. Therefore
Cokerψ∞ is finite by the latter diagram. By applying the Snake Lemma for
the two diagrams, we have

♯Selp∞(E/k∞)G = ♯Selp∞(E/k)× ♯Cokerψ∞

♯Cokerλk
×
∏

v ǫ S

♯Kerhv
♯Cokerhv

× ♯Cokerg

♯Kerg
.

Thus we have Theorem by combining Lemma 4.3, Lemma 4.8 and Lemma 4.9.

4.5. Truncated Euler Characteristics. The usual Euler characteristic
at the beginning of this section is not defined for Selp∞(E/k∞) if Selp∞(E/k)
is infinite, e.g. if E(k) has a point of infinite order. To circumvent this prob-
lem (and since the higher cohomology groups Hi(G, Selp∞(E/k∞)), i ≥ 2, are
conjecturally trivial), the truncated G-Euler characteristics was introduced by
Coates-Schneider-Sujatha in the GL2-case extending ideas of Schneider and
Perrin-Riou in the cyclotomic situation. Similarly to Theorem 3.1 of [CSS2],
we can calculate these modified Euler characteristics in our case.
For an G-module M , let

φM : H0(G,M)→ H1(G,M)

be the composition of

H0(G,M) ∼= H0(Γ,MH)
ψM→ H1(Γ,MH)

res→ H1(G,M)

where ψM is the map induced from the natural map

H0(Γ,MH) ∼= (MH)Γ → (MH)Γ ∼= H1(Γ,MH).
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We define the truncated G-Euler characteristic of M as

χt(G,M) := q(φM )

where q(φM ) := ♯Ker(φM )/♯Cok(φM ) and say that this is finite if both Ker(φM )
and Cok(φM ) are finite. Setting formally H = 1, e.g. G = Γ, in the above
we obtain the definition of the modified Γ-Euler characteristic χt(Γ, N) of a
discrete Γ-module N. Then we have

Theorem 4.10. Assume that (i) p ≥ 5, (ii) E has good ordinary reduction at all
primes above p and (iii) Xf (Kcyc) is Λ(Γ0)-torsion where Γ0 = Gal(Kcyc/K).
Then χt(G, Selp∞(E/k∞)) is finite if and only if χt(Γ, Selp∞(E/Kcyc)) is finite.
Furthermore, if χt(Γ, Selp∞(E/Kcyc)) is finite, we have

χt(G, Selp∞(E/k∞)) = χt(Γ, Selp∞(E/Kcyc))×
∏

M

|Lv(E, 1)|p

where M is defined in Theorem 4.1.

Remarks 4.11. As mentioned above we do not have to assume the finiteness
of Selp∞(E/k) here. A formula for χt(Γ, Selp∞(E/Kcyc)) was obtained by
Schneider [S] and Perrin-Riou [P2] involving p-adic heights and the constant
ρp(E/k). Thus, if we assume k contains µp (k = K), then we have another
proof of Theorem 4.1. In fact, in this case, if we assume Selp∞(E/k) is finite
then the assumption (iii) of Theorem 4.10 is true. Furthermore, we can prove
Hi(G, Selp∞(E/k∞)) is finite for i = 0, 1 and H2(G, Selp∞(E/k∞)) = 0. Thus
we obtain the Theorem 4.1 as a corollary of Theorem 4.10 by using the formula
for χ(Γ, Selp∞(E/Kcyc)) = χt(Γ, Selp∞(E/Kcyc)).

Proof. The proof goes exactly similar to Theorem 3.1 of [CSS2]. Thus we give
only a sketch. First, we see that

H1(Γ, Selp∞(E/k∞)H)
∼→ H1(G, Selp∞(E/k∞))

since H1(H, Selp∞(E/k∞)) = 0 by the assumption (iii) which is proved sim-
ilarly as Lemma 2.5 of [CSS2]. Thus we have χt(G, Selp∞(E/k∞)) = q(ψ)
where

ψ : H0(Γ, Selp∞(E/k∞)H)→ H1(Γ, Selp∞(E/k∞)H).

Next, we define

Sel′p∞(E/Kcyc) := Ker(H1(kS/Kcyc, Ep∞)→
⊕

S\M

Jv(Kcyc)).

