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Abstract. For arithmetical schemes X, K. Kato introduced certain
complexes Cr,s(X) of Gersten-Bloch-Ogus type whose components in-
volve Galois cohomology groups of all the residue fields of X. For specific
(r, s), he stated some conjectures on their homology generalizing the fun-
damental isomorphisms and exact sequences for Brauer groups of local
and global fields. We prove some of these conjectures in small degrees and
give applications to the class field theory of smooth projecive varieties
over local fields, and finiteness questions for some motivic cohomology
groups over local and global fields.

2000 Mathematics Subject Classification: 11G25, 11G45, 14F42
Keywords and Phrases: Kato homology, Bloch-Ogus theory, niveau spec-
tral sequence, arithmetic homology, higher class field theory

1. Introduction

The following two facts are fundamental in the theory of global and local fields.
Let k be a global field, namely either a finite extension of Q or a function field in
one variable over a finite field. Let P be the set of all places of k, and denote by
kv the completion of k at v ∈ P. For a field L let Br(L) be its Brauer group, and
identify the Galois cohomology groupH1(L,Q/Z) with the group of the continuous
characters on the absolute Galois group of L with values in Q/Z.
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(1-1) For a finite place v, with residue field Fv, there are natural isomorphisms

Br(kv)
∼=
−→ H1(Fv,Q/Z)

∼=
−→ Q/Z,

where the first map is the residue map and the second is the evaluation of charac-
ters at the Frobenius element. For an archimedean place v there is an injection

Br(kv)
∼=
−→ H1(kv,Q/Z) →֒ Q/Z.

(1-2) There is an exact sequence

0 −→ Br(k)
α
−→

⊕

v∈P

Br(kv)
β
−→Q/Z −→ 0,

where α is induced by the restrictions and β is the sum of the maps in (1-1).

In [K1] Kazuya Kato proposed a fascinating framework of conjectures that gen-
eralizes the stated facts to higher dimensional arithmetic schemes. In order to
review these conjectures, we introduce some notations. For a field L and an inte-
ger n > 0 define the following Galois cohomology groups: If n is invertible in L,
let Hi(L,Z/nZ(j)) = Hi(L, µ⊗jn ) where µn is the Galois module of n-th roots of
unity. If n is not invertible in L and L is of characteristic p > 0, let

Hi(L,Z/nZ(j)) = Hi(L,Z/mZ(j))⊕Hi−j(L,WrΩ
i
L,log)

where n = mpr with (p,m) = 1. Here WrΩ
i
L,log is the logarithmic part of the

de Rham-Witt sheaf WrΩ
i
L [Il, I 5.7]. Then one has a canonical identification

H2(L,Z/nZ(1)) = Br(L)[n] where [n] denotes the n-torsion part.
For an excellent scheme X and integers n, r, s > 0, and under certain assumptions
(which are always satisfied in the cases we consider), Kato defined a homological
complex Cr,s(X,Z/nZ) of Bloch-Ogus type (cf. [K1], §1):

· · ·
⊕

x∈Xi

Hr+i(k(x),Z/nZ(s+ i))→
⊕

x∈Xi−1

Hr+i−1(k(x),Z/nZ(s+ i− 1))→ · · ·

· · · →
⊕

x∈X1

Hr+1(k(x),Z/nZ(s+ 1))→
⊕

x∈X0

Hr(k(x),Z/nZ(s)).

Here Xi = {x ∈ X|dim{x} = i}, k(x) denotes the residue field of x, and the term⊕
x∈Xi

is placed in degree i. The differentials are certain residue maps generalizing

the maps
Br(kv)[n] = H2(kv,Z/nZ(1)) −→ H1(Fv,Z/nZ)

alluded to in (1-1). More precisely, they rely on the fact that one has canonical
residue maps Hi(K,Z/n(j)) → Hi−1(F,Z/n(j − 1)) for a discrete valuation ring
with fraction field K and residue field F .

Definition 1.1 We define the Kato homology of X with coefficient in Z/nZ as

Hr,s
i (X,Z/nZ) = Hi(C

r,s(X,Z/nZ)).
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Note that Hr,s
i (X,Z/nZ) = 0 for i /∈ [0, d], d = dim X. Kato’s conjectures concern

the following special values of (r, s).

Definition 1.2 If X is of finite type over Z, we put

HK
i (X,Z/nZ) = H1,0

i (X,Z/nZ).

If X is of finite type over a global field or its completion at a place, we put

HK
i (X,Z/nZ) = H2,1

i (X,Z/nZ).

For a prime ℓ we define the Kato homology groups of X with coefficient in Qℓ/Zℓ

as the direct limit of those with coefficient in Z/ℓνZ for ν > 0.

The first conjecture of Kato is a generalization of (1-2) ([K1], 0.4).

Conjecture A Let X be a smooth connected projective variety over a global field
k. For v ∈ P, let Xv = X ×k kv. Then the restriction maps induce isomorphisms

HK
i (X,Z/nZ)

∼=
−→

⊕

v∈P

HK
i (Xv,Z/nZ) for i > 0,

and an exact sequence

0→ HK
0 (X,Z/nZ)→

⊕

v∈P

HK
0 (Xv,Z/nZ)→ Z/nZ→ 0.

If dim(X) = 0, we may assume X = Spec(k). Then Hi(X,Z/nZ) =
Hi(Xv,Z/nZ) = 0 for i > 0, and H0(X,Z/nZ) = Br(k)[n] and H0(Xv,Z/nZ) =
Br(kv)[n]. Thus, in this case conjecture A is equivalent to (1-2). In case
dim(X) = 1, conjecture A was proved by Kato [K1]. The following is shown
in [J4].

Theorem 1.3 Conjecture A holds if ch(k) = 0 and if one replaces the coefficients
Z/nZ with Qℓ/Zℓ for any prime ℓ.

The main objective of this paper is to study the generalization of (1-1) to the higher
dimensional case. Let A be a henselian discrete valuation ring with finite residue
field F of characteristic p. Let K be the quotient field of A. Let S = Spec(A) and
assume given the diagram

(1-3)
Xη

jX
−→ X

iX←− Xs

↓ fη ↓ f ↓ fs

η
j
−→ S

i
←− s

in which s and η are the closed and generic point of S, respectively, the squares
are cartesian, and f is flat of finite type. Then Kato defined a canonical residue
map

∆i
X,n : HK

i (Xη,Z/nZ)→ HK
i (Xs,Z/nZ),

and stated the following second conjecture ([K1], 5.1), which he proved for
dim Xη = 1.

Conjecture B If f is proper and X is regular, ∆i
X,n is an isomorphism for all

n > 0 and all i ≥ 0.
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If X = S, then ∆0
X,n is just the map H2(K,Z/n(1)) → H1(F,Z/n) in (1-1). In

general, conjecture B would allow to compute the Kato homology of Xη by that
of the special fiber Xs. Our investigations are also strongly related to Kato’s third
conjecture ([K1], 0.3 and 0.5):

Conjecture C Let X be a connected regular projective scheme of finite type over
Z. Then

H̃K
i (X ,Z/nZ)

∼=
−→

{
0

Z/nZ

if i 6= 0,

if i = 0.

Here the modified Kato homology H̃K
i (X ,Z/nZ) is defined as the homology of the

modified Kato complex

C̃1,0(X ,Z/nZ) := Cone( C1,0(X ,Z/nZ)[1]→ C2,1(X ×Z R,Z/nZ) ).

The map H̃K
0 (X ,Z/n)→ Z/nZ is induced by the maps H1(k(x),Z/nZ)→ Z/nZ

for x ∈ X0 given by the evaluation of characters at the Frobenius (note that
k(x) is a finite field for x ∈ X0), together with the maps H2(k(y),Z/nZ(1)) =

Br(k(y))[n] →֒ Z/nZ for y ∈ (X ×Z R)0. The canonical map H̃K
i (X ,Z/nZ) →

HK
i (X ,Z/nZ) is an isomorphism if X (R) is empty or if n is odd.

Conjecture C in case dim(X ) = 1 is equivalent to (the n-torsion part of) the
classical exact sequence (1-2) for k = k(X ), the function field of X . In case
dim(X ) = 2 conjecture C is proved in [K1] and [CTSS], as a consequence of the
class field theory of X . The other known results concern the case that X = Y
is a smooth projective variety over a finite field F : In [Sa4] it is shown that
HK

3 (Y,Qℓ/Zℓ) = 0 if ℓ 6= ch(F ) and dim(Y ) = 3. This is generalized in [CT] and
[Sw] where the Qℓ/Zℓ-coefficient version of Conjecture C in degrees i ≤ 3 is proved
for all primes ℓ and for Y of arbitrary dimension over F .

As we have seen, conjecture C can be regarded as another generalization of (1-
2). In fact, conjectures A, B, and C are not unrelated: If X is flat over Z, it
is geometrically connected over Ok, the ring of integers in some number field k.
Then the generic fiber X = Xk is smooth, and we get a commutative diagram with
exact rows

(1-4)
0 → ⊕vC

1,0(Yv) → ⊕vC
1,0(Xv) → ⊕vC

2,1(Xkv
)[−1] → 0

‖ ↑ ↑
0 → ⊕vC

1,0(Yv) → C1,0(X ) → C2,1(X)[−1] → 0.

Here Xv = X ×Ok
Ov for the ring of integers Ov in kv, and Yv = X ×Ok

Fv is
the fiber over v, if v is finite. If v is infinite, we let Yv = ∅ and C1,0(Xv,Z/nZ) =
C2,1(Xv,Z/nZ)[−1]. Thus conjecture B for Xv means that C1,0(Xv) is acyclic for
finite v, and any two of the conjectures imply the third one in this case.

On the other hand, conjecture C for a smooth projective variety over a finite field
allows to compute the Kato homology of Xs in (1-3), at least in the case of semi-
stable reduction: Assume that X is proper over S in (1-3), and that the reduced
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special fiber Y = (Xs)red is a strict normal crossings variety. In §3 we construct a
configuration map

γiXs,n : HK
i (Xs,Z/nZ)→ Hi(ΓXs

,Z/nZ).

Here ΓXs
, the configuration (or dual) complex of Xs, is a simplicial complex whose

(r − 1)-simplices (r ≥ 1) are the connected components of

Y [r] =
∐

1≤j1<···<jr≤N

Yj1 ∩ · · · ∩ Yjr ,

where Y1, . . . , YN are the irreducible components of Y . This complex has been
studied very often in the literature for a curve X/S, in which case ΓXs

is a graph.
In case X = Spec(OK), γ0Xs,n

is nothing but the map H1(F,Z/nZ) → Z/nZ in
(1-1). For a prime ℓ, let

γiXs,ℓ∞ : HK
i (Xs,Qℓ/Zℓ)→ Hi(ΓXs

,Qℓ/Zℓ)

be the inductive limit of γiXs,ℓν
for ν > 0. Then we show in 3.9:

Theorem 1.4 The map γjXs,n
is an isomorphism if Conjecture C is true in degree

i for all i ≤ j and for any connected component of Y [r], for all r ≥ 1. The anal-
ogous fact holds with Qℓ/Zℓ-coefficients. In particular, γjXs,n

is an isomorphism

for j = 0, 1, 2 and all n > 0, and γ3Xs,ℓ∞
is an isomorphism for all primes ℓ.

Our main results on Conjecture B now are as follows.

Theorem 1.5 Let n be invertible in K, and assume that X is proper over S.

(1) If Xη is connected, one has isomorphisms

HK
0 (Xη,Z/nZ)

∆0
X,n
−→

∼
HK

0 (Xs,Z/nZ)
∼=
−→ Z/nZ.

(2) If X is regular, ∆1
X,n is an isomorphism.

In the proof of Theorem 1.5, given in §5, an important role is played by the class
field theory for varieties over local fields developed in [Bl], [Sa1] and [KS1].

In §6 we propose a strategy to show the Qℓ/Zℓ-coefficient version of Conjecture B
in degrees ≥ 2 (cf. Proposition 6.4 and the remark at the end of §6) and then show
the following result. Fix a prime ℓ different from ch(K). Passing to the inductive
limit, the maps ∆i

X,ℓν induce

∆i
X,ℓ∞ : HK

i (Xη,Qℓ/Zℓ)→ HK
i (Xs,Qℓ/Zℓ).

Theorem 1.6 Let X be regular, projective over S, and with strict semistable re-
duction. Then ∆2

X,ℓ∞ is an isomorphism and ∆3
X,ℓ∞ is surjective.
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We note that the combination of Theorems 1.4, 1.5 and 1.6 gives a simple de-
scription of HK

i (Xη,Qℓ/Zℓ) for i ≤ 2, in terms of the configuration complex of
Xs.

The method of proof for 1.6 is as follows. In [K1] Kato defined the complexes
Cr,s(X,Z/n) and the residue map ∆i

X,n by using his computations with symbols
in the Galois cohomology of discrete valuation fields of mixed characteristic [BK].
To handle these objects more globally and to obtain some compatibilities, we give
an alternative definition in terms of a suitable étale homology theory , in particular
for schemes over discrete valuation rings, in §2.

We will have to use the fact that the complexes defined here, following the method
of Bloch and Ogus [BO], agree with the Kato complexes, as defined in [K1], be-
cause our constructions rely on the Bloch-Ogus method, while we have to use
several results in the literature stated for Kato’s definition (although even there
the agreement is sometimes used implicitely). For the proof that the complexes
agree (up to some signs) we refer the reader to [JSS].

Given this setting, the residue map ∆i
X,n is then studied in §4 by a square

(1-5)

Het
a−2(Xη,Z/nZ(−1))

ǫXη
−→ HK

a (Xη,Z/nZ)

↓ ∆et
X ↓ ∆K

X

Het
a−1(Xs,Z/nZ(0))

ǫXs−→ HK
a (Xs,Z/nZ),

in which the groups on the left are étale homology groups, and the maps ǫ
are constructed by the theory in §2. The shifts of degrees by -2 and -1 corre-
spond to the fact that the cohomological dimensions of K and F are 2 and 1,
respectively. If Xη is smooth of pure dimension d, then Het

a−2(Xη,Z/nZ(−1)) ∼=

H2d−a+2
et (Xη,Z/nZ(d+1)), similarly for Xs. But Xs will not in general be smooth,

and then étale cohomology does not work. The strategy is to show that ∆et
X and

ǫXs
are bijective and that ǫXη

is surjective, at least if the coefficients are replaced
by Qℓ/Zℓ (to use weight arguments), and if X is replaced by a suitable ”good
open” U (to get some vanishing in cohomology).

The proof of the p-part, i.e., for Qp/Zp with p = ch(F ), depends on two results not
published yet. One is the purity for logarithmic de Rham-Witt sheaves stated in
formula (4-2) (taken from [JSS]) and in Proposition 4.12 (due to K. Sato [Sat3]).
The other is a calculation for p-adic vanishing cycles sheaves, or rather its conse-
quence as stated in Lemma 4.22. It just needs the assumption p ≥ dim(Xη) and
will be contained in [JS]. If we only use the results from [BK], [H] and [Ts2], we
need the condition p ≥ dim(Xη) + 3, and have to assume p ≥ 5 in Theorem 1.6.

Combining Theorems 1.5 and 1.6 with Theorem 1.3 one obtains the following result
concerning conjecture C (cf. (1-4)).

Theorem 1.7 Let k be a number field with ring of integers Ok. Let f : X → S be
a regular proper flat geometrically connected scheme over S := Spec(Ok). Assume
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that X has strict semistable reduction around every closed fiber of f . Then we
have

H̃K
i (X ,Q/Z)

∼=
−→

{
0

Q/Z

if 1 ≤ i ≤ 3,

if i = 0.

We give an application of the above results to the class field theory of surfaces
over local fields. Let K be a non-archimedean local field as in (1-3), and let V be
a proper variety over η = Spec(K). Then we have the reciprocity map for V

ρV : SK1(V )→ πab
1 (V )

introduced in the works [Bl], [Sa1] and [KS1]. Here πab
1 (V ) is the abelian algebraic

fundamental group of V and

SK1(V ) = Coker(
⊕

x∈V1

K2(y)
∂
−→

⊕

x∈V0

K1(x))

where Kq(x) denotes the q-th algebraic K-group of k(x), and ∂ is induced by tame
symbols. The definition of ρV will be recalled in §5. For an integer n > 0 prime
to ch(K) let

ρV,n : SK1(V )/n→ πab
1 (V )/n

denote the induced map. There exists the fundamental exact sequence (cf. §5)

(1-6) HK
2 (V,Z/nZ)→ SK1(V )/n

ρV,n
−→ πab

1 (V )/n→ HK
1 (V,Z/nZ)→ 0.

Combined with 1.5 (2) and 1.4 it describes the cokernel of ρV,n - which is the
quotient πab

1 (V )c.d. of the abelianized fundamental group classifying the covers
in which every point of V splits completely - in terms of the first configuration
homology of the reduction in the case of semi-stable reduction. This generalizes
the results for curves in [Sa1]. Moreover, (1-6) immediately implies that ρV,n is
injective if dim(V ) = 1, which was proved in [Sa1] assuming furthermore that V is
smooth. In general Ker(ρV,n) is controlled by the Kato homology HK

2 (V,Z/nZ).
Sato [Sat2] constructed an example of a proper smooth surface V over K for which
ρV,n is not injective, which implies that the first map in the above sequence is not
trivial in general. The following conjecture plays an important role in controlling
Ker(ρV,n). Let L be a field, and let ℓ be a prime different from ch(L).

Conjecture BKq(L, ℓ) : The group Hq(L,Qℓ/Zℓ(q)) is divisible.

This conjecture is a direct consequence of the Bloch-Kato conjecture asserting the
surjectivity of the symbol map KM

q (L) → Hq(L,Z/ℓZ(q)) from Milnor K-theory
to Galois cohomology. The above form is weaker if restricted to particular fields L,
but known to be equivalent if stated for all fields. By Kummer theory, BK1(L, ℓ)
holds for any L and any ℓ. The celebrated work of [MS] shows that BK2(L, ℓ)
holds for any L and any ℓ. Voevodsky [V] proved BKq(L, 2) for any L and any q.

Quite generally, the validity of this conjecture would allow to extend results from
Qℓ/Zℓ-coefficients to arbitrary coefficients, by the following result (cf. Lemma 7.3;
for extending 1.3 and 1.7 one would need BKq(L, ℓ) over number fields):

Documenta Mathematica · Extra Volume Kato (2003) 479–538



486 U. Jannsen and S. Saito

Lemma Let V be of finite type over K, and let ℓ be a prime. Assume that either
ℓ = ch(K), or that BKi+1(K(x), ℓ) holds for all x ∈ Vi and BKi(K(x), ℓ) holds
for all x ∈ Vi−1. Then we have an exact sequence

0→ HK
i+1(V,Qℓ/Zℓ)/ℓ

ν → HK
i (V,Z/ℓν)→ HK

i (V,Qℓ/Zℓ)[ℓ
ν ]→ 0.

In §7 we combine this observation with considerations about norm maps, to obtain
the following results on surfaces. Let P be a set (either finite or infinite) of rational
primes different from ch(K). Call an abelian group P -divisible if it is ℓ-divisible
for all ℓ ∈ P .

Theorem 1.8 Let V be an irreducible, proper and smooth surface over K. As-
sume BK3(K(V ), ℓ) for all ℓ ∈ P , where K(V ) is the function field of V .