Then we have

0→ Selp∞(E/Kcyc)→ Sel′p∞(E/Kcyc)→
⊕

M

Jv(Kcyc)→ 0

is exact by the assumption (iii). Thus,

χt(Γ, Sel
′
p∞(E/Kcyc)) = χt(Γ, Selp∞(E/Kcyc))×

∏

M

χt(Γ, Jv(Kcyc))
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and χt(Γ, Jv(Kcyc)) = |Lv(E, 1)|p (cf. Lemma 3.4 of [CSS2]). Further, we can
see the restriction map

res : Sel′p∞(E/Kcyc)→ Selp∞(E/k∞)H

is defined and the kernel and cokernel of this map are finite (cf. Lemma 3.6 of
[CSS2], see also Lemma 3.4 in section 3.)
Then, by the commutative diagram induced from the restriction

H0(Γ, Selp∞(E/Kcyc)) −−−−→ H0(Γ, Selp∞(E/k∞)H)

ψ′

y
yψ

H1(Γ, Selp∞(E/Kcyc)) −−−−→ H1(Γ, Selp∞(E/k∞)H)

and Lemma 3.5 of [CSS2], we have q(ψ) = q(ψ′)(= χt(Γ, Sel
′
p∞(E/Kcyc))).

Putting all together, we have the Theorem. �

4.6. A condition for triviality. Finally, we consider a question when the
Selmer group Selp∞(E/k∞) is trivial. We assume here BASE,

k = K(= k(µp)), G = G0.

The following is an immediate corollary of Theorem 3.1.

Proposition 4.12. We have

Selp∞(E/k∞) = 0 if and only if χ(G, Selp∞(E/k∞)) = 1.

Proof. Note that if Selp∞(E/k) is not finite then χ(G, Selp∞(E/k∞)) is
not defined, since Selp∞(E/k∞)G is not finite. Thus, we can see that
χ(G, Selp∞(E/k∞)) = 1 if and only if both

(i) Selp∞(E/k) is finite and ρp(E/k) = 1.
(ii) P1(k∞/k,E) ∪ P2(k∞/k,E) = ∅.

holds, since ρp(E/k) ≥ 1 and |Lv(E, 1)|p > 1 if v ǫ P1 ∪ P2. As is well known,
(i) is equivalent to Selp∞(E/kcyc) = 0. Assume Selp∞(E/kcyc) = 0 and (ii).
Then by the Theorem 3.1, Xf (k∞) has rank 0 and is Λ(H)-torsionfree. Thus
Xf (k∞) = 0. Assume Xf (k∞) = 0. Then Xf (k∞)H = 0. By (3.4), we have
Selp∞(E/kcyc) = 0 and (ii). �

Example 4.13. Let E = X1(11) defined by the equation y2 + y = x3 − x. Let
p = 5, k = Q(µ5) and k∞ = Q(µ5∞ , α

5−∞

) with α ǫ Q×. This satisfies DIM c)
and FIN (subsection 3.3). Since E(Q)5 ∼= Z/5, the condition (ii) in the proof of
the Proposition 4.12 holds only when α is some power of ±5. When α = (±5)n,
(i) and (ii) in the proof Proposition 4.12 hold. (For example, it is known that
Selp∞(E/kcyc) = 0 by [CS]). Hence we have Selp∞(E/k∞) = 0.
We see further structures of Xf (k∞) for α = 11 in §6.
Another example is p = 7 and the curve E defined by y2+xy = x3−141x+657
whose conductor is 294. This has good ordinary reduction at p = 7 over k =

Q(µ7). For k∞ = Q(µ7∞ , α
7−∞

) with α ǫ Q×, we see that Selp∞(E/k∞) = 0 if
and only if α is a power of ±7 thanks to a result of Fisher ([F1], see also [CS]).
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5. µ-invariants

In the GL2-extension case, Coates and Sujatha (unpublished) and Howson
[Ho2, §3] considered the behavior of the µ-invariant for Selmer groups of el-
liptic curves, hereby generalizing the formulas in the Zp -case of Perrin-Riou
(cyclotomic case) and Schneider (general case, also for abelian varieties). Un-
der suitable assumptions, see below, analogous statements can be proven in
our situation by almost literally the same proof as for [Ho2, thm 3.1, cor. 3.2].
To avoid redundancies in the literature we shall therefore just state the results
with some comments and leave the detailed proof to the interested reader.
Assume that k contains µp and that k∞ contains kcyc. Since the Galois group
G = G(k∞/k) ∼= Zp ⋊ Zp is without p-torsion, the Iwasawa algebras Λ(G)
and Ω(G) := Fp[[G]] are both integral. Recall that the µ-invariant of a finitely
generated Λ(G)-module M can be defined as

µ(M) :=
∑

i≥0

rkΩ(G)pi+1M/piM

(cf. [V1]) but can be calculated via the relation

pµ(M) = χ(G,M(p)),

where M(p) denotes the Zp -torsion submodule of M (see [Ho2, cor 8]).
Assume ϕ : E1 → E2 is an isogeny of the elliptic curves E1 and E2 above k and
denote by A the p-part of the group scheme kerϕ. Throughout this subsection
we assume that Assumption SEQS holds for E1 or E2 (and hence for both) and
that Assumption WLS holds for E1 (and hence for E2).
The above isogeny induces a Λ(G)-homomorphism

ϕ∗ : Xf,2 → Xf,1

of the corresponding Pontryagin duals Xf,i of the Selmer groups of Ei, i = 1, 2.

Theorem 5.1. Let p ≥ 5. Then, under the above assumptions, the following
holds

µ(ker(ϕ∗))−µ(coker(ϕ∗))=
∑

v|∞

logp#(A(kv))−|k : Q| logp#A−
∑

v|p

logp |#Ãv|v,

where v denotes a place of k, | − |v its absolute value (normalized such that

|p|v = p−[kv:Qp]) and Ãv denotes the image of A under the reduction map of
E1 at v.

The theorem holds for more general pro-p Lie extensions without p-torsion as
long as in addition to Assumption SEQS for E1 or E2 it holds that

H2(kS/k∞, E1,p∞) is finite

(The corresponding local condition, i.e. the finiteness of H2(k∞,w, Ep∞) for all

w|v, v ǫ Sp ∪Sbad ∪Sram where E denotes Ẽv if v|p and E otherwise, is always
satisfied, see [CSS2, §2 (12),(13)]).
For the proof note also that the image of E2,p∞(k∞) and E2,p∞ in
H1(kS/k∞, A) and H1(k∞,w, A) are always finite, because the cohomology
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groups are annihilated by some power of p. Thus their Euler characteristic is 1.
Furthermore, it is easy to see that the Euler characteristics χ(G,Hi(kS/k∞, A))
are well-defined for all i ≥ 0.
By the additivity of the µ-invariant on short exact sequences of torsion modules
it follows immediately (cf. [Ho2, cor 3.2])

Corollary 5.2. Suppose, in addition to the assumptions of the theorem, that
Xf,i is a Λ(G)-torsion module for i = 1 or i = 0 (and hence for both). Then the
difference between the µ-invariants of Xf,2 and Xf,1 is given by the following
formula

µ(Xf,2)− µ(Xf,1) =
∑

v|∞

logp#(A(kv))− |k : Q| logp#A−
∑

v|p

logp |#Ãv|v,

where the notation is as in the theorem.

We conclude this section studying the relationship between the µ-invariants of
the duals of the Selmer group over k∞ on the one hand and over kcyc on the
other hand. In the GL2-case this was investigated by Coates-Sujatha [CSS2,
§2] and we will follow closely their arguments. We assume now that p ≥ 5
and we keep the assumption BASE and that kcyc is contained in k∞. As before
we set H := G(k∞/kcyc) and Γ := G(kcyc/k). In order to distinguish between
the two situations we shall write in the following µG(M) and µΓ(M) for the
µ-invariant of a finitely generated Λ(G)- or Λ(Γ)-module M, respectively.

Theorem 5.3. Let E be an elliptic curve defined over k with good ordinary
reduction at Sp and assume that Xf (kcyc) is a Λ(Γ)-torsion module. Then one
always has µG(Xf (k∞)) less than or equal to µΓ(Xf (kcyc)) :

µG(Xf (k∞)) ≤ µΓ(Xf (kcyc)).