(1) Then Ker(ρV ) is the direct sum of a finite group and an P -divisible group.

(2) Assume further that there exists a finite extension K ′/K and an alteration
(=surjective, proper, generically finite morphism) f : W → V ×K K ′ such
that W has a semistable model X ′ over A′, the ring of integers in K ′, with
H2(ΓX′

s′
,Q) = 0 for its special fibre X ′s′ . Then Ker(ρV ) is P -divisible.

(3) If V has good reduction, then the reciprocity map induces isomorphisms

ρV,ℓν : SK1(V )/ℓν
∼=
−→ πab

1 (V )/ℓν

for all ℓ ∈ P and all ν > 0. In particular, Ker(ρV ) is ℓ-divisible.

Theorem 1.9 Assume that V is an irreducible variety of dimension 2 over a local
field K. Assume BK3(K(V ), ℓ) for all ℓ ∈ P . If V is not proper (resp. proper),
SK1(V ) (resp. Ker(NV/K)) is the direct sum of a finite group and a P -divisible
group. Here NV/K : SK1(V )→ K∗ is the norm map introduced in §6.

We remark that Theorem 1.8 generalizes [Sa1] where the kernel of the reciprocity
map for curves over local fields is shown to be divisible under no assumption.
Another remark is that Szamuely [Sz] has studied the reciprocity map for varieties
over local fields and its kernel. His results require stronger assumptions than ours
while it affirms that the kernel is uniquely divisible. We note however that Sato’s
example in [Sat2] also implies that the finite group in Theorem 1.8 is non-trivial
in general.

The authors dedicate this paper to K. Kato, whose work and ideas have had a
great influence on their own research and many areas of research in arithmetic in
general. It is also a pleasure to acknowledge valuable help they received from T.
Tsuji and K. Sato via discussions and contributions. The first author gratefully
acknowledges the hospitality of the Research Institute for Mathematical Sciences
at Kyoto and his kind host, Y. Ihara, during 6 months in 1998/1999, which allowed
to write a major part of the paper. For the final write-up he profited from the
nice working atmosphere at the Isaac Newton Institute for Mathematical Sciences
at Cambridge. Finally we thank the referee for some helpful comments.

Documenta Mathematica · Extra Volume Kato (2003) 479–538



Kato Homology and Higher Class Field Theory 487

2. Kato complexes and Bloch-Ogus theory

It is well-known, although not made precise in the literature, that for a smooth
variety over a field, one may construct the Kato complexes via the niveau spectral
sequence for étale cohomology constructed by Bloch and Ogus [BO]. In this paper
we will however need the Kato complexes for singular varieties and for schemes
over discrete valuation rings, again not smooth. It was a crucial observation for us
that for these one gets similar results by using étale homology (whose definition is
somewhat subtle for p-coefficients with p not invertible on the scheme). This fits
also well with the required functorial behavior of the Kato complexes, which is of
’homological’ nature: covariant for proper morphisms, and contravariant for open
immersions.
In several instances one could use still use étale cohomology, by embedding the
schemes into a smooth ambient scheme and taking étale cohomology with supports
(cf. 2.2 (b) and 2.3 (f)). But then the covariance for arbitrary proper morphisms
became rather unnatural, and there were always annoying degree shifts in relation
to the Kato homology. Therefore we invite the readers to follow our homological
approach.

The following definition formalizes the properties of a homology of Borel-Moore
type. It is useful for dealing with étale and Kato homology together, and for
separating structural compatibilities from explicit calculations.

A. General results Let C be a category of noetherian schemes such that for
any object X in C, every closed immersion i : Y →֒ X and every open immersion
j : V →֒ X is (a morphism) in C.

Definition 2.1 (a) Let C∗ be the category with the same objects as C, but where
morphisms are just the proper maps in C. A homology theory on C is a sequence
of covariant functors

Ha(−) : C∗ → (abelian groups) (a ∈ Z)

satisfying the following conditions:

(i) For each open immersion j : V →֒ X in C, there is a map j∗ : Ha(X) →
Ha(V ), associated to j in a functorial way.

(ii) If i : Y →֒ X is a closed immersion in X, with open complement j : V →֒ X,
there is a long exact sequence (called localization sequence)

· · ·
δ
−→ Ha(Y )

i∗−→ Ha(X)
j∗

−→ Ha(V )
δ
−→ Ha−1(Y ) −→ . . . .

(The maps δ are called the connecting morphisms.) This sequence is func-
torial with respect to proper maps or open immersions, in an obvious way.

(b) A morphism between homology theories H and H ′ is a morphism φ : H → H ′

of functors on C∗, which is compatible with the long exact sequences from (ii).
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Before we go on, we note the two examples we need.

Examples 2.2 (a) This is the basic example. Let S be a noetherian scheme,
and let C = Schsft/S be the category of schemes which are separated and of finite
type over S. Let Λ = ΛS ∈ D

b(Sét) be a bounded complex of étale sheaves on S.
Then one gets a homology theory H = HΛ on C by defining

HΛ
a (X) := Ha(X/S; Λ) := H−a(Xét, R f

!Λ)

for a scheme f : X → S in Schsft/S (which may be called the étale homology of X
over (or relative) S with values in Λ). Here Rf ! is the right adjoint of Rf! defined
in [SGA 4.3, XVIII, 3.1.4]. For a proper morphism g : Y → X between schemes
fY : Y → S and fX : X → S in Schsft/S, the trace (=adjunction) morphism
tr : g∗Rg

! → id induces a morphism

R(fY )∗Rf
!
Y Λ = R(fX)∗Rg∗Rg

!Rf !XΛ
tr
−→R(fX)∗Rf

!
XΛ

which gives the covariant functoriality, and the contravariant functoriality for open
immersions is given by restriction. The long exact localization sequence 1.1 (ii)
comes from the exact triangle

i∗Rf
!
Y Λ = i∗Ri

!Rf !XΛ→ Rf !XΛ→ Rj∗j
∗Rf !XΛ = Rj∗Rf

!
V Λ→ .

(b) Sometimes (but not always) it suffices to consider the following more down
to earth version (avoiding the use of homology and Grothendieck-Verdier duality).
Let X be a fixed noetherian scheme, and let C = Sub(X) be the category of
subschemes of X, regarded as schemes over X (Note that this implies that there
is at most one morphism between two objects). Let Λ = ΛX be an étale sheaf
(resp. a bounded below complex of étale sheaves on X). Then one gets a homology
theory H = HΛX on Sub(X) by defining

HΛ
a (Z) := Ha(Z/X; Λ) := H−aZ (Uét,Λ|U),

as the étale cohomology (resp. hypercohomology) with supports in Z, where U
is any open subscheme of X containing Z as a closed subscheme. For the proper
morphisms in Sub(X), which are the inclusions Z ′ →֒ Z, the covariantly associated
maps are the canonical maps H−aZ′ (Uét,Λ|U)→ H−aZ (Uét,Λ|U). The contravariant
functoriality for open subschemes is given by the obvious restriction maps. We
may extend everything to the equivalent category Im(X) of immersions S →֒ X,
regarded as schemes over X, and we will identify Sub(X) and Im(X).

Remarks 2.3 (a) For any homology theory H and any integer N , we get a
shifted homology theory H[N ] defined by setting H[N ]a(Z) = Ha+N (Z) and mul-
tiplying the connecting morphisms by (−1)N .
(b) If H is a homology theory on C, then for any scheme X in C the restriction of
H to the subcategory C/X of schemes over X is again a homology theory.
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(c) Let H be a homology theory on C/X), and let Z →֒ X be an immersion. Then
the groups

H(Z)
a (T ) := Ha(T ×X Z)

again define a homology theory on C/X. For an open immersion j : U →֒ X (resp.
closed immersion i : Z →֒ X) one has an obvious morphism of homology theories
j∗ : H → H(U) (resp. i∗ : H

(Y ) → H).
(d) In the situation of 2.2 (a), let X ∈ Ob(Schsft/S). Then by functoriality of
f  Rf ! the restriction of HΛS to C/X = Schsft/X can be identified with HΛX

for ΛX = Rf !XΛS .

(e) Since for a subscheme ji : Z
i
→֒ U

j
→֒ X, with i closed and j open immersion,

we have

H−aZ (Uét,ΛX |U) = H−a(Zét, Ri
!(j∗ΛX) = H−a(Zét, R(ji)

!ΛX)

the notation Ha(Z/X; ΛX) has the same meaning in 2.2 (b) as in 2.2 (a), and the
restriction of HΛS to Sub(X) coincides with HΛX from 2.2 (b).
(f) If moreover fX : X → S is smooth of pure dimension d and ΛS = Z/n(b) for
integers n and b with n invertible on S, then by purity we have Rf !XZ/n(b) =
Z/n(b+d)[2d], so that HΛS restricted to Sub(X) is HΛX [2d] for ΛX = Z/n(b+d).
(g) In the situation of 2.2 (a), any morphism ψ : ΛS → Λ′S in Db(Sét) induces a
morphism between the associated homology theories. Similarly for 2.2 (b) and a
morphism ψ : ΛX → Λ′X of (complexes of) sheaves on X.

The axioms in 2.1 already imply the following property, which is known for example
2.2.
Let Y,Z ⊂ X be a closed subschemes with open complement U, V ⊂ X,
respectively. Then we get an infinite diagram of localization sequences

. . . Ha−1(Y ∩ Z) → Ha−1(Z) → Ha−1(U ∩ Z)
δ
→ Ha−2(Y ∩ Z) . . .

↑ δ ↑ δ ↑ δ (−) ↑ δ

. . . Ha(Y ∩ V ) → Ha(V ) → Ha(U ∩ V )
δ
→ Ha−1(Y ∩ V ) . . .

↑ ↑ ↑ ↑

. . . Ha(Y ) → Ha(X) → Ha(U)
δ
→ Ha−1(Y ) . . .

↑ ↑ ↑ ↑

. . . Ha(Y ∩ Z) → Ha(Z) → Ha(U ∩ Z)
δ
→ Ha−1(Y ∩ Z) . . .

Lemma 2.4 The above diagram is commutative, except for the squares marked
(–), which anticommute.

Proof For all squares except for the one with the four δ’s, the commutativity
follows from the functoriality in 2.1 (ii), so it only remains to consider that square
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marked (-). Since (Y ∪ Z) \ (Y ∩ Z) is the disjoint union of Y \ Z = Y ∩ V and
Z \ Y = U ∩ Z, from 2.1 (ii) we have an isomorphism

Ha−1((Y ∪ Z) \ (Y ∩ Z)) ∼= Ha−1(U ∩ Z)⊕Ha−1(Y ∩ V )

and a commutative diagram from the respective localization sequences

Ha−1(X) → Ha−1(X \ (Y ∩ Z))
↑ ↑

Ha−1(Y ∪ Z) → Ha−1(U ∩ Z)⊕Ha−1(Y ∩ V )
δ+δ
→ Ha−2(Y ∩ Z)

↑ ↑ (δ, δ)
Ha(X \ (Y ∪ Z)) = Ha(U ∩ V ) .

As indicated, the connecting morphisms are given by the product α = (δ, δ) and
the sum β = δ + δ, respectively, of the connecting morphisms from the square
marked (-), as one can see by applying the functoriality 2.1 (ii). Now the diagram
implies that the composition β ◦ α is zero, hence the claim.

Corollary 2.5 The maps δ : Ha(T ×X U) → Ha−1(T ×X Y ), for T ∈ C/X,
define a morphism of homology theories δ : H(U)[1]→ H(Y ).

We shall also need the following Mayer-Vietoris property.

Lemma 2.6 Let X = X1∪X2 be the union of two closed subschemes iν : Xν →֒ X,
and let kν : X1 ∩ X2 →֒ Xν be the closed immersions of the (scheme-theoretic)
intersection. Then there is a long exact Mayer-Vietoris sequence

→ Ha(X1 ∩X2)
(k1∗,−k2∗)
−→ Ha(X1)⊕Ha(X2)

i1∗+i2∗−→ Ha(X)
δ
→Ha−1(X1 ∩X2)→ .

This sequence is functorial with respect to proper maps, localization sequences and
morphisms of homology theories, in the obvious way.

Proof The exact sequence is induced in a standard way (via the snake lemma)
from the commutative ladder of localization sequences

.. Ha(X2)
i2∗→ Ha(X) → Ha(X \X2) → Ha−1(X2) ..

↑ k2∗ ↑ i1∗ ‖ ↑

.. Ha(X1 ∩X2)
k1∗→ Ha(X1) → Ha(X1 \X1 ∩X2) → Ha−1(X1 ∩X2) ..

The functorialities are clear from the functoriality of this diagram.

Now we come to the main object of this chapter. As in [BO] one proves the
existence of the following niveau spectral sequence, by using the niveau filtration
on the homology and the method of exact couples.
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Proposition 2.7 If H is a homology theory on C, then, for every X ∈ Ob(C),
there is a spectral sequence of homological type

E1
r,q(X) =

⊕

x∈Xr

Hr+q(x) ⇒ Hr+q(X).

Here Xr = {x ∈ X | dimx = r} and

Ha(x) = lim
→
Ha(V )

for x ∈ X, where the limit is over all open non-empty subschemes V ⊆ {x}.
This spectral sequence is covariant with respect to proper morphisms in C and
contravariant with respect to open immersions.

Remarks 2.8 (a) Since we shall partially need it, we briefly recall the construction
of this spectral sequence. As in [BO], for any scheme T ∈ C let Zr = Zr(T ) be
the set of closed subsets Z ⊂ T of dimension ≤ r, ordered by inclusion, and let
Zr/Zr−1(T ) be the set of pairs (Z,Z ′) ∈ Zr ×Zr−1 with Z ′ ⊂ Z, again ordered
by inclusion. For every (Z,Z ′) ∈ Zr/Zr−1(X), one then has an exact localization
sequence

. . .→ Ha(Z
′)→ Ha(Z)→ Ha(Z \ Z

′)
δ
→Ha−1(Z

′)→ . . . ,

and the limit of these, taken over Zr/Zr−1(X), defines an exact sequence denoted

. . . Ha(Zr−1(X))→ Ha(Zr(X))→ Ha(Zr/Zr−1(X))
δ
→Ha−1(Zr−1(X)) . . . .

The collection of these sequences for all r, together with the fact that one has
H∗(Zr(X)) = 0 for r < 0 and H∗(Zr(X)) = H∗(X) for r ≥ dimX, gives the
spectral sequence in a standard way, e.g., by exact couples. Here

E1
r,q(X) = Hr+q(Zr/Zr−1(X)) =

⊕

x∈Xr

Hr+q(x).

The differentials are easily described, e.g., in the same way as in [J3] for a filtered
complex (by renumbering from cohomology to homology). In particular, the E1-
differentials are the compositions

Hr+q(Zr/Zr−1(X))
δ
→Hr+q−1(Zr−1(X))→ Hr+q−1(Zr−1/Zr−2(X)).

Moreover the ’edge isomorphisms’ E∞r,q
∼= Er,q

r+q are induced by

Hr+q(Zr/Zr−1(X)← Hr+q(Zr(X))→ Hr+q(Z∞(X)) = Hr+q(X)

(b) This shows that the differential

d1r,q :
⊕

x∈Xr

Hr+q(x) →
⊕

x∈Xr−1

Hr+q−1(x)
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has the following description. For x ∈ Xr and y ∈ Xr−1 define

δlocX {x, y} := δlocX,a{x, y} : Ha(x)→ Ha+1(y)

as the map induced by the connecting maps Ha(V \ {y})
δ
→Ha−1(V ∩ {y}) from

2.1 (ii), for all open V ⊂ {x}. Then the components of d1r,q are the δlocX,r+q{x, y}.

Note that δlocX {x, y} = 0 if y is not contained in {x}.
(c) Every morphism φ : H → H ′ between homology theories induces a morphism
between the associated niveau spectral sequences.

We note some general results for fields and discrete valuation rings.

Proposition 2.9 Let S = Spec(F ) for a field F , let X be separated and of finite
type over F , and let H be a homology theory on Sub(X). If i : Y →֒ X is a closed
subscheme and j : U = X \ Y →֒ X is the open complement, then the following
holds.
(a) For all r, q the sequence

0→ E1
r,q(Y )

i∗→ E1
r,q(X)

j∗

→ E1
r,q(U)→ 0

is exact.
(b) The connecting morphisms δ : Ha(Z ∩ U) → Ha−1(Z ∩ Y ), for T ∈ Sub(X),
induce a morphism of spectral sequences

δ : E1
r,q(U)(−) −→ E1

r−1,q(Y ),

where the superscript (−) means that all differentials in the original spectral se-
quence (but not the edge isomorphisms E∞r,q

∼= Er,q
r+q) are multiplied by -1.

Proof (a): One has always Xr ∩ Y = Yr, and since X is of finite type over a
field, we also have Xr ∩ U = Ur.
(b): This morphism is induced by the morphism of homology theories
δ : H(U)[1] → H(Y ) and the construction of the spectral sequences, noting the
following. For a closed subset Z ⊂ U let Z be the closure in X and δ(Z) = Z ∩Y .
For (Z,Z ′) ∈ Zr/Zr−1(U) one then has (δ(Z), δ(Z ′)) ∈ Zr−1/Zr−2(Y ), and a
commutative diagram via localization sequences

.. Ha(Z ′) → Ha(Z) → Ha(Z \ Z ′)
δ
→ Ha−1(Z ′) ..

↑ ↑ ↑ ↑

.. Ha(δ(Z
′)) → Ha(δ(Z)) → Ha(δ(Z) \ δ(Z

′))
δ
→ Ha−1(δ(Z

′)) ..
↑ δ ↑ δ ↑ δ ↑ δ

.. Ha+1(Z
′) → Ha+1(Z) → Ha+1(Z \ Z

′)
−δ
→ Ha(Z

′) ..

This shows that one gets a map of the exact couples defining the spectral sequences
and hence of the spectral sequences themselves, with the claimed shift and change
of signs. Note that every differential in the spectral sequence involves a connecting
morphism once, whereas the edge isomorphisms do not involve any connecting
morphism; this gives the signs in E(−).
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Corollary 2.10 Let C be a subcategory of Schsft/Spec(F ). For every fixed q,
the family of functors (E2

r,q)r∈Z defines a homology theory on C.

Proof The functoriality for proper morphisms and immersions comes from that
of the spectral sequence noted in 2.8 (c). Moreover, in the situation of 2.9, we get
an exact sequence of complexes

0→ E1
•,q(Y )→ E1

•,q(X)→ E1
•,q(U)→ 0,

whose associated long exact cohomology sequence is the needed long exact se-
quence

. . .→ E2
r,q(Y )→ E2

r,q(X)→ E2
r,q(U)

δ
→E2

r−1,q(Y )→ . . . .

Its functoriality for proper morphisms and open immersions comes from the func-
toriality of the mentioned exact sequence of complexes.

Remark 2.11 By the construction in 2.9 (b), the components of the maps δ on
E1-level,

δ : E1
r,q(U) =

⊕

x∈Ur

Hr+q(x)→
⊕

y∈Yr−1

Hr+q(y) = E1
r−1,q(Y )

are the maps δlocX {x, y}. This also shows that the associated maps on the E2-level
coincide with the connecting morphisms in 2.10.