Remark 5.4. Assume that E is isogenous over k to an elliptic curve E′ such
that µΓ(X

′
f (kcyc)) = 0 where X ′

f denotes the dual of Selmer of E′. Then

µG(Xf (k∞)) = µΓ(Xf (kcyc)).

Indeed, this follows immediately from the formulae for the change of the µ-
invariant under isogeny over both k∞ and kcyc. More generally, the above
equality holds if and only if the quotient Z := X/T of X := Xf (k∞) by its Zp
-torsion submodule T := Xf (k∞)(p) is finitely generated over Λ(H) (Indeed,
we will see in the proof below, that equality is equivalent to the vanishing
of µΓ(ZH). Since ZH is a Λ(Γ)-torsion module this in turn is equivalent to
ZH being a finitely generated Zp -module. Now the claim follows from the
Nakayama lemma).

Proof. We shall use the notation of the remark. By the analogue of [CSS2,
lem. 2.5], we know that H1(H,X) = 0. Since cdpH = 1, one immediately
obtains that also H1(H,T ) = 0 and that H1(H,Z) has no p-torsion, because
multiplication by p is injective on Z. But, again as H1(H,X) = 0, we have that
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H1(H,Z) injects into TH , which is a Zp-torsion module. Thus we have shown
that H1(H,Z) vanishes, too, and we have the exact sequence

0 // TH // XH
// ZH // 0

of Λ(Γ)-torsion modules. It is plain from this sequence that µΓ(TH) ≤ µΓ(XH)
(with equality if and only if µΓ(ZH) is zero).
Now we claim (i) that µΓ(TH) = µG(X) and (ii) that µΓ(XH) = µΓ(Xf (kcyc)).
The latter claim is clear because it follows easily from the usual fundamental
diagram 4.7 that the kernel and cokernel of the canonical map XH → Xf (kcyc)
are finitely generated over Zp . To prove (i), we use the fact that for a module
which is annihilated by a power of p, the µ-invariant is given by the Euler
characteristic (cf. [Ho2, cor. 1.8]). As H2(G,X) = 0 (in theorem 4.2 we state
this only under too restrictive assumptions, but use the validity of SEQS to
derive this from the vanishing of H2(G,XS) (corollary 4.6) and of H2(G,US)
(proposition 4.7), which both hold in this generality) and as cdpG = 2, we see
that H2(G,T ) = 0 and we obtain that

pµG(X) = pµ(T ) =
#H0(G,T )

#H1(G,T )
=

#H0(Γ, TH)

#H1(Γ, TH)
= pµΓ(TH).

The last equality follows from the Hochschild-Serre spectral sequence using
again the vanishing of H1(H,T ). Thus the theorem follows. �

6. An example

In this section, we consider the following special example where p = 5 as a first
case. Let k = Q(µ5) and kcyc be the cyclotomic Z5-extension of k. Then, we
put

k∞ := kcyc(
5∞
√
11).

First, we have the following (cf. Lemma 3.9).

Lemma 6.1. (i) k∞ is unramified outside 5 and 11 over Q.
(ii) The number of primes of k above 11 is four. They are not decomposed

in k∞/k. Further, they are totally ramified in k∞/kcyc.
(iii) There is a unique prime of k∞ lying above 5, and it is totally ramified

in the extension k∞/Q.

We consider the Selmer group over k∞ of

E = X1(11) : y
2 + y = x3 − x2,

the elliptic curve over Q of conductor 11. In this case, we can determine slightly
more precise structure as a module over Iwasawa algebras.

Theorem 6.2. Let H = Gal(k∞/kcyc). Then, the Pontryagin dual of the
Selmer group Xf (k∞) := Selp∞(E/k∞)∨ is free of rank four as a Λ(H)-module.
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It is shown that Selp∞(E/kcyc) = 0 in [CS]. Thus we have Xf (k∞) is a sub-
module of Λ(H)⊕4 whose cokernel is finite by Theorem 3.1 and Lemma 6.1.
For n ≥ 1, let Hn and Fn be as the same as subsection 3.1:

Fn := kcyc(
5n
√
11) and Hn := Gal(k∞/Fn).

Here, we put F0 = kcyc and H0 = H. For the Λ(H)-freeness, it suffices to show
that Selp∞(E/k∞)Hn is cotorsion-free for any n ≥ 0 by the structure theory
of Λ(H)-modules. By (3.4) and Lemma 3.6, it is enough to show Coker(r′n) is
cotorsion-free. Taking S = {5, 11} we have

(6.8) H1(Hn, E(k∞)5∞)→
⊕

w|11,w|5

H1(Hn, E(k∞,w)5∞)→ Coker(r′n)→ 0,

from (3.3). For w|11, H1(Hn, E(k∞,w))5∞ ∼= Qp/Zp by Lemma 3.4, we have
Coker(r′n) is cotorsion-free if we show the following.

Lemma 6.3. Let w be the (unique) prime of k∞ above 5. Then,

(6.9) H1(Hn, E(k∞)5∞)→ H1(Hn, E(k∞,w))5∞

is an isomorphism.

To prove this, we have first

Lemma 6.4. E(k∞)5∞ = E(Q)5∞ ∼= Z/5.

Proof. The field adjoining all of 5-th division points of E is an extension of
degree 5 over k. But it is well known that this is disjoint from k( 5

√
11) and

kcyc over k. 5
2-th division points of E are defined over the field containing the

maximal real subfield of Q(µ11), which is not contained in k∞. Therefore we
have E(k∞)5∞ = E(Q)5∞ . �

By this Lemma, we have

(6.10) H1(Hn, E(k∞)5∞) = Hom(Hn, E(k∞)5∞) ∼= Z/5.

Let w be the unique prime above 5. Let Ẽ5 be the reduction of E modulo 5.
Then it is well known that Ẽ5(F5) ∼= Z/5. Since k∞/Q is totally ramified at 5
by Lemma 6.1, we have

(6.11) Ẽ5(κ∞,w) = Ẽ5(F5) ∼= Z/5.

Further, we have the following.

Lemma 6.5. The composition of the natural injection E(k∞)5∞ →֒ E(k∞,w)5∞

and the reduction map E(k∞,w)5∞ → Ẽ5(κ∞,w)5∞ is an isomorphism.

Proof. It is enough to show the same assertion replacing k∞ by Q5 by Lemma
6.1 and (6.11). But this is well known (cf. [CS]). �

Now we can show Lemma 6.3. Since Fn is a deeply ramified extension, we have
the following isomorphism by Coates-Greenberg:

H1(Hn, E(k∞,w))5∞
∼→ H1(Hn, Ẽ5(κ∞,w)5∞).

Documenta Mathematica · Extra Volume Kato (2003) 443–478



472 Y. Hachimori and O. Venjakob

By (6.11), H1(Hn, Ẽ5(κ∞,w)5∞) = Hom(Hn, Ẽ5(κ∞,w)5∞) ∼= Z/5. So,

H1(Hn, E(k∞)5∞)→ H1(Hn, Ẽ5(κ∞)5∞)

is an isomorphism by (6.10) and Lemma 6.5. �

The formula of corollary 5.2 enables us to calculate for p = 5 the µ-invariant of
the elliptic curve E2 := X0(11), given by the Weierstrass equation y2+y = x3−
x2− 10x− 20, see [Ho2, ex. in §3] for more details needed for this calculations.
There is an isogeny ϕ : E1 → E2 with E1 := X1(11) and A ∼= Z/5. Since
µ(Xf,1(k∞)) = 0 by theorem 6.2, we obtain

µ(Xf,2(k∞)) =
1

2
|k : Q|,

where k is a finite extension of Q(µ5) inside k∞ = Q(µp∞ ,
5∞
√
11).