We now turn to discrete valuation rings.

Proposition 2.12 Let S = Spec(A) for a discrete valuation ring A, let X be
separated of finite type over S, and let H be a homology theory on Sub(X). Let η
and s be the generic and closed point of S, respectively, and write Zη = Z ×S η
and Zs = Z ×S s for any Z ∈ Ob(Sub(X)).
(a) The connecting morphisms δ : Ha(Zη) → Ha−1(Zs) induce a morphism of
spectral sequences

∆X : E1
r,q(Xη)

(−) → E1
r,q−1(Xs),

where the superscript (−) has the same meaning as in 2.9. This morphism is func-
torial with respect to closed and open immersions, so that one gets commutative
diagrams

0 → E1
r,q(Yη)

(−) → E1
r,q(Xη)

(−) → E1
r,q(Uη)

(−) → 0
↓ ∆Y ↓ ∆X ↓ ∆U

0 → E1
r,q(Ys) → E1

r,q(Xs) → E1
r,q(Us) → 0

for every closed subscheme Y in X, with open complement U .
(b) If X is proper over S, the open immersion j : Xη → X induces a morphism
of spectral sequences

j∗ : E1
r,q(X) → E1

r−1,q(Xη)
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such that

0→ E1
r,q(Xs)

i∗→ E1
r,q(X)

j∗

→ E1
r−1,q(Xη)→ 0

is exact for all r and q, where i : Xs →֒ X is the closed immersion of the special
fiber Xs into X.

Proof. (a): As in 2.9 (b), this morphism is induced by the morphism of homology
theories δ : H(Xη)[1] → H(Xs) and the construction of the spectral sequences,
noting the following in the present case: For Z ∈ Zr(Xη) one now has δ(Z) =
Z ∩Xs ∈ Zr(Xs), where Z denotes the closure of Z in X.
(b): If X → S is proper, then Xr ∩Xη = (Xη)r−1.

Remarks 2.13 (a) Proposition 2.12 (b) will in general be false if X is not proper
over S, because Xr ∩Xη will in general be different from (Xη)r−1 (e.g., for X =
Spec(K)).
(b) By definition of ∆X , the components of the map on E1-level,

∆X :
⊕

x∈(Xη)r

Hr+q(x) −→
⊕

x∈(Xs)r

Hr+q+1(x)

are the maps δlocX {x, y}.

We study now two important special cases of Example 2.2 (a) (resp.(b)).

B. Étale homology over fields Let S = Spec(F ) for a field F , and fix integers
n and b. We consider two cases.

(i) n is invertible in F , and b is arbitrary.

(ii) F is a perfect field of characteristic p > 0, and n = pm for a positive integer
m. Then we only consider the case b = 0.

We consider the homology theory

Ha(X/F,Z/n(b)) := Ha(X/S;Z/n(−b)) = H−a(Xét, Rf
!Z/n(−b))

(for f : X → S) of 2.2 (a) on Schsft/S associated to the following complex of étale
sheaves Z/n(−b) on S. In case (i) we take the usual (−b)-fold Tate twist of the
constant sheaf Z/n and get the homology theory considered by Bloch and Ogus
in [BO]. In case (ii) we define the complex of étale sheaves

Z/pm(i) := Z/pm(i)T :=WmΩi
T,log[−i],

for every T of finite type over F and every non-negative integer i, so that

Ha(X/F,Z/n(b)) = H−a+b(X,Rf !WmΩ−bF,log).
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Here WmΩi
T,log is the logarithmic de Rham-Witt sheaf defined in [Il]. Note that

Z/n(0) is just the constant sheaf Z/n, and that WmΩi
F,log is not defined for i < 0

and 0 for i > 0 (That is why we just consider b = 0 in case (ii)).

The niveau spectral sequence 2.7 associated to our étale homology is

E1
r,q(X/F,Z/n(b)) =

⊕

x∈Xr

Hr+q(x/F,Z/n(b))⇒ Hr+q(X/F,Z/n(b)).

Theorem 2.14 Let X be separated and of finite type over F .
(a) There are canonical isomorphisms

Ha(x/F,Z/n(b)) ∼= H2r−a(k(x),Z/n(r − b)) for x ∈ Xr.

(b) If the cohomological ℓ-dimension cdℓ(F ) ≤ c for all primes ℓ dividing n, then
one has E1

r,q(X/F,Z/n(b)) = 0 for all q < −c, and, in particular, canonical edge
morphisms

ǫ(X/F ) : Ha−c(X/F,Z/n(b)) −→ E2
a,−c(X/F,Z/n(b)).

(c) If X is smooth of pure dimension d over F , then there are canonical isomor-
phisms

Ha(X/F,Z/n(b)) ∼= H2d−a(Xét,Z/n(d− b)).

Proof (c): If f : X → Spec(F ) is smooth of pure dimension d, then one has a
canonical isomorphism of sheaves

(2-1) αX : Rf !Z/n(−b)S ∼= Z/n(d− b)[2d],

and (c) follows by taking the cohomology. In case (i) the isomorphism αX is the
Poincaré duality proved in [SGA 4.3, XVIII, 3.2.5]. In case (ii) it amounts to a
purity isomorphism Rf !Z/pm ∼=WmΩd

X,log[d] which is proved in [JSS].
Independently of [JSS] we note the following. In the case of a finite field F (which
suffices for the later applications) we may deduce (c) in case (ii) from results of
Moser [Mo] as follows. By [Mo] we have a canonical isomorphism of finite groups

Exti(F ,WmΩd
X,log)

∼= Hd+1−i
c (X,F)∨,

for any constructible Z/pm-sheaf F on X. Here M∨ = Hom(M,Z/pm) for a
Z/pm-module M . Applying this to F = Z/pm, we get an isomorphism

(2-2) Hi(X,WmΩd
X,log)

∼= Hd+1−i
c (X,Z/pm)∨.

On the other hand, by combining Artin-Verdier duality [SGA 4.3, XVIII, 3.1.4])
and duality for Galois cohomology over F (cf. also 5.3 (2) below), one gets a
canonical isomorphism of finite groups

(2-3) Hj(X,Z/p
m(0))) = H−j(X,Rf !Z/pm) ∼= H1+j

c (X,Z/pm)∨.
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Putting together (2-2) and (2-3) we obtain (c):

H2d−a(X,Z/pm(d))
def
= Hd−a(X,WmΩd

X,log)
∼= Ha(X,Z/p

m(0))).

(a): By topological invariance of étale cohomology we may assume that F is
perfect also in case (i). Then every point x ∈ Xr has an open neighbourhood
V ⊂ {x} which is smooth of dimension r over F . Thus (a) follows from (c) and
the compatibility of étale cohomology with limits.
(b): If x ∈ Xr, then k(x) is of transcendence degree r over F , and hence
cdℓ(F ) ≤ c implies cdℓ(k(x)) ≤ c + r. Hence in case (i) Hr+q(x/F,Z/n(b)) =
Hr−q(k(x),Z/n(r − b)) = 0 for r − q > c + r, i.e., q < −c. In case (ii), since
cdp(L) ≤ 1 for every field of characteristic p > 0, we have Hr+q(x/F,Z/p

m(0)) =
H−q(k(x),WmΩr

log) = 0 for −q > 1, which shows the claim unless cdp(F ) = 0. In
this case we may assume that F is algebraically closed, by a usual norm argument,
because every algebraic extension of F has degree prime to p [Se, I 3.3 Cor. 2].
Then Hi(k(x),WmΩr

log) = 0 for i > 0 by a result of Suwa ([Sw, Lem. 2.1], cf.
the proof of Theorem 3.5 (a) below), because k(x) is the limit of smooth affine
F -algebras by perfectness of F .

We shall need the following result from [JSS].

Lemma 2.15 Via the isomorphisms 2.14 (a), the homological complex

E1
•,q(X/F,Z/n(b)) :

. . .
⊕

x∈Xr

Hr+q(x/F,Z/n(b)) →
⊕

x∈Xr−1

Hr+q−1(x/F,Z/n(b)) . . .

. . . →
⊕

x∈X0

Hq(x/F,Z/n(b))

(with the last term placed in degree zero) coincides with the Kato complex

C−q,−bn (X) :

. . .
⊕

x∈Xr

Hr−q(k(x),Z/n(r − b)) →
⊕

x∈Xr−1

Hr−q−1(k(x),Z/n(r − b− 1)) . . .

. . . →
⊕

x∈X0

H−q(k(x),Z/n(−b))

up to signs.

We also note the following functoriality.

Lemma 2.16 The edge morphisms ǫ from 2.14 (b) define a morphism of homology
theories on Schsft/F

ǫ : H•−c(−/F,Z/n(b)) −→ E2
•,−c(−/F,Z/n(b))

2.15
= H•(C

−c,−b
n (−))

Proof Note that the target is a homology theory by 2.10. The functoriality
for proper morphisms and open immersions is clear from the functoriality of the
niveau spectral sequence. The compatibility with the connecting morphisms of
localization sequences follows from 2.8 (b) and remark 2.11.
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C. Étale homology over discrete valuation rings Let S = SpecA for
a discrete valuation ring A with residue field F and fraction field K. Let j :
η = Spec(K) →֒ S be the open immersion of the generic point, and let i : s =
Spec(F ) →֒ S be the closed immersion of the special point. Let n and b be integers.
We consider two cases:

(i) n is invertible on S and b is arbitrary.

(ii) K is a field of characteristic 0, F is a perfect field of characteristic p > 0,
n = pm for a positive integer m, and b = −1.

We consider the homology theory

Ha(X/S,Z/n(b)) := Ha(X/S;Z/n(−b)S) = H−a(Xét, Rf
!Z/n(−b)S)

(for f : X → S) of 2.2 (a) on Schsft/S associated to the complex Z/n(−b)S ∈
Db(Sét) defined below. The associated niveau spectral sequence is

E1
p,q(X/S,Z/n(b)) =

⊕

x∈Xp

Hp+q(x/S,Z/n(b))⇒ Hp+q(X/S,Z/n(b)).

In case (i), Z/n(−b)S is the usual Tate twist of the constant sheaf Z/n on S. In
case (ii) it is the complex of étale sheaves on S

Z/n(1)S := Cone(Rj∗(Z/n(1))η
σ
→ i∗(Z/n)s[−1])[−1]

considered in [JSS].

For the convenience of the reader, we add some explanation. By definition, (Z/n)s
is the constant sheaf with value Z/n on s, and (Z/n(1))η is the locally constant
sheaf Z/n(1) = µn of n-th roots of unity on η. Note that n is invertible on
η. The complex Rj∗(Z/n(1))η is concentrated in degrees 0 and 1: Pulling back
by j∗ one gets (Z/n(1))η, concentrated in degree zero, and pulling back by i∗

the stalk of the i-th cohomology sheaf is Hi(Ksh, µn), where Ksh is the strict
Henselization of K. Since Ksh has cohomological dimension at most 1, the claim
follows. Given this, and adjunction for i, the morphism σ is determined by a map
i∗R1j∗(Z/n(1))η → (Z/n)s. Since sheaves on s are determined by their stalks as
Galois modules, it suffices to describe the map on stalks

H1(Ksh, µn) = K×sh/(K
×
sh)

n −→ Z/n

which we take to be the map induced by the normalized valuation.
We remark that (Z/n(1))S is well-defined up to unique isomorphism, although
forming a cone is not in general a well-defined operation in the derived category.
But in our case, the source A of σ is concentrated in degrees 0 and 1, and the
target B is concentrated in degree 1, so that Hom(A[1], B) = 0 in the derived
category, and we can apply [BBD, 1.1.10].

Let X be separated of finite type over S, and use the notations s, η,Xs and Xη

from Proposition 2.12.
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Lemma 2.17 There are isomorphisms of spectral sequences

E1
r,q(Xη/S,Z/n(b)) ∼= E1

r,q(Xη/η,Z/n(b))

E1
r,q(Xs/S,Z/n(b)) ∼= E1

r,q+2(Xs/s,Z/n(b+ 1)).

Proof. One has canonical isomorphisms

j∗Z/n(−b)S ∼= Z/n(−b)η

Ri!Z/n(−b)S ∼= Z/n(−b− 1)s[−2].

This is clear for j∗. For i! it is the purity for discrete valuation rings [SGA 5,
I,5.1] in case (i), and follows from the definition of Z/n(1)S in case (ii). Thus the
claim follows from remarks 2.3 (d) and (g), which imply isomorphisms of homology
theories on Schsft/η and Schsft/s, respectively.

Ha(Xη/S;Z/n(−b)) ∼= Ha(Xη/η;Z/n(−b))

Ha(Xs/S;Z/n(−b)) ∼= Ha+2(Xs/s;Z/n(−b− 1)).

Definition 2.18 Define the residue morphism

∆X : C−a,−bn (Xη)
(−) → C−a−1,−b−1n (Xs)

between the Kato complexes by the commutative diagram

C−a,−bn (Xη)
(−) ∆X−→ C−a−1,−b−1n (Xs)

‖ 2.15≀ ‖ 2.15≀

E1
•,a(Xη/η,Z/n(b))

(−) E1
•,a+1(Xs/s,Z/n(b+ 1))

‖ 2.17≀ ‖ 2.17≀

E1
•,a(Xη/S,Z/n(b))

(−) ∆X−→
2.12(a)

E1
•,a−1(Xs/S,Z/n(b))

Remark 2.19 By 2.12 (a), the residue map is compatible with restrictions for
open immersions and push-forwards for closed immersion. Thus, if Y is closed in
X, with open complement U = X \ Y , we get a commutative diagram with exact
rows

0 → C−a,−bn (Yη) → C−a,−bn (Xη) → C−a,−bn (Uη) → 0

↓ ∆Y ↓ ∆X ↓ ∆U

0 → C−a−1,−b−1(Ys) → C−a−1,−b−1n (Xs) → C−a−1,−b−1(Us) → 0
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In view of 2.13 (b), the following is proved in [JSS].

Lemma 2.20 For x ∈ (Xη)r and y ∈ (Xs)r the component

∆X{x, y} : H
r+a+1(k(x),Z/n(r − b+ 1))→ Hr+a(k(y),Z/n(r − b))

of ∆X coincides with the residue map δKato
X {x, y} used by Kato in the complex

Ca,−b(X).

This gives the relationship between étale homology and the Kato complexes also
in the case of a discrete valuation ring:

Corollary 2.21 If X is proper over S, then the following holds.
(a) The residue map ∆X from 2.18 coincides with the map considered by Kato in
Conjecture B (cf. the introduction).
(b) The homological complex

E1
•,q(X/S,Z/n(b)) :

. . .→
⊕

x∈Xr

Hr+q(x/S,Z/n(b))→
⊕

x∈Xr−1

Hr+q−1(x/S,Z/n(b))→ . . .

. . .→
⊕

x∈X0

Hq(x/S,Z/n(b))

(with the last term placed in degree zero) coincides with the Kato complex

C−q−2,−b−1n :

. . .
⊕

x∈Xr

Hr−q−2(k(x),Z/n(r − b− 1))→
⊕

x∈Xr−1

Hr−q−3(k(x),Z/n(r − b− 2)) . . .

. . .→
⊕

x∈X0

H−q−2(k(x),Z/n(−b− 1)).

Proof. Since Xr ∩Xs = (Xs)r and Xr ∩Xη = (Xη)r−1, we have

Ha(x/S,Z/n(b)) = H2r−a−2(k(x),Z/n(r − b− 1)) for all x ∈ Xr.

Hence the components agree in (b). It then follows from 2.13 (b), 2.15 and Kato’s
definitions that (a) and (b) are equivalent, and that (a) holds by lemma 2.20.

3. Kato complexes and étale homology over finite fields

3.1 In this section, F is a finite field of characteristic p > 0, and n > 0 is an
integer. Let

Y
f
→ Spec(F )  Het

a (Y/F,Z/n(0)) := H−a(Yét, Rf
!Z/n(0))
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be the étale homology with coefficients Z/n(0) over F , and let

E1
r,q(Y/F,Z/n(0)) ⇒ Het

r+q(Y/F,Z/n(0)).

be the associated niveau spectral sequence (cf. 2.A). Since F has cohomological
dimension 1, theorems 2.14 (b) and theorem 2.21 give a canonical edge morphism

ǫY : Het
a−1(Y/F,Z/n(0)) → E2

a,−1(Y/F,Z/n(0)) = Ha(C
1,0(Y,Z/n)) = HK

a (Y,Z/n)

from étale to Kato homology which we want to study more closely for certain
varieties.

For the étale homology we use the Hochschild-Serre spectral sequence, which in
our case just becomes the collection of short exact sequences

0→ Het
a+1(Y /F ,Z/n(0))Γ

α
→Het

a (Y/F,Z/n(0))
β
→Het

a (Y /F ,Z/n(0))Γ → 0,

where Γ = Gal(F/F ), for an algebraic closure F of F , is the absolute Galois group
of F , and Y = Y ×F F . Here we have used that the cohomological dimension of Γ is
1 , and that one has a canonical isomorphisms H1(Γ,M) ∼=MΓ for any Γ-module
M . If we pass to the inductive limit, we get versions with coefficients Qℓ/Zℓ(0) or
Q/Z(0) which we will treat as well. In the following, we shall suppress F and F
in the notations.

For the Kato homology the following conjecture by Kato, which is a special case
of conjecture C in the introduction, will play an important role. Let ℓ be a prime
and let ν be a natural number or ∞. If ν =∞, we define Z/ℓ∞ := Qℓ/Zℓ.

Conjecture K(F,Z/ℓν) If X is a connected smooth projective variety over F ,
then

HK
i (X,Z/ℓν)

∼=
−→

{
0

Z/ℓν
if i 6= 0,

if i = 0.

3.2 More precisely, we want to study ǫY for strict normal crossings varieties,
i.e., reduced separated varieties Y with smooth irreducible components Y1, . . . , YN
intersecting transversally. Let

Yi1,...,is := Yi1 ×Y . . .×Y Yis

be the scheme-theoretic intersection of Yi1 , . . . , Yis , and write

Y [s] :=
∐

1≤i1<···<is≤N

Yi1,...,is

for the disjoint union of the s-fold intersections of the Yi, for s > 0. By assumption,
all Y [s] are smooth. Denote by

i[s] : Y [s] −→ Y
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the canonical morphism induced by the immersions Yi1,...,is →֒ Y , and let

δν : Y [s] −→ Y [s−1] (ν = 1, . . . , s)

be the morphism induced by the closed immersions

Yi1,...,is →֒ Yi1,...,îν ,...,is .

Definition 3.3 A good divisor on Y is a reduced closed subscheme Z ⊂ Y of pure
codimension 1 such that

(a) Z intersects all subschemes Yi1,...,is transversally.

(b) U = Y \ Z is affine.

Lemma 3.4 Let X be a smooth proper variety over a field L, and let D be a smooth
divisor on X such that X \D is affine. If X is connected of dimension > 1, then
D is connected.

Proof We may assume that X is geometrically connected over L, and, by base
change, that L is algebraically closed. Let d = dim X, and let ℓ be a prime
invertible in L. Then we get an exact Gysin sequence

0 = H2d−1
et (U,Z/ℓZ)→ H2d−2

et (D,Z/ℓZ)→ H2d
et (X,Z/ℓZ)→ H2d

et (U,Z/ℓZ) = 0

where the vanishing comes from weak Lefschetz (note that 2d− 1 > d = dim U).
Since dimZ/ℓZ H

2d
et (X,Z/ℓZ) is the number of proper connected components of a

purely d-dimensional smooth variety X, the claim follows.