This result in turn can be used to calculate the µ-invariant of the Galois module

XS
cs := G(L/k∞),

where L denotes the maximal unramified abelian p-extension of k∞ in which all
places lying above S are completely split. For further results on this module
we refer the reader to [V3]. Let us now fix k = Q(µ5) and E = X0(11),
i.e. µ(Xf ) = 2 by the above formula. Using the fact that E5

∼= µ5 × Z/5
as GQ-module where µ5

∼= ker(E5 → Ẽ5
∼= Z/5) identifies with the kernel

of the reduction map at 5, one easily obtains the following exact sequence of
Λ(G)-modules

0→ XS
cs/5→ Xf/5→ XS/5→ 0,

where XS := H1(GS(k∞), Ep∞)∨ and ∨ means taking the Pontryagin dual.
Using the formula [Ho2, cor. 1.11] rkΩM/pM = rkΩ(pM) + rkΛM where pM
denotes the kernel of multiplication by p on a finitely generated Λ-module M,
we conclude

2 = µ(Xf ) ≥ rkΩ(5Xf ) = rkΩ(Xf/5)

= rkΩ(XS/5) + rkΩ(X
S
cs/5)

= rkΛ(XS) + rkΩ(5XS) + rkΩ(5X
S
cs)

= 2 + rkΩ(5XS) + rkΩ(5X
S
cs).

Here we used that both Xf and XS
cs are Λ-torsion modules and that rkΛ(XS) =

2 by [OV2, thm 3.2]. Thus rkΩ(5XS) = rkΩ(5X
S
cs) = 0 which implies

µ(XS) = µ(XS
cs) = 0

by [V1, rem 3.33]. Of course, the same calculation holds over the field Q(E5∞)
thus showing the vanishing of µ(Xnr) = µ(XS

cs) = 0 where Xnr denotes the
Galois group of the p-Hilbert class field of Q(E5∞). We should point out that
the modules Xnr and XS

cs are probably pseudo-null, but that the vanishing of
the µ-invariants is all we can show at the moment.

At the end of this section, we mention to the further structure of the Selmer
group for p = 5, E = X1(11) and α = 11. Let G̃ := Gal(k∞/Q). Note that
this is not a pro-p group.
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Theorem 6.6. The Pontryagin dual of the Selmer group Xf (k∞) is cyclic over

Λ(G̃).

Proof. We see that (6.8) for n = 0 is an exact sequence of Λ(Γ̃)-modules where

Γ̃ = Gal(kcyc/Q). By Lemma 6.3,

Coker(r0) ∼=
⊕

u|11

H1(H,E(k∞,w)5∞) ∼= CoindΓ̃Γ(H
1(H,E(k∞,w)5∞)).

because the decomposition group of 11 in Γ̃ is Γ = Gal(kcyc/k). Since we have
H1(H,E(k∞,w)5∞) ∼= Qp/Zp for w|11, its dual is cyclic over Λ(Γ). (In fact,
H1(H,E(k∞,w)5∞) ∼= Qp/Zp(−1) as a Γ-module, but we omit the proof here.)

Because Selp∞(E/k∞)H ∼= Coker(r0), Xf (k∞)H is isomorphic to Λ(Γ̃) ⊗Λ(Γ)

H1(H,E(k∞,w)5∞)∨, which is a cyclic Λ(Γ̃)-module. Thus, to prove Theorem
6.6, we have only to see the following general Lemma which is an immediate
consequence of Nakayama’s lemma. �

Lemma 6.7. Let G̃ be a profinite group which is not necessarily pro-p, and M a
compact Λ(G)-module. Let H be a closed subgroup of G̃ which is a pro-p group.

Then, if MH is a cyclic Λ(G̃/H)-module we have M is cyclic over Λ(G̃).

Finally, we propose an interesting question: what is the rank of E(k∞) ? We
know nothing about it so far. The only known result is rank(E(L)) = 0 where

L = k(µ5,
5
√
11) ⊂ k∞ by Fisher ([F2]). See also Corollary 2.9.

7. Appendix

In this section, we collect some facts used in previous sections and prove them
for the sake of completeness.

7.1. Surjectivity of the localization map. We see a relation between
the Λ-torsionness of Selmer groups and the Assumptions WLS and SEQS . We
prove Theorem 4.5. The proofs are exactly the same as [P1] Lemma 4 and 5.
Let F/k be a Galois extension with G = Gal(F/k). Let E be an elliptic curve
defined over k. We analyze the localization map

λF : H1(kS/F,Ep∞)→
⊕

v ǫ S

Jv(F )

and H2(kS/F,Ep∞) where S is a set of primes of k containing Sp ∪ Sbad and
all the primes which are ramified in F/k.
First, we define the following module

Rp(E/F ) := lim←−
n,M

Selpn(E/M).