If Z is a good divisor, then it is again a strict normal crossing variety. By
the lemma, the intersections Yi ∩ Z are the connected components of Z, unless
dim(Yi) = 1. If Y is projective, then a good divisor always exists over any infinite
field extension of F by the Bertini theorem. The main result of this section is:

Theorem 3.5 Let Y be a proper strict normal crossings variety of pure dimension
d over F , and let ℓ be a prime number. Let Z ⊂ Y be a good divisor, and let
U = Y \ Z be the open complement.

(a) One has Het
a−1(U,Z/ℓ

ν(0)) = 0 = Het
a (U,Z/ℓν) for a < d and all ν ≥ 1.

(b) If the Kato conjecture K(F,Qℓ/Zℓ) holds in degrees ≤ m, then the map

ǫU : Het
a−1(U,Qℓ/Zℓ(0)) −→ Ha(C

1,0(U,Qℓ/Zℓ)) = HK
a (U,Qℓ/Zℓ)

is an isomorphism for all a ≤ min(m, d).
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Proof We prove the theorem by double induction on the dimension and the
number N of components of Y . If dim Y = 0, then the claim is trivially true.
Now let Y be of pure dimension d, and assume the statements are true in smaller
dimension.
(1) If N = 1, i.e., Y has only one component, then Y is smooth and proper.
Let Z ⊂ Y be a good divisor. Then U = Y \ Z is affine. For ℓ 6= p one then
has Het

a (U,Z/ℓν(0)) = H2d−a
et (U,Z/ℓν(d)) = 0 for a < d by weak Lefschetz. For

ℓ = p one has Het
a (U,Z/pr(0)) = H2d−a

et (U,Z/pr(d)) = Hd−a(U,WrΩ
d
U,log) = 0

for d − a > 0, i.e., a < d as well, by 2.14 (c) and the weak Lefschetz theorem
proved in [Sw, Lemma 2.1]. By the exact sequence

0→ Het
a (U,Z/ℓν(0))Γ → Het

a−1(U,Z/ℓ
ν(0))→ Het

a−1(U,Z/ℓ
ν(0))Γ → 0

we see that Het
a−1(U,Z/ℓ

ν(0)) = 0 for a < d as claimed in (a).
For (b) we may assume that Y is geometrically connected. First let dim Y = 1. In
this case Het

1 (Y ,Q/Z(0)) = H1
et(Y ,Q/Z(1)) = Tor(Pic(Y )) is the torsion of the

Jacobian of Y , hence Het
1 (Y ,Q/Z(0))Γ = 0, by Weil’s theorem. The map

Het
0 (Z,Q/Z(0))→ Het

0 (Y,Q/Z(0))

is therefore identified with the Gysin map

H0
et(Z,Q/Z(0))

Γ → H2
et(Y ,Q/Z(1))

Γ ∼= Q/Z,

which is surjective: It has a left inverse up to isogeny, and the target is divisi-
ble. Hence the upper row in the following commutative diagram of localization
sequences is exact

0 → Het
0 (U,Q/Z(0)) → Het

−1(Z,Q/Z(0)) → Het
−1(Y,Q/Z(0)) → 0

↓ ǫU ↓ ǫZ ↓ ǫY
0 → HK

1 (U,Q/Z) → HK
0 (Z,Q/Z) → HK

0 (Y,Q/Z) → 0.

Note that Het
−1(U,Q/Z(0)) = 0 by the first step. Since the Kato conjecture is

known for Z and Y (cf. the introduction), one has HK
1 (Y,Q/Z) = 0, and an

isomorphism HK
0 (Y,Q/Z) ∼= Q/Z via the trace map to Spec(F ). Therefore ǫZ

and ǫY are isomorphisms, and we conclude that the bottom sequence is exact
(recall that Kato homology gives a homology theory in the sense of 2.1), ǫU is an
isomorphism, and HK

0 (U,Q/Z) = 0. This settles the case dim Y = 1.
Now assume dim Y > 1. The long exact localization sequence for the Kato ho-
mology,

. . . HK
a (Y,Qℓ/Zℓ)→ HK

a (U,Qℓ/Zℓ)→ HK
a−1(Z,Qℓ/Zℓ)→ . . .

→ HK
1 (U,Qℓ/Zℓ)→ HK

0 (Z,Qℓ/Zℓ)
β
→HK

0 (Y,Qℓ/Zℓ)→ HK
0 (U,Qℓ/Zℓ)→ 0

then shows that HK
a (U,Qℓ/Zℓ) = 0 for all 0 ≤ a ≤ m if the Kato conjecture

is true in dimensions ≤ m for Y and Z. Note that β is an isomorphism
since Z is connected for dim Y > 1 by lemma 3.4. So it remains to show that
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Het
d−1(U,Qℓ/Zℓ(0)) = 0 in the considered case as well. The above weak Lefschetz

results imply that

Het
d (U,Qℓ/Zℓ(0))Γ ∼= Het

d−1(U,Qℓ/Zℓ(0))

is divisible, and a quotient of Het
d (U,Qℓ(0))Γ. But the exact sequence

Het
d (Y ,Qℓ(0))→ Het

d (U,Qℓ(0))→ Het
d−1(Z,Qℓ(0))

shows that the middle group is mixed of weights −d and −d + 1, since
Het

a (X,Qℓ(b)) ∼= H2d−a
et (X,Qℓ(d− b)) is pure of weight b− a for a smooth proper

variety X by Deligne’s proof of the Weil conjecture (for the case ℓ = p one uses
results of Katz-Messing cf. [G-S]). Hence Het

d (U,Qℓ(0))Γ = 0 for d > 1.
(2) Finally we carry out the induction step for the induction on N , the number
of components of Y . Let

Y ′ =
N−1⋃

i=1

Yi.

Then Y ′∩YN is a strict normal crossings variety, and Z∩Y ′, Z∩YN and Z∩Y ′∩YN

are good divisors on Y ′, YN and Y ′ ∩ YN , respectively. Write
◦

Y= U = Y \ Z,
◦

Y ′= Y ′ \Z and
◦

YN= YN \Z, and note that
◦

Y ′ ∩
◦

YN= (Y ′ ∩ YN ) \Z. By 2.6 and
2.16 we get a commutative diagram of Mayer-Vietoris sequences

.. Het
a−1(

◦

Y ′ ∩
◦

YN ) → Het
a−1(

◦

Y ′)⊕Het
a−1(

◦

YN ) → Het
a−1(

◦

Y ) → Het
a−2(

◦

Y ′ ∩
◦

YN )..
↓ ↓ ↓ ↓

.. HK
a (

◦

Y ′ ∩
◦

YN ) → HK
a (

◦

Y ′)⊕HK
a (

◦

YN ) → HK
a (

◦

Y ) → HK
a−1(

◦

Y ′ ∩
◦

YN )..

by taking the maps ǫ as vertical maps. Here we abbreviated Het
a (−) for

Het
a (−, ℓν(0)) and HK

a (−) for HK
a (−, ℓν), respectively, where ν ∈ N∪{∞} is fixed.

By induction on N , (a) holds for
◦

Y ′,
◦

YN and
◦

Y ′ ∩
◦

YN , hence also for
◦

Y= U by the
upper row. Now let ν =∞. By induction the vertical maps are then isomorphisms

for
◦

Y ′ and
◦

YN if a ≤ min(d,m), and for
◦

Y ′ ∩
◦

YN if a ≤ min(d− 1,m), so we con-

clude by the 5-lemma. In fact, in case a = d ≤ m note that HK
d (
◦

Y ′ ∩
◦

YN ) = 0.

So even if H ét
d−1(

◦

Y ′ ∩
◦

YN ) may be non-zero (because d > d − 1 = dim Y ′ ∩ YN ),
the 5-lemma in its stronger form applies.

We now come to the proof of theorem 1.4 in the introduction. We use the following
spectral sequence.

Proposition 3.6 Let Y be a noetherian scheme, let Y = (Y1, . . . , YN ) be an or-
dered tuple of closed subschemes with Y =

⋃
Yi, and let the notations be as in 3.2

(although we do not assume any normal crossing condition). Let n, r and b be
integers such that the Kato complex Cr,b(Y,Z/n) is defined.
(a) There is a spectral sequence of homological type

E1
s,t(Y,Z/n) = Ht(C

r,b(Y [s+1],Z/n)) ⇒ Hs+t(C
r,b(Y,Z/n)),
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in which the E1−differential is d1s,t =
∑s+1

ν=1(−1)
ν+1(δν)∗, with (δν)∗ being the

homomorphism induced by the map δν from 3.2.
(b) One has E1

s,t(Y,Z/n) = 0 for all t < 0 and hence canonical edge morphisms

eY,na : Ha(C
r,b(Y,Z/n))→ E2

a,0(Y,Z/n) = Ha(H0(C
r,b(Y [•+1],Z/n))).

(c) Let Y be of finite type over the finite field F . Define the following complex

C(Y,Z/n) : . . .→ (Z/n)π0(Y
[s+1]) ds→(Z/n)π0(Y

[s]) → . . . → (Z/n)π0(Y
[1]).

Here π0(Z) is the set of connected components of a scheme Z, the last term of

the complex is placed in degree 0, and the differential ds is
∑s+1

ν=1(−1)
ν+1(δν)∗,

where (δν)∗ is the obvious homomorphism induced by the map δν from 3.2. If Y
is proper, then there is a canonical homomorphism

tr : E2
a,0(Y) −→ Ha(Y,Z/n) := Ha(C(Y,Z/n)).

If Y is a proper strict normal crossing variety, and Y = (Y1, . . . , YN ) consists of
the irreducible components of Y , then this map is an isomorphism.

Proof (a): Write C for Cr,b. There is an exact sequence of complexes

. . . → C(Y [s+1],Z/n)
ds→C(Y [s],Z/n) → . . . → C(Y [1],Z/n)

π∗→C(Y,Z/n) → 0,

where ds =
∑s+1

ν=1(−1)
ν+1(δν)∗, and π∗ is induced by the covering map π : Y [1] →

Y . The exactness is standard. A simple proof can be given by using induction on
the number of components and the exact sequence of complexes

0→ C(Y ′,Z/nZ)→ C(Y,Z/nZ)→ C(YN \ Y
′,Z/nZ)→ 0,

for Y , Y ′ and YN as in the proof of theorem 3.5.
Then the spectral sequence is induced by the naive filtration of the above sequence
of complexes, i.e.,by the second filtration of the double complex C•(Y

[•],Z/nZ),
whose associated total complex is quasiisomorphic to C(Y,Z/nZ).
(b): The first claim is clear, since the Kato complex C(−,Z/nZ) is zero in negative
degrees, and the second claim follows from this.
(c): If Y is proper, then the covariant functoriality gives a trace map

tr : C1,0(Y,Z/nZ)→ C1,0(Spec(F ),Z/nZ) = Z/nZ,

inducing a map tr : H0(C
1,0(Y,Z/nZ)) → Z/nZ. This is functorial in Y , and by

restricting to the connected components we get a morphism of complexes

E1
•,0(Y,Z/n) = H0(C

1,0(Y [•+1],Z/n))
tr
−→ (Z/n)π0(Y

[•+1]) = C(Y,Z/n)

giving the wanted map tr. It is an isomorphism for strict normal crossings vari-
eties, since tr : H0(C

1,0(X,Z/nZ))→ Z/nZ is an isomorphism for smooth proper
connected X (the known case i = 0 of Kato’s conjecture K(F,Z/n), cf. [CT], [Sw],
or 5.2 below).
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As before, we also have versions with coefficients in Z/ℓ∞ := Qℓ/Zℓ for a prime
number ℓ of the complexes and statements above.

Definition 3.7 Let Y be a proper strict normal crossings variety over F . If
Y1, . . . , YN are the irreducible components of Y , and Y = (Y1, . . . , YN ), then we
define C(ΓY ,Z/nZ) := C(Y,Z/nZ) and Ha(ΓY ,Z/nZ) := Ha(Y,Z/nZ) and call
it the configuration chain complex and configuration homology of Y , respectively.

Remark 3.8 If Y is a (proper) strict normal crossings variety, let us define its
configuration (or dual) complex ΓY as the simplicial complex, whose s−simplices
correspond to the conncted components of Y [s+1], with the face maps given by
the δν . Then the group Ha(ΓY ,Z/nZ), as defined above, does in fact compute the
a-th homology of ΓY with coefficients in Z/nZ. If Y has dimension d, then ΓY

has at most dimension d, and Ca(ΓY ,Z/nZ) = 0 for a > d. If Y is a curve, then
ΓY is a graph and is also called the intersection graph of Y .

Theorem 3.9 Let Y be a proper strict normal crossings variety of pure dimension
d over F , let ℓ be a prime number, and let ν be a natural number or ∞. Then
there is a canonical map

γ = γY,ℓ
ν

a : Ha(Y,Z/ℓ
ν) −→ Ha(ΓY ,Z/ℓ

ν),

where we define Z/ℓ∞ := Qℓ/Zℓ. This map is an isomorphism for all a ≤ m if the
Kato conjecture K(F,Z/ℓν) is true in degrees ≤ m.

Proof We define γY,ℓ
ν

a as the composition

γY,ℓ
ν

a : Ha(C
1,0(Y,Z/ℓν))

eY,ℓν

a−→ E2
a,0(Y,Z/n)

tr
−→Ha(C(ΓY ,Z/ℓ

ν)),

where Y = (Y1, . . . , YN ). By 3.6 (b) , tr is an isomorphism. If the Kato conjecture
K(F,Z/ℓν) holds in degrees ≤ m, then one has E1

p,q(Y,Z/n) = 0 for all q =

1, . . . ,m, so that eY,ℓ
ν

a is an isomorphism in degrees a ≤ m.

Remark 3.10 As the referee points out, we have morphisms of complexes

C1,0(Y,Z/ℓν)
quis
← totC1,0

• (Y [•],Z/ℓν) → E1
•,0(Y,Z/ℓ

ν)
tr
→ C(ΓY ,Z/ℓ

ν)

which induce γ and are quasi-isomorphisms if K(F,Z/ℓν) holds.
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4. The residue map in étale homology

We consider the same situation and notations as in 2.C: Hence we have S =
Spec(A) for a discrete valuation ring A, with generic point η = Spec(K) and
special point s = Spec(F ). But in this section we assume that A is henselian.

4.1 Let f : X → S be a scheme which is separated and flat of finite type over S.
We get a diagram with cartesian squares

Xη
jX
−→ X

iX←− Xs

↓ fη ↓ f ↓ fs

η
j
−→ S

i
←− s

The connecting morphisms δ : Ha(Xη/S,Z/n(−1)) → Ha−1(Xs/S,Z/n(−1)) in
étale homology over S together with lemma 2.17 give residue maps in étale ho-
mology

∆X : Ha(Xη,Z/n(−1)) −→ Ha+1(Xs,Z/n(0)),

which we want to study under suitable conditions. We shall also consider the
versions with Z/n replaced by Q/Z or Qℓ/Zℓ. Here we omit K and F in the
notation for the homology of schemes over K and F , respectively, as in section
3. For a fixed algebraic closure F of F , let Γ = Gal(F/F ), s = Spec(F ), and
Xs = Xs ×s s. Similarly, let K be a fixed separable closure of K and write
η = Spec(K) and Xη = Xη ×η η. We shall also consider the homology groups of
Xs/F and Xη/K, and omit the fields F and K in the notations as well.

Let f : X −→ S be regular of pure relative dimension d ≥ 1 and with strict
semi-stable reduction. Hence Xs is a strict normal crossings variety over F .

Definition 4.2 By a good divisor on X we mean a divisor Z →֒ X which is flat
over S and for which Zs is a good divisor in Xs in the sense of 3.3.

Proposition 4.3 (a) If Z is a good divisor on X, then Z is regular and has strict
semi-stable reduction, and is of pure relative dimension d− 1.

(b) If X is projective over S and F has infinitely many elements, then there is
always a good divisor.

Proof (cf. also [JS]) Let Y1, . . . , YM be the irreducible components of the special
fibre Y := Xs. Then all r-fold intersections

Yi1,...,ir := Yi1 ∩ Yi2 ∩ . . . Yir

(1 ≤ i1 < i2 < . . . < ir ≤ M) are smooth. If X →֒ PN
S is a projective embedding

and F is infinite, then by the Bertini theorem there is a hyperplane H0 ⊂ PN
F =

PN
S ×S s, defined over F , intersecting all (irreducible components of all) varieties
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Yi1,...,ir transversally. LetH ⊂ PN
S be any hyperplane liftingH0. Then the scheme-

theoretic intersection Z = H · X = H ×P
N
S
X is flat over S (the generic fibre is

non-empty), and is a good divisor, by definition. It thus suffices to show (a).
We may assume that F is algebraically closed. Let x be a closed point of Xs which
is contained in Z. The completion ÔX,x of the local ring OX,x is isomorphic to

B = A[[x1, . . . , xd+1]]/〈x1 . . . xr − π〉 (1 ≤ r ≤ d+ 1)

where π is a prime element in A. Since X is regular, Z is defined by one local
equation at x. Let f be the image of the local equation in B, and let n ⊆ B be
the maximal ideal. Then f ∈ n, and the elements x1, . . . , xr are the images of the
local equations for Yi1 , . . . , Yir for suitable 1 ≤ i1 < · · · < ir ≤M . Thus the trace
of Yi1,...,ir in ÔX,x

∼= B corresponds to the quotient

B′ = B/〈x1, . . . , xr〉 ∼= F [[xr+1, . . . , xd+1]] .

Since x ∈ H and, by assumption, H does not intersect the zero-dimensional vari-
eties Yi1,...,id+1

, we may assume r < d+1. Then H intersects Yi1,...,ir transversally
at x if and only if the image of f in B′ lies in n

′ − (n′)2, where n
′ is the maximal

ideal of B′. Since n′/(n′)2 ∼= n/(n2+〈x1, . . . , xr〉) we see that f has non-zero image
in n/(n2 + 〈x1, . . . , xr〉).
Now the elements xi mod n

2 (i = 1, . . . , d + 1) form an F -basis of n/n2 . Hence
we have

f ≡
d+1∑

i=1

aixi mod n
2

with elements ai ∈ A which are determined modulo 〈π〉. By our condition on f , ai
must be a unit for one i with i > r, and by possibly renumbering and multiplying
f by a unit we may assume i = d+ 1, and ad+1 = 1. But then

B/〈f〉 ∼= A[[x1, . . . , xd]]/〈x1 . . . xr − π〉

which proves the claim. Note that the irreducible components of (H ·X)s = Hs ·Xs

are the connected components of the smooth varieties Hs · Yi.

Good divisors Z and ”good opens” U = X \Z are useful because of the following:

Theorem 4.4 Assume that F is a finite field of characteristic p, and that X
is proper of pure relative dimension d and has strict semi-stable reduction. Let
Z →֒ X be a good divisor, and let U = X \ Z be the open complement.
(a) One has Ha−2(Uη,Z/n(−1)) = Ha−1(Us,Z/n(0)) = 0 if a < d.
(b) The map

∆U : Ha−2

(
Uη,Z/n(−1)

)
→ Ha−1

(
Us,Z/n(0)

)

is an isomorphism for all n prime to p and all a ≤ d.
(c) Assume ch(K) = 0. The map

∆U : Hd−2(Uη,Qp/Zp(−1))→ Hd−1(Us,Qp/Zp(0))

is a surjective isogeny, and it is an isomorphism if p ≥ d or if X is smooth over
S.
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The rest of this section is devoted to the proof of this theorem. Part (a) for Us

was proved in 3.5 (a), and it follows directly from weak Lefschetz for Uη: Since
Uη is smooth of dimension d, we have Ha−2(Uη,Z/n(o)) ∼= H2d−a+2(Uη,Z/n(d)),
which is zero for a < d by weak Lefschetz, since K has cohomological dimension
at most 2. Now we turn to parts (b) and (c).

4.5 From the localization sequence together with Lemma 2.17 we get a long exact
sequence

· · · → Ha(X/S,Z/n(−1))→ Ha(Xη,Z/n(−1))
∆X→

Ha+1

(
Xs,Z/n(0)

)
→ Ha−1(X/S,Z/n(−1))→ . . . .

This sequence shows that kernel and cokernel of the residue map ∆X are controlled
by the homology groups H•(X/S,Z/n(−1)) = H−•(X, Rf ! Z/n(1)S ). We study
these cohomology groups in the following. First we consider the prime-to-p case,
where Z/n(1)S is the usual sheaf Z/n(1) = µn, the first Tate twist of the constant
sheaf Z/n.

Lemma 4.6 Let n be prime to p, and let b be any integer. There are canonical
isomorphisms

(a) Rf !Z/n(b)
∼
−→ Z/n(b+ d)[2d]

(b) Ha(X/S,Z/n(b))
∼
−→ H2d−a

(
X,Z/n(d− b)

)

Proof (b) follows from (a), and (a) is a special case of Grothendieck’s purity
conjecture for excellent schemes, a proof of which has been announced by Gabber
and written down by Fujiwara [Fu].

Lemma 4.7 For X and U as in 4.4, and n prime to p, one has

(a) Hi(X,Z/n(j)) ∼= Hi(Xs,Z/n(j)) for all i, j ∈ Z,

(b) Hi(U,Z/n(j)) ∼= Hi(Us,Z/n(j)) for all i, j ∈ Z.

Proof Part (a) follows from the proper base change theorem. For (b) let g :
U → S be the structural morphism, and let gs : Us → s be the base change
to s = Spec F . Then it follows from [R-Z, 2.18 and 2.19] that the base change
morphism

i∗Rg∗Z/n(b)→ Rgs∗Z/n(b),

is an isomorphism, too, for the complement U = X \ Z of a good divisor Z, and
we obtain (b).
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With this, we can now prove Theorem 4.4 (b): Recall that, by assumption, Us

has dimension d and is affine. By weak Lefschetz and the Hochschild-Serre exact
sequences

0→ Hi−1(Us,Z/n(j))Γ → Hi(Us,Z/n(j))→ Hi(Us,Z/n(j))
Γ → 0

we conclude that Hi(Us,Z/n(j)) = 0 for i > d+1. On the other hand, by 4.5 and
4.6 (b) we have a long exact sequence

→ H2d−a+2(Us,Z/n(−1)) → Ha−2(Uη,Z/n(−1))
∆U→ Ha−1(Us,Z/n(0))

→ H2d−a+3(Us,Z/n(−1)) → .

This evidently shows the claimed bijectivity of ∆U for all a ≤ d.

4.8 Now we prove Theorem 4.4 (c). We first fix some notation. Let A denote
a henselian discrete valuation ring with perfect (not necessarily finite) residue
field F of characteristic p > 0 and with quotient field K of characteristic 0. Let
S = Spec(A) and assume given a diagram as in 4.1:

Xη
jX
−→ X

iX←− Xs

↓ fη ↓ f ↓ fs

η
j
−→ S

i
←− s

Assume that X is proper and generically smooth with strict semistable reduction
of relative dimension d over S. Let L (resp. MX) be the log structure on S (resp.
X) associated to s →֒ S (resp. Xs →֒ X) and let Ls (resp. MXs

) be its inverse
image on s (resp. Xs). We have the Cartesian square of morphisms of log-schemes

(Xs,MXs
) → (X,MX)

↓ fs ↓ f
(s, Ls) → (S,L)

where f and fs is log smooth. Assume now given Z ⊂ X, a good divisor in the
sense of Definition 4.2 and let U = X − Z. We have the diagram of immersions

Us
iU−→ U

jU
←− Uη

↓ φ ↓ φ ↓ φ

Xs
iX−→ X

jX
←− Xη

↑ τ ↑ τ ↑ τ

Zs
iZ−→ Z

jZ
←− Zη

LetMU (resp. MZ) be the log structure on X (resp. Z) associated to Xs∪Z ⊂ X
(resp. Zs →֒ Z) and let MUs

(resp. MZs
) be its inverse image on Xs (resp.

Zs). By definition we have MX = OX ∩ (jX)∗O
∗
Uη

, MU = OX ∩ (φjU )∗O
∗
Uη

, and

MZ = OZ ∩ (jZ)∗O
∗
Zη

. Let

Wnω
·
Xs
, Wnω

·
Xs

(logZ), Wnω
·
Zs
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denote the de Rham-Witt complexes associated to the log smooth schemes
(Xs,MXs

), (Xs,MUs
), and (Zs,MZs

) over (s, Ls) respectively (cf. [HK]). For
n = 1 we use the simplified notation ω·Xs

, ω·Xs
(logZ), and ω·Zs

for the de Rham-
Witt complexes. They coincide with the complexes of logarithmic differentials
defined in [K3], (1.9). We have the map of sheaves on (Xs)et (cf. [HK],(4.9)).

dlog : (Mgp
Us
)⊗q →Wnω

q
Xs

(logZ); a1 ⊗ · · · ⊗ aq → dlog(a1) ∧ · · · ∧ dlog(aq).

We define the etale subsheaf Wnω
q
Xs

(logZ)log ⊂Wnω
q
Xs

(logZ) to be the image of
the above map. In a similar way we define the subsheaves

Wnω
q
Xs,log

⊂Wnω
q
Xs

and Wnω
q
Zs,log

⊂Wnω
q
Zs
.

Lemma 4.9 The sheaf Wnω
q
Xs

(logZ)log is flat over Z/pnZ and we have an exact
sequence

0→Wnω
q
Xs

(logZ)log
pm

−→Wm+nω
q
Xs

(logZ)log →Wmω
q
Xs

(logZ)log → 0.

The analogous facts hold for Wnω
q
Xs,log

and Wnω
q
Zs,log

.

Proof This follows from [H], (2.6) and [Lo] (1.5.4).

By [H], (1.6.1) and [Ts3], (3.1.5) the sheaf Rm(φjU )∗Z/p
nZ(m) is generated by

symbols {x1, . . . , xm} = {x1} ∪ . . . ∪ {xm} with local sections x1, . . . , xm of Mgp
U ,

i.e., by the cup products of the images {x1}, . . . , {xm} of these elements under the
Kummer map Mgp

U → R1(φjU )∗Z/p
nZ(1). There exists a natural morphism

(4-1) δsymm : i∗XR
m(φjU )∗Z/p

nZ(m) −→Wnω
m
Xs

(logZ)log

sending {x1 . . . xm} to dlog(x1) ∧ . . . ∧ dlog(xm). In case m = d+ 1, Wnω
d+1
Xs,log

=

0 and Rd+1(φjU )∗Z/p
nZ(d + 1) is generated by symbols {πK , x1, . . . , xd} with

x1, . . . , xd as above and πK , a prime element of K. Then there exists the natural
morphism

δtame : i
∗
XR

d+1(φjU )∗Z/p
nZ(d+ 1) −→Wnω

d
Xs

(logZ)log

which maps {πK , x1, . . . , xd} to dlog(x1) ∧ . . . ∧ dlog(xd).

Lemma 4.10 Rq(φjU )∗Z/p
nZ(d+ 1) = 0 for q > d+ 1.

Proof Since φjU is affine, the stalk of Rq(φjU )∗Z/p
nZ(d+1) at a geometric point

x over x ∈ Xs is a limit of groups Hq(V,Z/pnZ(d+1)) where V is an affine variety
of dimension d over Kur, the maximal unramified extension of K. The lemma
now follows from the fact that cd(Kur) = 1 and cd(V ×K) = d, cf. [SGA4], XIV
3.1.
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By the above lemma δtame induces a morphism in Db(Xet)

δtame : R(φjU )∗Z/p
nZ(d+ 1)→ (iX)∗Wnω

d
Xs

(logZ)log[−d− 1]

Proposition 4.11 Let g : U → S, gη : Uη → η, and gs : Us → s be the structural
morphisms. There is a canonical isomorphism in Db(Xs,ét),

αX,Z : Rφ∗Rg
!
sZ/p

nZ(0)s ∼=Wnω
d
Xs

(logZ)log[d]

which fits into the following commutative diagram

H2d−a(Uη,Z/p
nZ(d+ 1))

δtame−→ Hd−a−1(Xs,Wnω
d
Xs

(logZ)log)
↑ ∼= 2.14 (c) ↑ ∼= αX,Z

H−a(Uη, Rg
!
ηZ/p

nZ(1)η)
δ
−→ H−a−1(Us, Rg

!
sZ/p

nZ(0)s)
‖ ‖

Ha(Uη,Z/p
nZ(−1))

∆U−→ Ha+1(Us,Z/p
nZ(0))

where δ is induced by the map σ : Rj∗Z/p
nZ(1)η → Ri∗Z/p

nZ(0)s[−1] in §2 C by
base change for g!.

Proof The commutativity of the lower diagram is a direct consequence of the
definition of ∆U . In [JSS] it is proved that there is a canonical isomorphism,

(4-2) αUs
: Rg!sZ/p

nZ(0)s ∼=Wnω
d
Us,log[d]

which fits into the following commutative diagram, in which αUη
is the purity

isomorphism for the smooth morphism gη (cf. (2-1))

R(jU )∗Z/p
nZ(d+ 1)[2d]

δtame−→ (iU )∗Wnω
d
Us,log

[d− 1]

↑ ∼= αUη
↑ ∼= αUs

R(jU )∗Rg
!
ηZ/p

nZ(1)η
δ
−→ (iU )∗Rg

!
sZ/p

nZ(0)s[−1].

Applying Rφ∗ to it, and noting φjU = jXφ, we get the commutative diagram

R(φjU )∗Z/p
nZ(d+ 1)[2d]

δtame−→ (iX)∗Wnω
d
Xs

(logZ)log[d− 1]
‖ ↓ γ

R(φjU )∗Z/p
nZ(d+ 1)[2d]

δtame−→ (iX)∗Rφ∗Wnω
d
Us,log

[d− 1]

↑ ∼= ↑ ∼=

R(φjU )∗Rg
!
ηZ/p

nZ(1)η
δ
−→ (iX)∗Rφ∗Rg

!
sZ/p

nZ(0)s[−1]

where Wnω
d
Us,log

= φ∗Wnω
d
Xs

(logZ)log and γ is the adjunction map. Thus Propo-
sition 4.11 follows from the following result shown in [Sat3].

Proposition 4.12 The adjunction induces an isomorphism

Wnω
d
Xs

(logZ)log
∼=
−→ Rφ∗Wnω

d
Us,log.
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In view of Proposition 4.11, Theorem 4.4 (c) is now implied by the following result.

Theorem 4.13 Assume that F is finite. Let

δ∞tame : Hd+2(Uη,Qp/Zp(d+ 1))→ H1(Xs,W∞ω
d
Xs

(logZ)log)

be obtained from the maps δtame in Proposition 4.11 by passing to the inductive
limit over n, where W∞ω

q
Xs

(logZ)log = lim
−→ n

Wnω
q
Xs

(logZ)log (with transition

maps denoted pm in 4.9). Then δ∞tame is a surjective isogeny and it is an isomor-
phism if p ≥ d or if X is smooth over S.

In order to show this theorem, we want to compare the map δtame in Proposition
4.11 with another one, to be able to quote some results of Sato [Sat1] and Tsuji
[Ts3]. Let K be a fixed separable closure of K and recall the notation in 4.1. Let
A be the integral closure of A in K and put S = Spec(A) and η = Spec(K). By
base change, we obtain the diagram

Us
iU−→ U

jU←− Uη

↓ φ ↓ φ ↓ φ

Xs
iX−→ X

jX←− Xη

↑ τ ↑ τ ↑ τ

Zs
iZ−→ Z

jZ←− Zη

where X = X ×S S and so on. Passing to the limit over the base changes by all
finite extensions ofK contained inK, the maps δsymm from (4-1) induce a morphism

(4-3) δ
sym

m : i
∗
XR

m(φjU )∗Z/p
nZ(m)→Wnω

m
Xs

(logZ)log.

of etale sheaves on Xs. It induces the map

(4-4) δ
sym

d : Hd
et(Uη,Z/p

nZ(d))→ H0(Xs,Wnω
d
Xs

(logZ)log).

Lemma 4.14 Assume that F is finite. Let G = Gal(K/K) (resp. Γ = Gal(F/F ))
be the absolute Galois group of K (resp. F ). Then the following diagram is
commutative

Hd(Uη,Z/p
nZ(d))G

δ
sym
d−→ H0(Xs,Wnω

d
Xs

(logZ)log)Γ
↓ φK ↓ φF

H2(K,Hd(Uη,Z/p
nZ(d+ 1))) H1(F,H0(Xs,Wnω

d
Xs

(logZ)log))
↓ ∼= (a) ↓ ∼= (b)

Hd+2(Uη,Z/p
nZ(d+ 1))

δtame−→ H1(Xs,Wnω
d
Xs

(logZ)log)

where φK (resp. φF ) are the isomorphisms coming from the duality theorems for
Galois cohomology of K (resp. F ), and where the isomorphisms (a) and (b) come
from the Hochschild-Serre spectral sequences.
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Proof (We are indebted to every reader who finds a simpler proof.) The maps
(a) and (b) are isomorphisms since Hr(Uη,Z/p

nZ(d+1)) = 0 for r > d by [SGA4],
XIV 3.1 and Hs(Xs,Wnω

d
Xs

(logZ)log) = Hd−s(Us,Z/p
nZ(0)) = 0 for s > 0 by

Proposition 4.11 and Theorem 3.5. Recall that local duality (resp. duality for Γ)
gives isomorphisms

φK :MG
∼
−→H2(K,M(1)) (resp. φF : NΓ

∼
−→H1(F,N) )

for any discrete torsion G-module M (resp. Γ-module N). For the proof of the
commutativity we first note that we may pass to any finite extension K ′/K. In
fact, the diagram obtained by base change to S′ = Spec(OK′) = {η′, s′} is related
to the previous one by the corestrictions from K ′ to K (resp. F ′ = k(s′) to F )
and the trace maps from U ′η′ to Uη (resp. X ′s′ to Xs). This is clear for the top
and the vertical maps of the diagram. For the bottom, we may translate back to
homology via 4.11, and then have to show that the following diagram commutes:

Ha(U
′
η′ ,Z/pnZ(−1))

∆′
U−→ Ha+1(U

′
s′ ,Z/p

nZ(0))

↓ trK′/K ↓ trF ′/F

Ha(Uη,Z/p
nZ(−1))

∆U−→ Ha+1(Us,Z/p
nZ(0))

.

This commutativity follows from the covariance of étale homology over S (and its
compatibility with localization sequences) once we show that the étale homology of
U ′ over S′ (which is considered in the first line) coincides with the étale homology
of U ′ over S. This holds, however, because Rg!(Z/pn(1))S = (Z/pn(1))S′ for
g : S′ → S and the complexes defined in §2 C , as one easily sees (a detailed proof
can be found in [JSS]).
Thus it suffices to consider elements which are in the image of the map
Hd(Uη, ,Z/p

nZ(d))→ Hd(Uη, ,Z/p
nZ(d))G → Hd(Uη,Z/p

nZ(d))G. Let

tr : H2(K,Z/pnZ(1))−→
∼
H1(F,Z/pnZ)

tr
−→
∼

Z/pnZ

be the canonical (trace) isomorphisms of (1-1) in the introduction, and let

χK ∈ H
2(K,Z/pnZ(1)) and χF ∈ H

1(F,Z/pnZ)

be the inverse images of 1 ∈ Z/pnZ under the isomorphisms. Then the composition

Hd(Uη,Z/p
nZ(d))G −→ Hd(Uη,Z/p

nZ(d))G
φK
−→H2(K,Hd(Uη,Z/p

nZ(d+ 1)))

is the cup product with χK . Now, by the compatibility of cup product with
Hochschild-Serre spectral sequences we have a commutative diagram of cup prod-
uct pairings

(4-5)

H2(Uη, 1) × Hd(Uη, d)
∪
→ Hd+2(Uη, d+ 1)

↑ ↓ ↑

H1(Γ, H1(Uur
η , 1)) × Hd(Uur

η , d)Γ
∪
→ H1(Γ, Hd+1(Uur

η , d+ 1))

↑ ↓ ↑

H1(Γ, H1(Kur, 1)) × Hd(Uη, d)
G ∪

→ H1(Γ, H1(Kur, Hd(Uη, d+ 1)))

‖≀ ‖ ‖≀

H2(K, 1) × Hd(Uη, d)
G ∪

→ H2(K,Hd(Uη, d+ 1)).

Documenta Mathematica · Extra Volume Kato (2003) 479–538



514 U. Jannsen and S. Saito

Here we have omitted the coefficients Z/pn (but indicated the Tate twists), Kur is
the maximal unramified extension of K, Γ = Gal(Kur/K), and the vertical maps
are restrictions or come from the obvious Hochschild-Serre spectral sequences. The
middle diagram comes from the commutative diagram

H1(Uur
η , 1) × Hd(Uur

η , d)
∪
→ Hd+1(Uur

η , d+ 1)

↑ ↓ ↑

H1(Kur, 1) × H0(Kur, Hd(Uη, d))
∪
→ H1(Kur, Hd(Uη, d+ 1),

where the bottom cup product is induced by the pairing H0 × Hd → Hd+1 for
Uη. The right vertical composition in (4-5) is the isomorphism (a) in Lemma 4.14.
Putting things together, we get the following diagram
(4-6)

Hd(Uη, d)
α
→ Hd+1(Uη, d+ 1)

δtame→ H0(Xs,Wnω
d)

↓ ↓ ↓

Hd(Uur
η ,Z/pnZ(d))Γ

β
→ Hd+1(Uur

η , d+ 1)Γ
δtame→ H0(Xs,Wnω

d)Γ
‖ ↓ φF ↓ φF

Hd(Uur
η ,Z/pnZ(d))Γ

γ
→ H1(Γ, Hd+1(Uur

η , d+ 1))
δtame→ H1(Γ, H0(Xs,Wnω

d))
↓ resφK ↓ ↓

H2(K,Hd(Uη, d+ 1))
(a)
→ Hd+2(Uη, d+ 1)

δtame→ H1(Xs,Wnω
d),

where Wnω
d stands for Wnω

d
Xs

(logZ)log. Here γ is the cup products with
the image χ̃K of χK in H1(Γ, H1(Uur

η , 1)), and resφK is the composition of

res : Hd(Uur
η , d)Γ → Hd(Uη, d)

G and φK . Hence the bottom of the diagram
is commutative by (4-5). The diagram involving β and γ is commutative if β
is cup product with the element x corresponding to χ̃K under the isomorphism
φF : H1(Uur

η , 1)Γ → H1(Γ, H1(Uur
η , 1)). Consider the commutative diagram

H2(K,Z/pnZ(1)) → H1(Γ, H1(Kur,Z/pnZ(1))) → H1(Γ,Z/pnZ(1))
↑ φF ↑ φF

H1(Kur,Z/pnZ(1))Γ
v
→ Z/pnZ.