Here, we denote

Selpn(E/M) := Ker

(
H1(kS/M,Epn)→

⊕

v ǫ S

Jv(M)

)
,
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where M runs over all finite extensions of k contained in F and the limit is
taken with respect to the corestrictions and the map induced by multiplication
by p-maps, Epn+1 → Epn .

Theorem 7.1. Assume that G is an infinite pro-p group. Further, assume
E(F )p∞ is finite. Then, there is an injection of Λ(G)-modules.

(7.12) Rp(E/F ) →֒ HomΛ(G)(Selp∞(E/F )∨,Λ(G)).

Here, HomΛ(G)(Selp∞(E/F )∨,Λ(G)) is considered as a left Λ(G)-module by its

right action on Λ(G) and the involution g → g−1.

Proof. For a finite subextension M of F/k, there is an exact sequence

0→ E(M)p∞ → lim←−
n

Selpn(E/M)→ Tp(Selp∞(E/M))→ 0

where Tp(∗) is the Tate module of ∗. We note that

Tp(Selp∞(E/M)) ∼= HomZp
(Selp∞(E/M)∨,Zp).

So we have the exact sequence by taking the inverse limit with respect to the
corestrictions,

0→ lim←−
M

E(M)p∞ → Rp(E/F )
φ→ lim←−

M

HomZp
(Selp∞(E/M)∨,Zp)→ 0

whereM runs over all of finite Galois subextensions of F/k. By the assumption
that E(F )p∞ is finite, lim←−M E(M)p∞ = 0 since G is infinite pro-p. So φ is an
injection.
Next, we consider the restriction map

rM : Selp∞(E/M)→ Selp∞(E/F )UM

with UM := Gal(F/M). Then we have the following.

0→ lim←−
M

HomZp
(Ker(rM )∨,Zp)→ lim←−

M

HomZp
(Selp∞(E/M)∨,Zp)

ψ→ lim←−
M

HomZp
((Selp∞(E/F )∨)UM

,Zp).

Here the inverse limits are taken w.r.t. the corestrictions for the first two terms.
For the last, we take the limit w.r.t. the map induced from the map defined by

(Selp∞(E/F )∨)UM
→ (Selp∞(E/F )∨)UM′

: x 7→
∑

σ ǫ UM/UM′

σ(x)

for M ′ ⊃ M . Since Ker(rM ) is contained in H1(UM , E(F )p∞) and E(F )p∞ is
finite, Ker(rM ) is finite. So we have HomZp

(Ker(rM )∨,Zp) = 0 and ψ is an
injection.
Finally we see that

HomZp
((Selp∞(E/F )∨)UM

,Zp) ∼= HomΛ(G)(Selp∞(E/F )∨,Zp[G/UM ])
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by the map

f 7→


x ǫ Selp∞(E/F )∨ 7→

∑

σ ǫ G/UM

f(σ−1x)σ ǫ Zp[G/UM ]


 .

Thus we have the isomorphism

lim←−
M

HomZp
((Selp∞(E/F )∨)UM

,Zp) ∼= lim←−
M

HomΛ(G)(Selp∞(E/F )∨,Zp[G/UM ])

where the inverse limit of the right hand side is taken w.r.t the natural surjec-
tion Zp[G/UM ′ ]→ Zp[G/UM ] for M ′ ⊃M . Therefore,

lim←−
M

HomΛ(G)(Selp∞(E/F )∨,Zp[G/UM ]) ∼= HomΛ(G)(Selp∞(E/F )∨,Λ(G))

and we see that Rp(E/F ) maps to this module injectively by the map ψ◦φ. �

As a consequence of this Theorem, we have the following (for odd p).

Theorem 7.2. Assume G is a pro-p, p-adic Lie group with no p-torsion and
E(F )p∞ is finite. If Selp∞(E/F )∨ is Λ(G)-torsion, then we have

(i) H2(kS/F,Ep∞) = 0 and

(ii) The map H1(kS/F,Ep∞)
λF→⊕

v ǫ S Jv(F ) is surjective.

Proof. By the assumption that Selp∞(E/F )∨ is Λ(G)-torsion, we have

HomΛ(G)(Selp∞(E/F )∨,Λ(G)) = 0.