Here the left horizonal map comes from the Hochschild-Serre spectral sequence,
and the two right horizontal maps are induced by the Kummer isomorphism
H1(Kur,Z/pnZ(1)) ∼= (Kur)×/pn and the normalized valuation v : (Kur)× → Z.
The composition in the top row is the map considered above and maps χK to χF ,
and the right vertical map sends 1 to χF . This shows that the element x is the
image {πK} of a uniformizing element πK of K under the Kummer isomorphism
and the map H1(Kur,Z/pnZ(1)) → H1(Uur

η ,Z/pnZ(1)Γ. Note that πK is also a
uniformizing element of Kur. Now we see that the diagram involving α and β is
commutative, if α is the cup product with {πK}, which now denotes the image of
πK under K×/pn → H1(K,Z/pnZ(1))→ H1(Uη,Z/p

nZ(1)).
Thus, diagram (4-6) is commutative with α = {πK}∪. Now, in view of the ob-
servation in the beginning of the proof, we obtain the commutativity in 4.14 by
observing that the composition

Hd(Uη, d)
{πK}∪
→ Hd+1(Uη, d+ 1)

δtame→ H0(Xs,Wnω
d)
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in the top of (4-6) is just δsymd , since on sheaf level, δsymd is the composition

Rd(φjU )∗Z/p
nZ(d)

{πK}∪
→ Rd+1(φjU )∗Z/p

nZ(d+ 1)
δtame→ (iX)∗Wnω

d
Xs

(logZ)log,

where now {πK} denotes the global section of R1(φjU )∗Z/p
nZ(1) corresponding

to πK .

We start the proof of Theorem 4.13. First we note that H1(Xs,W∞ω
d
Xs

(logZ)log)
is of cofinite type, by [GS, 4.18] and Lemma 4.16 below. We then claim that it is
divisible. Indeed, considering the long exact sequence arising from the sequence
(cf. Lemma 4.9)

0→Wnω
d
Xs

(logZ)log →W∞ω
d
Xs

(logZ)log
pn

−→W∞ω
d
Xs

(logZ)log → 0,

the claim follows from the fact that H2(Xs,Wnω
d
Xs

(logZ)log) = 0 by Proposition
4.11 and Theorem 3.5 (a). Thus the first assertion of Theorem 4.13 follows from
Lemmma 4.14 and the following result.

Proposition 4.15 Let

δ
sym

d : Hd(Uη,Zp(d))I → lim
←−
n

H0(Xs,Wnω
d
Xs

(logZ)log)

be the the map induced by the maps δ
sym

d from (4-4), where I ⊂ G is the inertia
subgroup. Then δ

sym

d has torsion kernel and cokernel.

We need the following two lemmas.

Lemma 4.16 For every integers n, t > 0 the sequence

0→Wnω
t
Xs,log →Wnω

t
Xs

(logZ)log
ResZ−→ τ∗Wnω

t−1
Zs,log

→ 0.

is exact where ResZ is the residue along Z ⊂ X.

Proof By Lemma 4.9 it suffices to show the exactness of the sequence

(4-7) 0→ ωt
Xs,log → ωt

Xs
(logZ)log → τ∗ω

t−1
Zs,log

→ 0.

It follows immediately from the definition of log-differentials that the sequences

0→ ωt
Xs
→ ωt

Xs
(logZ)→ τ∗ω

t−1
Zs
→ 0,

is exact. Except for the surjectivity of the last map, the exactness of (4-7) then
follows from the commutative exact diagram

0 0 0
↓ ↓ ↓

0→ ωt
Xs,log

→ ωt
Xs

(logZ)log → τ∗ω
t−1
Zs,log

↓ ↓ ↓
0→ ωt

Xs,d=0 → ωt
Xs

(logZ)d=0 → τ∗ω
t−1
Zs,d=0

↓ C − 1 ↓ C − 1 ↓ C − 1
0→ ωt

Xs
→ ωt

Xs
(logZ) → τ∗ω

t−1
Zs
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where the vertical exact sequences follow from [Ts3], Th.A.3 and A.4. Finally the
surjectivity onto τ∗ω

t−1
Zs,log

is a consequence of the fact that ωq
Zs,log

is generated by
dlog-differentials. This completes the proof of Lemma 4.16.

Lemma 4.17 For every integer m > 0 write

Mm
n (X) = (iX)∗Rm(jX)∗Z/p

nZ(m),

Mm
n (U) = (iX)∗Rm(φjU )∗Z/p

nZ(m),

Mm
n (Z) = (iZ)

∗Rm(jZ)∗Z/p
nZ(m).

Then we have a commutative diagram with exact horizontal sequences

Mm
n (X) → Mm

n (U)
β
−→ Mm−1

n (Z) → 0
↓ ↓ δsymm ↓

0→ Wnω
m
Xs,log

→ Wnω
m
Xs

(logZ)log
ResZ−→ τ∗Wnω

m−1
Zs,log

→ 0

where the vertical arrows are the morphism δsymm defined for U in (4-1), and its
variants for X and Z, respectively. The upper sequence is induced by the distin-
guished triangle

R(jX)∗Z/p
nZ(m)Xη

→ R(φjU )∗Z/p
nZ(m)Uη

→ R(τjZ)∗Z/p
nZ(m− 1)Zη

[−1]

arising from the localization theory for the smooth pair Zη →֒ Xη.

Proof We remark that the above sheaves the p-adic vanishing cycles are gen-
erated by local symbols. One can check β({s, x1, . . . , xm−1}) = {x1, . . . , xm−1},
where s is a local equation of Z in X and xi (resp. xi) with 1 ≤ i ≤ m − 1 are
local sections of Mqp

X (resp. the image of xi in M
gp
Z ). This shows the surjectivity

of β. The commutativity of the diagram is verified by using the description of the
values of δsymm on symbols. This completes the proof of Lemma 4.17.

We proceed with the proof of Proposition 4.15. Writing

M
m

n (X) = (iX)∗Rm(jX)∗Z/p
nZ(m),

M
m

n (U) = (iX)∗Rm(φjU )∗Z/p
nZ(m),

M
m

n (Z) = (iZ)
∗Rm(jZ)∗Z/p

nZ(m),

we have the exact sequence

· · · →M
m−1

n (U)(1)→M
m−2

n (Z)(1)→M
m

n (X)→M
m

n (U)→M
m−1

n (Z)→ · · · .

Hence the surjectivity of β in Lemma 4.17 implies the exactness of

0→M
m

n (X)→M
m

n (U)→M
m−1

n (Z)→ 0.
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Thus, taking the cohomology and passing to the limit over finite extensions of K,
the diagram in Lemma 4.17, with m = d, gives rise to the commutative diagram

0
↓

Hd(Xη,Zp(d))I → lim
←−
n

H0(Xs,Wnω
d
Xs,log

)

↓ ↓

Hd(Uη,Zp(d))I
δ
sym
d−→ lim

←−
n

H0(Xs,Wnω
d
Xs

(logZ)log)

↓ ↓
Hd(Zη,Zp(d))I → lim

←−
n

H0(Zs,Wnω
d
Zs,log

)

↓ ↓
Hd+1(Xη,Zp(d))I → lim

←−
n

H1(Xs,Wnω
d
Xs,log

)

where the second horizontal arrow is the map δ
sym

d for U from Proposition 4.14,
and the first one is its analogue for X, induced by the analogue of (4-3)

δ
sym

X,d : i
∗
XR

djX∗Z/p
nZ(d)→Wnω

d
Xs,log.

The fourth horizontal arrow is induced by δ
sym

X,d as well, by noting the fact that

RqjX∗Z/p
nZ(d) = 0 for q > d, which can be shown by the same argument as in

Lemma 4.10. By similar reasoning, the third horizontal map is induced by the
corresponding morphism δ

sym

Z,d−1 for Z. The left vertical sequence comes from the
localization exact sequence

Hd(Xη,Zp(d))→ Hd(Uη,Zp(d))→ Hd−1(Zη,Zp(d− 1))
τ∗→Hd+1(Xη,Zp(d))

via taking coinvariants under I, and it remains exact modulo torsion, since τ∗ is
split surjective modulo torsion by the hard Lefschetz theorem. Using the semi-
stable comparison theorem on the comparison of p-adic étale cohomology and log-
crystalline cohomology for proper semistable families, one can show (cf. [Sat1],
Lemma 3.3 and [Ts3], (3.1.12) and (3.2.7)) that the first horizontal arrow and the
last two ones are isomorphisms modulo torsion. Hence the second arrow is an
isomorphism modulo torsion, too. This completes the proof of Proposition 4.15.

Next we show the second claim in Theorem 4.13, i.e., that δ∞tame is an isomorphism
provided p ≥ d. Denote by Z/pnZ(d+ 1)(X,Z) the mapping fiber of

δtame : R(φjU )∗Z/p
nZ(d+ 1)→ (iX)∗Wnω

d
Xs

(logZ)log[−d− 1]

and let Qp/Zp(d + 1)(X,Z) = lim
−→
n

Z/pnZ(d + 1)(X,Z). By definition we have the

exact sequence

Hd+2(X,Qp/Zp(d+1)(X,Z)) → Hd+2(Uη,Qp/Zp(d+1))
δ∞tame−→ H1(Xs,W∞ωd

Xs
(logZ)log).
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We know already that Ker(δ∞tame) is finite, so its vanishing follows once we show
that Hd+2(X,Qp/Zp(d+1)(X,Z)) is divisible. In view of the distinguished triangle

Z/pZ(d+ 1)(X,Z) → Qp/Zp(d+ 1)(X,Z)
p
−→ Qp/Zp(d+ 1)(X,Z) →,

which follows from Lemma 4.9, it suffices to show Hd+3(X,Z/pZ(d+1)(X,Z)) = 0.
Thus the claim follows from the following.

Theorem 4.18 Assuming p ≥ d, Hq(X,Z/pZ(d+ 1)(X,Z)) = 0 for q ≥ d+ 3.

We remark that F is not assumed to be finite in Theorem 4.18. We need the
following three lemmas.

Lemma 4.19 Let the assumption be as above. Then there exists a trace map

Hd(Xs, ω
d
Xs

)
∼=
−→ F.

For a locally free OXs
-moduleM the natural pairing

Hj(Xs, ω
i
Xs

(logZ)⊗M)×Hd−j(Xs,HomOXs
(M⊗OX(Z), ωd−i

Xs
(logZ)))

→ Hd(Xs, ω
d
Xs

)
∼=
−→ F

is a perfect pairing of finite-dimensional F -vector spaces.

Proof By the isomorphism just after [Ts1], Th. 2.21, ωd
Xs

placed at degree d is
the dualizing complex for Xs. The assertion follows from the isomorphisms

(ωi
Xs

(logZ))∨ ⊗ ωd
Xs

(logZ) ∼= ωd−i
Xs

(logZ), ωd
Xs

(logZ) = ωd
Xs
⊗O(Z).

Lemma 4.20 For any ample line bundle L on Xs, we have

Hj(Xs, ω
i
Xs

(logZ)⊗ L−1) = 0 for i+ j < min{d, p}.

Proof The assertion follows from [K3], Th. 4.12 by the same argument as the
proof of [DI], Cor. 2.8.

Lemma 4.21 Hj(Xs, ω
i
Xs

(logZ)) = 0 for i+ j > max{d, 2d− p}.

Proof By Lemma 4.19 it suffices to show Hj(Xs, ω
i
Xs

(logZ)⊗OX(Z)−1) = 0 for
i+ j < d, which follows from Lemma 4.20 since OX(Z) is ample.

We start the proof of Theorem 4.18. Write ωt for ωt
Xs

(logZ)log , as well as

Bt = Im(d : ωt−1 → ωt), and Zt = Ker(d : ωt → ωt+1).

We may assume that K contains the p-th roots of unity, and can omit all Tate
twists. Recall that Z/pZ(d+ 1)(X,Z) is concentrated in degree [0, d+ 1].
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Lemma 4.22 Assume p ≥ d. For every t ≤ d + 1, the homology sheaf
Ht(i∗XZ/pZ(d+ 1)(X,Z)) has a finite filtration whose subquotients are

ωt
log, ωt−1

log , Bt, Bt−1 and ωt−1/Bt−1.

Proof By the Bloch-Kato-Hyodo theorems for the sheaf of the p-adic vanish-
ing cycles (iX)∗Rt(φjU )∗Z/pZ(t), as proved in [BK], [H] and, in particular, [Ts2
Proposition A.15], this holds under the condition p ≥ d+3, which comes from the
use of the syntomic complexes. For the result under the weaker assumption p ≥ d,
which uses the special structure of the good open U , we refer the reader to [JS].

By this result, it suffices to show the following.

Lemma 4.23 Assume p ≥ d. We have Hs(Xs, Q) = 0 for s + t ≥ d + 3 and for
each of the above subquotients Q.

Proof Write Y = Xs. By Lemma 4.21 and the assumption p ≥ d we have

(1) Hs(Y, ωt) = 0 for s+ t > d so that Hs(Y, ωt−1) = 0 for s+ t > d+ 1.

Via the Cartier isomorphism (cf. [K3], Th. 4.12 and [Ts2], Th. A.3) we get

(2) Hs(Y,Zt/Bt) = 0 for s+ t > d.

Now we use descending induction on t to show that

(at) H
s(Y, ωt/Bt) = 0 for s+ t > d,

(bt) H
s(Y,Bt+1) = 0 for s+ t > d,

(ct) H
s(Y,Zt) = 0 for s+ t > d+ 1.

We start with the case t = d where (ad) (resp. (cd)) follows from (2) (resp. (1)) by
noting Zd = ωd, and (bd) follows from Bd+1 = 0. Now assume that we have shown
(at), (bt), (ct) for some t ≤ d. For the induction step we use the exact sequence

Hs−1(Y,Zt/Bt)→ Hs(Y,Bt)→ Hs(Y,Zt).

We haveHs−1(Y,Zt/Bt) = 0 if s−1+t > d by (2) andHs(Y,Zt) = 0 if s+t > d+1
by (ct) so that Hs(Y,Bt) = 0 if s+ t > d+ 1, which implies (bt−1). Next we look
at the exact sequence

Hs−1(Y,Bt)→ Hs(Y,Zt−1)→ Hs(Y, ωt−1)

associated to the exact sequence 0 → Zt−1 → ωt−1 d
−→ Bt → 0. We have

Hs−1(Y,Bt) = 0 if s− 1+ t− 1 > d by (bt−1) and H
s(Y, ωt−1) = 0 if s+ t− 1 > d

by (1) so that Hs(Y,Zt−1) = 0 if s+ t > d+2, which implies (ct−1). Now consider
the exact sequence

Hs(Y,Zt−1/Bt−1)→ Hs(Y, ωt−1/Bt−1)→ Hs(Y, ωt−1/Zt−1).
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We have Hs(Y,Zt−1/Bt−1) = 0 if s + t − 1 > d by (2) and Hs(Y, ωt−1/Zt−1) ∼=
Hs(Y,Bt) = 0 if s + t − 1 > d by (bt−1) so that Hs(Y, ωt−1/Bt−1) = 0 if s +
t > d + 1, which implies (at−1). This completes the proof of (at), (bt), (ct) for
∀t ≤ d. Note that (bt) implies Hs(Y,Bt−1) = 0 for s+ t > d+ 2 and (at) implies
Hs(Y, ωt−1/Bt−1) = 0 for s+ t > d+ 1.

Finally we look at the exact sequence

Hs−1(Y, ωt/Bt)→ Hs(Y, ωt
log)→ Hs(Y, ωt)

associated to the exact sequence

0→ ωt
log → ωt 1−C−1

−→ ωt/Bt → 0.

We have Hs−1(Y, ωt/Bt) = 0 if s−1+ t > d by (at) and H
s(Y, ωt) = 0 if s+ t > d

by (1) so that Hs(Y, ωt
log) = 0 for s + t > d + 1 and hence Hs(Y, ωt−1

log ) = 0 for
s+ t > d+2 by the exact sequence. This completes the proof of Lemma 4.23 and
hence that of Theorem 4.18.

It remains to show the last claim of Theorem 4.13, i.e., that δ∞tame is an isomorphism
if X is smooth over S. It suffices to show Hd+2(Uη,Qp/Zp(d + 1)) = 0 assuming

d ≥ 2. With G = Gal(K/K), we have isomorphisms

Hd+2(Uη,Qp/Zp(d+ 1)) ≃ H2(K,Hd(Uη,Qp/Zp(d+ 1))) ≃ Hom(Hd
c (Uη,Zp)

G,Qp/Zp)

by local duality (cf. Lemma 4.14) and Poincaré duality. By the weak Lefschetz
theorem Hd

c (Uη,Zp) is torsion free. Therefore it suffices to show Hd
c (Uη,Qp)

G = 0.
Noting the exact sequence

Hd−1(Zη,Qp)→ Hd
c (Uη,Qp)→ Hd(Xη,Qp)

and that Z is smooth over S by the assumption, this vanishing follows from:

Lemma 4.24 If X is proper and smooth over S, then for any i > 0 and any
G-subquotient V of Hi(Xη,Qp) one has V G = 0.

Proof By the Bcris-comparison isomorphism ([FM], [Fa])

Hi(Xη,Qp)⊗Bcris ≃ H
i
cris(Xs/W (F ))⊗Bcris,

the claim follows from the Weil conjecture for the crystalline cohomology
([KM]). In fact, V G ∼= Dcris(V )F=1, where Dcris(V ) is a subquotient of
Hi

cris(Xs/W (F ))⊗Zp
Qp and F is induced by the crystalline Frobenius.

5. ∆0
X ,∆1

X , and class field theory

Let A be a henselian discrete valuation ring with finite residue field F of char-
acteristic p. Let K be the quotient field of A. Let S = Spec(A) and consider a
diagram like (1-3) in the introduction

Xη
jX
−→ X

iX←− Xs

↓ fη ↓ f ↓ fs

η
j
−→ S

i
←− s
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In this section we prove Theorem 1.5, by using the relation between the Kato
complexes of Xη and Xs and the class field theory developed in [Bl], [Sa1] and
[KS1].

Definition 5.1 For a scheme V of finite type over a field we put

SK1(V ) = Coker(
⊕

x∈V1

K2(x)
∂
−→

⊕

x∈V0

K1(x)),

CH0(V ) = Coker(
⊕

x∈V1

K1(x)
∂
−→

⊕

x∈V0

K0(x)),

where K∗ denotes algebraic K-groups and boundary maps are induced by localiza-
tion theory for algebraic K-theory.

The components of the differential ∂ for SK1(V ) (resp. CH0(V )) are given by
tame symbols (resp. valuations). By definition CH0(V ) is the Chow group of
zero-cycles on V . In case V is smooth of pure dimension d, SK1(V ) coincides with
Bloch’s higher Chow group CHd+1(V, 1) by [La], Lem. 2.8.

Note that cd(K) = 2 and cd(F ) = 1 (cf. [Se], Ch.II, §2 and §4). By Proposition
2.12 (a) and Lemma 2.15 we have the commutative diagram

(5-1)
Het

i−2(Xη,Z/nZ(−1))
ǫiXη
−→ HK

i (Xη,Z/nZ)
↓ ∆X ↓ ∆X

Het
i−1(Xs,Z/nZ(0))

ǫiXs−→ HK
i (Xs,Z/nZ),

where the vertical maps are the residue maps (2.12 (a), 2.18) and the horizontal
maps are edge homomorphisms (2.14 (b)) of the following spectral sequences (note
2.14 (a))

(5-2) E1
p,q(Xη) =

⊕

x∈(Xη)p

Hp−q(x,Z/nZ(p+ 1))⇒ Het
p+q(Xη,Z/nZ(−1)),

(5-3) E1
p,q(Xs) =

⊕

x∈(Xs)p

Hp−q(x,Z/nZ(p))⇒ Het
p+q(Xs,Z/nZ(0)).

Lemma 5.2 The maps ǫ0Xη
and ǫ0Xs

are isomorphims and we have the commutative

diagram with exact horizontal sequences

0 → Cok(ǫ2Xη
) → SK1(Xη)/n

αXη
−→ Het

−1(Xη,Z/n(−1))
ǫ1Xη
−→ HK

1 (Xη,Z/n) → 0

↓ ∆X ↓ ∂X ↓ ∆X ↓ ∆X

0 → Cok(ǫ2Xs
) → CH0(Xs)/n

αXs−→ Het
0 (Xs,Z/n(0))

ǫ1Xs−→ HK
1 (Xs,Z/n) → 0

Here ∂X comes from the localization theory for algebraic K-theory on X.
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Proof Lemma 2.14 implies that E1
p,q(Xη) = 0 unless p ≥ q and q ≥ −2 and

E1
p,q(Xs) = 0 unless p ≥ q and q ≥ −1 and that

E2
p,−2(Xη) = HK

p (Xη,Z/nZ) and E1
p,−1(Xs) = HK

p (Xs,Z/nZ),

E2
0,−1(Xη) ∼= SK1(Xη)/n and E2

0,0(Xs) ∼= CH0(Xs)/n.

Here the isomorphisms in the second row follows from the following commutative
diagrams established in [K1], Lem. 1.4

⊕
x∈(Xη)1

K2(x)/n →
⊕

x∈(Xη)0
K1(x)/n

↓ ≀ ↓ ≀⊕
x∈(Xη)1

H2(x,Z/nZ(2)) →
⊕

x∈(Xη)0
H1(x,Z/nZ(1))

⊕
x∈(Xs)1

K1(x)/n →
⊕

x∈(Xs)0
K0(x)/n

↓ ≀ ↓ ≀⊕
x∈(Xs)1

H1(x,Z/nZ(1)) →
⊕

x∈(Xs)0
H1(x,Z/nZ)

where the top side maps are the boundary maps of the Gersten complex for alge-
braic K-theory and the bottom side maps are the d1-differentials of the spectral
sequences (5-2) and (5-3). The vertical maps are the Galois symbol maps and they
are isomorphisms by Kummer theory and [MS]. The proposition follows easily from
these facts.

Let

trs : H
1(s,Z/nZ)

∼=
−→ Z/nZ and trη : H2(η,Z/nZ(1))

∼=
−→ Z/nZ

be the evaluation at the Frobenius substitution of the finite field F , and the com-
posite of trs and the residue map H2(η,Z/nZ(1)) → H1(s,Z/nZ), respectively.
For a scheme Z denote by Db

c(Z,Z/nZ) the derived category of complexes of étale
sheaves of Z/nZ-modules on Z with bounded constructible cohomology sheaves.

Lemma 5.3 Assume that f is proper.

(1) For any K ∈ Db
c(Xη,Z/nZ) the pairing

Hi(Xη, DXη (K))×H2−i(Xη,K) → H2(Xη, Rf !
ηZ/n(1))

trXη
−→ H2(η,Z/n(1))

trη
−→ Z/nZ

is a perfect pairing of finite groups. Here DXη
(K) = RHom(K,Rf !ηZ/nZ(1)) and

trXη
is induced by the trace morphisms Rfη∗Rf

!
ηZ/nZ(1)→ Z/nZ(1).

(2) For any K ∈ Db
c(Xs,Z/nZ) the pairing

Hi(Xs, DXs(K))×H1−i(Xs,K) → H1(Xs, Rf !
sZ/nZ)

trXs−→ H1(s,Z/nZ)
trs−→ Z/nZ

is a perfect pairing of finite groups. Here DXs
(K) = RHom(K,Rf !sZ/nZ) and

trXs
is induced by the trace morphisms Rfs∗Rf

!
sZ/nZ→ Z/nZ.

Proof This follows immediately from the Artin-Verdier duality for fη and fs
together with the duality theorems for Galois cohomology of K and F (cf. [Sa3]
and [CTSS]).
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Proof of Theorem 1.5 (1) Assume that f is proper and Xη is connected. Then

the bijectivity of ∆0
X = ∆K,0

X immediately follows from the following commutative
diagram deduced from Lemmas 5.2 and 5.3

HK
0 (Xη,Z/nZ)

ǫ0Xη
←−

∼
H2(Xη, Rf

!
ηZ/nZ(1))

trXη
−→

∼
H2(η,Z/nZ(1))

↓ ∆K,0
X ↓ ∆et,−2

X ↓ ≀ ∆et,−2
S

HK
0 (Xs,Z/nZ)

ǫ0Xs←−
∼

H1(Xs, Rf
!
sZ/nZ)

trXs−→
∼

H1(s,Z/nZ)

Proof of Theorem 1.5 (2) We need to recall the class field theory of Xη and
Xs developed in [Bl], [KS1] and [Sa1]. For a scheme Z we let

πab
1 (Z) = Hom(H1(Zet,Q/Z),Q/Z)

be the abelian algebraic fundamental group of Z. Let V be a proper scheme over
K. For each x ∈ V0 we have the map

K(x)∗ → Gal(K(x)ab/K(x)) = πab
1 (x)→ πab

1 (V ),

where the first map is the reciprocity map for K(x) which is a henselian discrete
valuation field with finite residue field. The second map comes from the covariant
functoriality of πab

1 . Taking the sum of βx over x ∈ V0, we get the map

ρ̃V :
⊕

x∈V0

K(x)∗ → πab
1 (V ).

Now the reciprocity law proved in [Sa1] and [Sa2] implies that ρ̃V factors through

ρV : SK1(V )→ πab
1 (V ).

If Y is a proper scheme over a finite field F , we have the reciprocity map

ρY : CH0(Y )→ πab
1 (Y )

defined in a similar way by using the following map for each x ∈ Y0

Z→ Gal(F (x)ab/F (x)) = πab
1 (x)→ πab

1 (Y ),

where the first map sends 1 ∈ Z to the Frobenius substitution over F (x).

Now we return to the situation in Lemma 5.2. By 5.3 we have the isomorphism

Het
−1(Xη,Z/nZ(−1))

∼=
−→ πab

1 (Xη)/n (resp. Het
0 (Xs,Z/nZ(0))

∼=
−→ πab

1 (Xs)/n),

and we claim that the composite map of the isomorphism and the map αXη
(resp.

αXs
) coincides with ρXη

(resp. ρXs
). Indeed, for x ∈ (Xη)0 let ix : x→ Xη be the

inclusion and put πx = fηix : x→ η. Consider the following composite map βx

H1(x,Z/n(1)) ∼= H1(x,Ri!xRf !
ηZ/n(1)) → H1(Xη, Rf !

ηZ/n(1)) = Het
−1(Xη,Z/n−1),
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where the isomorphism comes from Ri!xRf
!
ηZ/nZ(1) = Rπ!

xZ/nZ(1) =
π∗xZ/nZ(1). By definition αXη

is induced by the sum over x ∈ (Xη)0 of the

composite of βx and the map K(x)∗/n
∼=
−→ H1(x,Z/nZ(1)). Via the duality

in Lemma 5.3 (1) and the local duality for Galois cohomology of K(x), βx is
identified with the dual of H1(Xη,Z/nZ)→ H1(x,Z/nZ), the restriction map via
ix. This proves the desired assertion for ρXη

. The assertion for ρXs
is shown by

the same argument. Thus we get the commutative diagram with exact rows

SK1(Xη)/n
ρXη/n
−→ πab

1 (Xη)/n → HK
1 (Xη,Z/nZ)→ 0

↓ ∂X ↓ δX ↓ ∆X

CH0(Xs)/n
ρXs/n−→ πab

1 (Xs)/n → HK
1 (Xs,Z/nZ)→ 0

where δX is the dual of H1(Xs,Z/nZ) ∼= H1(X,Z/nZ) → H1(Xη,Z/nZ), and
hence is the specialization map on fundamental groups. By definition of the reci-
procity map, the cokernel of ρXη

is the quotient πab
1 (Xη)

c.d. classifying the abelian
coverings in which every closed point of Xη is completely decomposed. Similarly
Coker(ρXs

) = πab
1 (Xs)

c.d., where the latter classifies the completely decomposed
abelian coverings of Xs. Therefore Theorem 1.5 (2) follows from the next lemma.

Lemma 5.4 If f : X → S is proper, with X regular, then the specialization map
δX : π1(Xη) → π1(Xs) (where we omitted suitable base points) is surjective and
induces an isomorphism

πab
1 (Xη)

c.d. ∼→ πab
1 (Xs)

c.d..

Proof The map δX factorizes as π1(Xη) ։ π1(X)
∼
← π1(Xs), in which the first

map is surjective because X is normal [SGA 1] V 8.2, and the second map is
an isomorphism because X is proper [Ar] (3.1), (3.4). The second claim of the
lemma then follows from [Sa2], Proposition 3.12, which characterizes the image of
H1(Xs,Q/Z)→ H1(Xη,Q/Z) as consisting of those characters on πab

1 (Xη) whose
associated character on SK1(Xη) factors through ∂X : SK1(Xη)→ CH0(Xs).

6. ∆2
X ,∆3

X , and finiteness results for Kato homology

Let the notations be as in the beginning of the previous section. Recall that K is
the quotient field of A, a henselian discrete valuation ring with finite residue field
F of characteristic p. In this section we prove a crucial result that allows to control
the second Kato homology of varieties over K by étale homology (Theorem 6.1.
It enables us complete the proof of Theorem 1.6 and to deduce finiteness results
for Kato homology over local and global fields. We also present a strategy to show
Conjecture B in general (cf. Proposition 6.4). In the whole section, ℓ denotes a
prime different from ch(K). Let V be a separated scheme of finite type over K,
and let

ǫiV : Het
i−2(V,Qℓ/Zℓ(−1))→ HK

i (V,Qℓ/Zℓ)
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be the map considered in (5-1) (for V = Xη). Recall that for a proper scheme V
over K, we have the norm map

NV/K : SK1(V )→ K∗

induced by the sum of the norm maps K(x)∗ → K∗ for x ∈ V0 (cf. [Sa1]).

Theorem 6.1 (1) If V is affine, then ǫ2V is surjective.
(2) If V is proper and geometrically irreducible over K, then Coker(ǫ2V ) is finite,
and vanishes if ℓ 6 | |Coker(NV/K)|.

For the proof of Theorem 6.1, we need some preliminaries, in particular the fol-
lowing generalization of NV/K . If f : V → M is a proper morphism with V and
M of finite type over L, there is a norm map

NV/M : SK1(V )→ SK1(M)

induced by the norm maps K(x)∗ → K(f(x))∗ for x ∈ V0. For M = Spec(K) we
have NV/M = NV/K .

Lemma 6.2 (1) For a proper non-empty scheme V over K, Coker(NV/K) is finite.
(2) For a proper surjective morphism f : V → M with V and M of finite type
over K, Coker(NV/M ) is of finite exponent.

Proof The first assertion is clear, since NL/K(L∗) ⊂ K∗ is of finite index for any
finite extension L/K. As for the second we may clearly assume that V and M are
irreducible. If f is finite and flat, there is a map f∗ : SK1(M)→ SK1(V ) induced
by the natural inclusions K(y)∗ → ⊕K(x)∗ for y ∈M0 where the sum ranges over
all x ∈ V0 such that f(x) = y. We haveNV/Mf

∗ = [K(V ) : K(M)], from which the
assertion follows. In general, we proceed by induction on dim(M). If dim(M) = 0,
the claim follows from the first assertion of the lemma. By induction on dim(M)
we may then replace V/M by f−1(U)/U for any non-empty open subset U ⊂ M
in view of the commutative diagram

SK1(f
−1(Z)) → SK1(V ) → SK1(f

−1(U)) → 0
↓ ↓ ↓

SK1(Z) → SK1(M) → SK1(U) → 0

where Z = M \ U and the vertical maps are the norm maps. However, replacing
M with some non-empty open subset, we may assume that there exists a finite flat
morphism f ′ : N → M and a proper morphism g : N → V such that f ◦ g = f ′.
We have NV/M ·NN/V = NN/M . Thus the desired assertion follows from the finite
flat case. This completes the proof of Lemma 6.2.

Proposition 6.3 (1) If V is affine, then SK1(V )⊗Qℓ/Zℓ = 0.
(2) If V is irreducible and not proper over K, then SK1(V )⊗Qℓ/Zℓ = 0.
(3) If V is geometrically irreducible and proper over K, Ker(NV/K)⊗Qℓ/Zℓ = 0.
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Proof If V is a proper smooth curve, the claim follows from the class field theory
for curves over local fields [Sa1], Th. 4.1 and Th. 5.1. In what follows we reduce
to this crucial case. First we note that claim (2) follows from claim (3). Indeed,
for irreducible non-proper U there is an open immersion U ⊂ V such that V
is irreducible and proper over K with Z := V \ U non-empty [N]. By possibly
enlarging K, we may assume that V is geometrically irreducible over K. In view
of the exact sequence

(6-1) SK1(Z)→ SK1(V )→ SK1(U)→ 0,

it suffices to show the surjectivity of SK1(Z) ⊗ Qℓ/Zℓ → SK1(V ) ⊗ Qℓ/Zℓ. We
have the commutative diagram
(6-2)

0→ Ker(NZ/K)⊗Qℓ/Zℓ → SK1(Z)⊗Q/Z
NZ/K
→ K∗ ⊗Qℓ/Zℓ → 0

↓ α ↓ β ‖

0→ Ker(NV/K)⊗Qℓ/Zℓ → SK1(V )⊗Q/Z
NV/K
→ K∗ ⊗Qℓ/Zℓ → 0 .

Since Coker(NZ/K) and the torsion part of K∗ are finite, the horizontal sequences
are exact up to finite groups. By the assumption we have Ker(NV/K)⊗Qℓ/Zℓ = 0
so that β is surjective up to finite groups, hence surjective.
In particular, we see that claim (1) holds for smooth affine curves over K. By
6.2 (2) it also holds for an arbitrary irreducible affine curve V over K, since there
is a finite surjective morphism C → V with C affine and smooth. Now let V be
arbitrary affine. Since every closed point of V lies on some irreducible curve Z →֒
V , the natural maps SK1(Z) → SK1(V ) induce a surjection

⊕
Z⊂V SK1(Z) →

SK1(V ), where Z ranges over all irreducible closed subschemes of V with dim(Z) =
1. As these are necessarily affine, claim (1) follows for V .
As for claim (3), let V is proper and geometrically irreducible over K. By Chow’s
lemma there is a proper birational morphism Z → V with Z projective, and
we have diagram (6-2), exact up to finite groups, also for this morphism. By
Lemma 6.2 (2) the map β then is surjective, hence α is surjective as well. Thus
we may assume that V is projective. We proceed by induction on dim(V ). In
case dim(V ) = 1 we may replace V with its normalization (by Lemma 6.2), and
we may pass to any inseparable extension L of K, because the norm induces an
isomorphism L∗ ⊗ Qℓ/Zℓ → K∗ ⊗ Qℓ/Zℓ. We thus reduce to the treated case
of proper smooth curves. Assume dim(V ) > 1. Then, by Bertini’s theorem,
there is a hyperplane section Z ⊂ V which is defined over K and geometrically
irreducible over K. Then U = V \Z is affine, and we conclude from claim (1) that
SK1(U) ⊗ Qℓ/Zℓ = 0. Now we consider (6-1) and (6-2) for this triple (V,Z, U).
From (6-1) we get that the map β in (6-2) is surjective, and hence so is α. By
induction on the dimension we may assume that Ker(NZ/K) ⊗ Qℓ/Zℓ = 0, and
hence we also get Ker(NV/K)⊗Qℓ/Zℓ = 0 as wanted.

Now we show Theorem 6.1. In case V is affine, it follows immediately from 6.3 (1)
and the exact sequence (cf. Lemma 5.2)

Het
0 (V,Qℓ/Zℓ(−1))

ǫ2V−→ HK
2 (V,Qℓ/Zℓ) → SK1(V )⊗Qℓ/Zℓ

αV−→ Het
−1(V,Qℓ/Zℓ(−1)).
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In case f : V → Spec(K) is proper, we use the commutative diagram

SK1(V )⊗Qℓ/Zℓ
αV−→ Het

−1(V,Qℓ/Zℓ(−1)) = H1(V,Rf !Qℓ/Zℓ(1)))
↓ µ ↓ f∗ ↓ trV/K

K∗ ⊗Qℓ/Zℓ

∼=
−→ Het

−1(Spec(K),Qℓ/Zℓ(−1)) = H1(K,Qℓ/Zℓ(1))

where µ is induced by NV/K . By the above two diagrams we have Coker(ǫ2V ) =
Ker(αV ) ⊂ Ker(µ). But by 6.2 (1) and 6.3 (3), Ker(µ) is finite and vanishes if
ℓ 6 | |Coker(NV/K)|. This completes the proof of Theorem 6.1.

Now we turn to the proof of Theorem 1.6. In what follows we assume that X
is projective and generically smooth with strict semistable reduction over S =
Spec(A). Assume also that we are given Z ⊂ X, a good divisor in the sense of
Definition 4.2. Write U = X \ Z. We fix a prime ℓ different from ch(K) and
consider the residue maps

∆i
X : HK

i (Xη,Qℓ/Zℓ)→ HK
i (Xs,Qℓ/Zℓ)

∆i
Z : HK

i (Zη,Qℓ/Zℓ)→ HK
i (Zs,Qℓ/Zℓ).

Our strategy is to use induction on dim(X). Let

ǫiUη
: Het

i−2(Uη,Qℓ/Zℓ(−1))→ HK
i (Uη,Qℓ/Zℓ)

be the map considered in (5-1).

Proposition 6.4 Fix an integer q ≥ 2. Assume the following conditions hold.

(1) The Kato conjecture K(F,Qℓ/Zℓ) (cf. 3.1) is true in degree ≤ q + 1.

(2) ǫqUη
is surjective.