Thus we have Rp(E/F ) = 0 by Theorem 7.1. This proves the Theorem because
of the exact sequence

0→ Selp∞(E/F )→ H1(kS/F,Ep∞)
λF→
⊕

v ǫ S

Jv(F )

→ Rp(E/F )∨ → H2(kS/F,Ep∞)→ 0.

by the Poitou-Tate global duality. �

7.2. Comparison of the Λ-ranks. Let G ∼= H ⋊ Γ where H ∼= Γ ∼= Zp.
For any Λ(G)-module M , the H-coinvariants MH have a structure as a Λ(Γ)-
module.

Lemma 7.3. Let M be a finitely generated Λ(G)-module. Then,

rankΛ(G)M ≤ rankΛ(Γ)(MH).

Proof. For these G and H, the following fact is proved in the proof of [BH,
last Theorem]: A finitely generated Λ(G)-module M is Λ(G)-torsion if MH

is Λ(Γ)-torsion (This fact fails in the GL2-case in general.) It is easy to see
that it is enough to show the Lemma when M is Λ(G)-torsion free. We use
an induction on n = rankΛ(G)M . Assume n = 1. Then the above fact shows
rankΛ(Γ)(MH) ≥ 1. If n ≥ 2, then there exists an exact sequence 0 → N →
M → L→ 0 where N and L are torsionfree Λ(G)-modules with rankΛ(G)N =
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n − 1 and rankΛ(G)L = 1. Since LH = 0, the sequence 0 → NH → MH →
LH → 0 is exact. Thus we have the Lemma by induction. �

7.3. Euler-Poincaré formula for Λ-ranks. For the convenience of the
reader we include here the well-known determination of the alternating sum of
the Λ-ranks of Hi(GS(k∞), A)∨ using Tate’s global Euler-Poincaré character-
istic formula (see also [OV2, thm. 3.2]).
For that purpose let p be any prime, k be a number field (totally imaginary,
if p = 2), S a finite set of places of k containing Sp and S∞, k∞ a non-trivial
Galois extension of k contained in kS such that G = G(k∞/k) is a pro-p p-adic
Lie group without torsion element. As usual we write r1(k) and r2(k) for the
number of real and complex places of k, respectively.
Furthermore, we denote by A ∼= (Qp/Zp)d a discrete p-divisible p-primary
GS(k)-module of Zp-corank d. Then the cohomology groups Hi(GS(k∞), A)∨

are finitely generated Λ-modules, where Λ = Λ(G) denotes the Iwasawa algebra
of G. Their ranks are related as follows

Proposition 7.4.

rkΛH
1(GS(k∞), A)∨−rkΛH2(GS(k∞), A)∨= (r1(k)+r2(k))d−

∑

v real

dimFp
(pA)

+,

where (−)+ denotes the invariant part with respect to the complex conjugation
and pA is the kernel of multiplication by p.

Note that rkΛH
0(GS(k∞), A)∨ = 0 because the dual of A(k∞) ⊆ A is finitely

generated over Zp.

Proof. Following [Ho2, thm. 1.1] the rank of any finitely generated Λ-module
M can be calculated via its homology groups as

rkΛM =
∑

j≥0

(−1)j rkZp
Hi(G,M).

Using the Hochschild-Serre spectral sequence, the well known behaviour of
Euler-characteristics with spectral sequences and the fact that in our situation
cdpGS(k∞) ≤ cdpGS(k) ≤ 2, we obtain immediately that the term in the
proposition of the left hand side is equal to

∑

i≥0

(−1)i+1rkΛH
i(GS(k∞), A)∨ =

∑

i,j≥0

(−1)i+j+1rkZp
Hj(G,Hi(GS(k∞), A))∨

=
∑

n≥0

(−1)n+1rkZp
Hn(GS(k), A)

∨

=

2∑

n≥0

(−1)n+1 dimFp
Hn(GS(k), pA)

= (r1(k) + r2(k))d−
∑

v real

dimFp
(pA)

+.
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For the last equality we used Tate’s global Euler-Poincaré characteristic for-
mula, see e.g. [NSW, 8.6.14]. �
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