(3) ∆q−1
Z and ∆q

Z are isomorphisms and ∆q+1
Z is surjective.

(4) One of the following conditions is satisfied:

(a) X is smooth over S.

(b) ℓ 6= p := ch(F ).

(c) ℓ = p ≥ q.

(d) q < d.

Then ∆q
X is an isomorphism and ∆q+1

X is surjective.

Proof For i = q, q + 1 we look at the following commutative diagram of Kato
homology groups obtained from 2.17 and 2.18, with the coefficients Qℓ/Zℓ omitted
in the notation.

HK
i+1(Uη) → HK

i (Zη) → HK
i (Xη) → HK

i (Uη) → HK
i−1(Zη)

↓ ∆i+1
U ↓ ∆i

Z ↓ ∆i
X ↓ ∆i

U ↓ ∆i−1
Z

HK
i+1(Us) → HK

i (Zs) → HK
i (Xs) → HK

i (Us) → HK
i−1(Zs)

Since HK
i (Xη) = HK

i (Xs) = 0 for i > d := dim(Xη), we may assume q ≤ d. The
proposition follows from the diagram by using the following result.
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Lemma 6.5 Assume q ≤ d and the conditions 6.4 (1) and (2) for q.

(1) ∆i
U is surjective for i ≤ q + 1.

(2) HK
q (Uη,Qℓ/Zℓ) = HK

q (Us,Qℓ/Zℓ) = 0 if q < d.

(3) ∆q
U is an isomorphism if one of the conditions in 6.4 (4) is satisfied.

Proof Consider the commutative diagram

Het
i−2(Uη,Qℓ/Zℓ(−1))

ǫiUη
−→ HK

i (Uη,Qℓ/Zℓ)

↓ ∆i,et
U ↓ ∆i

U

Het
i−1(Us,Qℓ/Zℓ(0))

ǫiUs−→ HK
i (Us,Qℓ/Zℓ)

where the vertical maps are the respective residue maps. The left residue map ∆i,et

is surjective if i ≤ d by Theorem 4.4, and by Theorem 3.5, condition 6.4 (1) implies
that ǫiUs

is an isomorphism for i ≤ min(q+1, d). This proves the first assertion. For
the second assertion note that Het

q−2(Uη,Qℓ/Zℓ(−1)) = Het
q−1(Us,Qℓ/Zℓ(0)) = 0 if

q < d by Theorem 3.5 and Theorem 4.4. Thus the claim follows since ǫqUs
and ǫqUη

are surjective by the assumptions 6.4 (1) and (2). For (3) we may assume q = d by
(2). Then the assertion follows since, by Theorem 4.4, the residue map ∆i,et

U is an
isomorphism for i = d(= q) if one of the conditions 6.4 (4)(a),(b),(c) is satisfied.

We can now prove Theorem 1.6. We proceed by induction on dim(X). First we
claim that we may assume the existence of a good divisor Z ⊂ X. Indeed, by
Proposition 4.3 such a divisor exists after replacing F with a finite extension of
degree prime to ℓ and K with the corresponding unramified extension. Then the
claim follows for the original F andK by a standard norm argument. Given a good
divisor, Theorem 1.6 (1) follows from Proposition 6.4 with q = 2: Condition (1) is
satisfied since the Kato conjectureK(F,Qℓ/Zℓ) is known in degrees≤ 3, as recalled
in the introduction. Condition (2) is satisfied by Lemma 6.1 (1). Condition (3) is
satisfied by the induction hypothesis and Theorem 1.5. Condition (4) is satisfied
since every prime is not less than 2. This completes the proof of Theorem 1.6.

Remark 6.6 Proposition 6.4 tells that, assuming that the Kato conjecture
K(F,Qℓ/Zℓ) holds, an essential obstacle against showing Conjecture B in degrees
> 2 is the surjectivity of ǫiUη

for i > 2. In case i = 2 the class field theory for

curves over local fields [Sa1] plays a crucial role to prove it (cf. the proof of Lemma
6.1). In case i > 2 we do not have any effective means to approach this problem
at present.

We close this section with the following applications of Theorems 6.1 and 1.6.

Corollary 6.7 Let V be a scheme of finite type over K.
(1) HK

i (V,Z/nZ) is finite for i = 0, 1 and for all n > 0 invertible in K.
(2) HK

2 (V,Qℓ/Zℓ) is of cofinite type.
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Proof There is an affine open subscheme U →֒ V with complement Z = V \ U
such that dim(Z) < dim(V ). By induction on dim(V ) and by the exact sequences

HK
i (Z,Z/nZ)→ HK

i (V,Z/nZ)→ HK
i (U,Z/nZ)

we may thus assume that V is affine. By the following Lemma, the claim then
follows from Lemma 5.2 for HK

0 and HK
1 , and from Theorem 6.1 (1) for HK

2 .

Lemma 6.8 If V separated, and n invertible in K, Het
i (V,Z/nZ(j)) is finite for

for all i, j ∈ Z. In particular, Het
i (V,Qℓ/Zℓ(j)) is of cofinite type for all i, j ∈ Z.

Proof It suffices to show the first claim; the second then follows via the Kummer

sequence 0 → Z/ℓZ(−j) → Qℓ/Zℓ(−j)
ℓ
→Qℓ/Zℓ(−j) → 0. For an open immersion

V →֒ V ′ with complement Z = V ′ \ V , we have the exact sequence

Het
i (Z,Z/nZ(j))→ Het

i (V ′,Z/nZ(j))→ Het
i (V,Z/nZ(j))→ Het

i−1(Z,Z/nZ(j)).

By induction on dim(V ) and embedding V into a proper K-scheme [N], we may
thus assume that g : V → Spec(K) is proper. By Lemma 5.3 we are reduced to
show the finiteness of Ha(V,Z/nZ(b)) = Ha(K,Rg∗Z/nZ(b)) for proper g, which
is a consequence of [SGA4], XIV Th.1.1 and [Se], Ch.II §5.2.

Corollary 6.9 If X is smooth and projective over S, then HK
2 (Xη,Qℓ/Zℓ) = 0.

Proof This is an immediate consequence of Theorems 1.6 and 1.4.

Corollary 6.10 For a projective smooth variety Z over a number field,
HK

2 (Z,Qℓ/Zℓ) is of cofinite type.

Proof This follows from Theorem 1.3 and Corollaries 6.7 and 6.9 by noting the
following: Let the notation be as in Theorem 1.3. For an imaginary place v, one
has HK

i (Zv,Q/Z) = 0 because cd(k(x)) = p for x ∈ (Zv)p. For a real place v,
HK

i (Zv,Q/Z) is a 2-torsion finite group by results of [Sch] 19.5.1 and 17.7.

7. An application: The kernel of the reciprocity map

Let the notations be as in the beginning of §5. Recall that K is the quotient field
of A, a henselian discrete valuation ring with finite residue field F of characteristic
p. We assume that fη is proper. Let k(Xη) denote the function field of Xη. In
this section we study the kernel of the reciprocity map

ρXη
: SK1(Xη)→ πab

1 (Xη)

and prove Theorems 1.8 and 1.9. For an integer n > 0 prime to ch(K) let

ρXη,n : SK1(Xη)/n→ πab
1 (Xη)/n
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be the induced map. By Lemmas 5.2 and 5.3 we have an exact sequence

(7-1) Coker(ǫ2Xη,n)→ SK1(Xη)/n
ρXη,n

−→ πab
1 (Xη)/n→ HK

1 (Xη,Z/nZ)→ 0

where ǫiXη,n
: Het

i−2(Xη,Z/nZ(−1))→ HK
i (Xη,Z/nZ) is as in (5-1). We need the

following theorem.

Theorem 7.1 Let V be a smooth proper geometrically irreducible variety over
K. Let πab

1 (V )
geo

be the kernel of the natural surjection πab
1 (V ) → Gal(Kab/K).

There is an exact sequence

0→ T → πab
1 (V )

geo
→ Ẑr → 0,

where T is finite and r is the F -rank of the special fiber of the Néron model of the
Albanese variety of V .

For the pro-ℓ -part, with ℓ 6= p := ch(F ), this is essentially due to Grothendieck.
The result for the pro-p -part is due to T. Yoshida [Y].

Theorem 7.2 For V as in Theorem 7.1, the image of Ker(NV/K) under ρV :

SK1(V )→ πab
1 (V ) is finite.

Proof By Theorem 7.1 it suffices to show that the image is torsion. By a similar
argument as in the proof of Proposition 6.3 (1) we may reduce to the case that V
is a proper smooth curve. Then the assertion follows from [Sa1], Th. 4.1, together
with [Y], Th. 5.1 (for the p -part if ch(K) = p).

Lemma 7.3 Let V be of finite type over K. For a prime ℓ we have an exact
sequence

0→ HK
i+1(V,Qℓ/Zℓ)/ℓ

ν → HK
i (V,Z/ℓνZ)→ HK

i (V,Qℓ/Zℓ)[ℓ
ν ]→ 0

either if ℓ = ch(K), or if ℓ 6= ch(K), BKi+1(K(x), ℓ) (cf. the introduction) holds
for all x ∈ Vi and BKi(K(x), ℓ) holds for all x ∈ Vi−1.

Proof (cf. [CT], §2) We use the Kummer sequences of étale sheaves

0→ Z/ℓνZ(r)→ Qℓ/Zℓ(r)
ℓν
−→ Qℓ/Zℓ(r)→ 0 (for ℓ 6= ch(K)),

0→WνΩ
r
log →W∞Ωr

log
ℓν
−→W∞Ωr

log → 0 (for ℓ = ch(K)).

For x ∈ Vj they give rise to the exact sequence

Hj+1(K(x),Qℓ/Zℓ(j+1))
ℓν

−→ Hj+1(K(x),Qℓ/Zℓ(j+1)) → Hj+2(K(x),Z/ℓνZ(j+1))

ι
−→ Hj+2(K(x),Qℓ/Zℓ(j + 1))

ℓν

−→ Hj+2(K(x),Qℓ/Zℓ(j + 1)) → 0,
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(where we let Hs(K(x),Qℓ/Zℓ(r)) := Hs−r(K(x),W∞Ωr
log), cf. 2 B and the

introduction). The surjectivity of the last map follows fromHj+3(K(x),Z/ℓνZ(j+
1)) = 0, which follows from [Se], Ch.II §4 and §6 for ℓ 6= ch(K). For ℓ = p =
ch(K), the vanishing of H2(K(x),WνΩ

j+1) follows from cdp(K(x)) ≤ 1, cf. the
proof of 2.14 (c). In case ℓ 6= ch(K) the assumption BKj+1(K(x), ℓ) says that
Hj+1(K(x),Qℓ/Zℓ(j + 1)) is divisible so that ι is injective. In case ℓ = ch(K) we
get the same conclusion by [BK], Th. 2.1. The desired assertion now follows from
the sequence of Kato complexes

0→ C2,1(V,Z/ℓνZ)→ C2,1(V,Qℓ/Zℓ)
ℓν
−→ C2,1(V,Qℓ/Zℓ)→ 0

and the exactness properties derived from the above exact sequences for j =
i− 1, i, i+ 1.

Lemma 7.4 Let V and W be irreducible and smooth of dimension d over a field L
and let f : W → V be proper and generically finite of degree N . For any integers
r, s,, and any integer n invertible in L, the cokernel of the map

f∗ : Hr,s
d (W,Z/nZ)→ Hr,s

d (V,Z/nZ)

induced by f in the Kato homology is annihilated by N .

Proof We have the commutative diagram

Hr,s
d (W,Z/nZ)

→֒
−→ Hd+r(L(W ),Z/nZ(d+ s))

↓ f∗ ↓ CorL(W )/L(V )

Hr,s
d (V,Z/nZ)

→֒
−→ Hd+r(L(V ),Z/nZ(d+ s))

where CorL(W )/L(V ) is the corestriction map for Galois cohomology. We claim
that the restriction map

ResL(W )/L(V ) : Hd+r(L(V ),Z/nZ(d+ s))→ Hd+r(L(W ),Z/nZ(d+ s))

induces f∗ : Hr,s
d (V,Z/nZ) → Hr,s

d (W,Z/nZ), which proves the lemma since the
composite map CorL(W )/L(V )◦ResL(W )/L(V ) is the multiplication byN . If f is flat,
the assertion follows from the contravariant functoriality of the Kato complexes
for flat morphisms. In general it follows from the canonical isomorphism

Hr,s
d (W,Z/nZ) ∼= H0(WZar,H

d+r(Z/nZ(d+ s)))

and the similar isomorphism for V following from [BO] by the assumption of
smoothness. Here Hd+r(Z/nZ(d + s)) is the Zariski sheaf associated to U →
Hd+r(Uet,Z/nZ(d+ s)).

Lemma 7.5 Assume that Xη is irreducible and proper of dimension 2. If ℓ 6=
ch(K) is a prime such that BK3(K(Xη), ℓ) holds, then |Ker(ρXη,ℓν )| is bounded
with respect to ν.
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Proof Lemma 5.2 induces the following commutative diagram
(7-2)

Het
0 (Xη,Z/ℓ

νZ(−1)) → HK
2 (Xη,Z/ℓ

νZ) → Ker(ρXη,ℓν )→ 0
↓ α ↓ γ

Het
0 (Xη,Qℓ/Zℓ(−1))[ℓ

ν ]
ǫ[ℓν ]
−→ HK

2 (Xη,Qℓ/Zℓ)[ℓ
ν ]

↓ →֒ ↓ →֒

Het
0 (Xη,Qℓ/Zℓ(−1))

ǫ
−→ HK

2 (Xη,Qℓ/Zℓ)

where the upper horizontal sequence is exact, α is surjective, γ is an isomorphism
by Lemma 7.3, and Coker(ǫ) is finite by Theorem 6.1. Since Het

0 (Xη,Qℓ/Zℓ(−1))
is of cofinite type by Lemma 6.8, this implies that Ker(ρXη,ℓν ) is finite and that

|Ker(ρXη,ℓν )| = |Coker(ǫ[ℓ
ν ])| ≤ |Coker(ǫ)| · |Ker(ǫ)/ℓν |

≤ |Coker(ǫ)| · |Ker(ǫ)/Div(Ker(ǫ))|,

where Div(A) denotes the maximal divisible subgroup of an abelian group A. This
proves Lemma 7.5.

Lemma 7.6 With assumption be as Theorem 1.8 (1), let IP be the set of all inte-
gers whose prime divisors belong to P . Then Ker(ρXη,n) is bounded with respect
to n ∈ IP .

Proof By Lemma 7.5 it suffices to show Ker(ρXη,ℓν ) = 0 for almost all ℓ ∈ P ,
ℓ 6= ch(F ). We claim that we may assume that X is projective over S having
semistable reduction over S. Indeed, by [dJ] there exists a finite morphism S′ → S

and an alteration X̃ → X with X̃/S′ satisfying the condition. Noting that (7-1)
is covariantly functorial for proper morphisms, we get the commutative diagram

HK
2 (X̃η,Z/ℓ

νZ) → Ker(ρX̃η,ℓν
) → 0

↓ ↓
HK

2 (Xη,Z/ℓ
νZ) → Ker(ρXη,ℓν ) → 0

Hence the claim follows from Lemma 7.4. Then by Proposition 4.3 and a finite
étale base change we may furthermore assume that there exists a very good divisor
Z ⊂ X in the sense of Definition 3.3. Let U = X \ Z.

Claim 1 If ℓ ∈ P , then Ker(ρXη,ℓν ) ⊂ Im(SK1(Zη)) for all ν.

Proof We have the commutative diagram

SK1(Zη)/ℓ
ν → SK1(Xη)/ℓ

ν → SK1(Uη)/ℓ
ν → 0

↓ αXη
↓ αUη

Het
−1(Xη,Z/ℓ

νZ(−1)) → Het
−1(Uη,Z/ℓ

νZ(−1))
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in which αXη
can be identified with ρXη,ℓν (cf. 5.2 and 5.3). Thus it suffices to

show that αUη
is an injection. By Lemma 5.2 we have the commutative diagram

Het
0 (Uη,Z/ℓ

νZ(−1))
ǫUη
−→ HK

2 (Uη,Z/ℓ
νZ) → Ker(αUη

)→ 0
↓ ↓

Het
0 (Uη,Qℓ/Zℓ(−1))[ℓ

ν ]
∼=
−→ HK

2 (Uη,Qℓ/Zℓ)[ℓ
ν ]

where the upper horizontal sequence is exact and the left vertical map is surjective.
The right vertical arrow is an isomorphism by Lemma 7.3 and the lower horizontal
map is an isomorphism by the proof of Theorem 1.6 (note that ℓ 6= ch(F )). This
proves the desired assertion.

Claim 2 If ℓ 6 | |Coker(NZη/K)|, then Ker(ρXη,ℓν ) ⊂ Im(Ker(NZη/K)).

Proof We have the commutative diagram

0→ Ker(NZη/K)/ℓν → SK1(Zη)/ℓ
ν → K∗/ℓν → 0

↓ ↓ ‖
0→ Ker(NXη/K)/ℓν → SK1(Xη)/ℓ

ν → K∗/ℓν → 0
↓ ρXη,ℓν ↓ ρη,ℓν

πab
1 (Xη)/ℓ

ν → πab
1 (η)/ℓν

where ρη,ℓν is an isomorphism by local class field theory. Under the assumption of
the claim, the horizontal sequences are exact. Now the claim follows easily from
Claim 1 by simple diagram chasing.

To finish the proof of Lemma 7.6 it suffices to show Ker(NZη/K) is ℓ-divisible for
almost all ℓ. Since dim(Zη) = 1, this follows from the class field theory for curves
over local fields. Indeed, the kernel of

Ker(NZη/K) →֒ SK1(Zη)
ρV
−→ πab

1 (Zη)

is ℓ-divisible by [Sa1], Th.5.1 so that the assertion follows from Theorem 7.2.

Proof of Theorem 1.8(1): Consider the commutative diagram

0→ Ker(ρXη
) → SK1(Xη) → πab

1 (Xη)
↓ ↓ π1 ↓ π2

0→ lim
←−

n∈IP

Ker(ρXη,n) → lim
←−

n∈IP

SK1(Xη)/n → lim
←−

n∈IP

πab
1 (Xη)/n

Theorem 7.1 implies that

lim
←−

n∈IP

πab
1 (Xη)/n =

∏

ℓ∈P

πab
1 (Xη)(ℓ) and Ker(π2) =

∏

ℓ 6∈P

πab
1 (Xη)(ℓ).

and that the torsion part of the former is finite and that the latter is P -torsion free,
namely nx = 0 with n ∈ IP and x ∈ Ker(π2) implies x = 0. Lemma 7.6 implies
lim
←−

n∈IP

Ker(ρXη,n) is finite so that Ker(π1) is P -divisible by Lemma 7.7 below. Hence

the diagram implies that Ker(ρXη
) is an extension of a finite group by a P -divisible

group. Now Theorem 1.8(1) follows from Lemma 7.8 below.
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Lemma 7.7 Assume given an abelian group A, a projective system of abelian

groups {Bn}n∈IP and a projective system {A/nA
ϕn
−→ Bn}n∈IP of homomor-

phisms. Write

ϕ̂ := lim
←−

n∈IP

ϕn : Â→ B̂, (Â = lim
←−

n∈IP

A/nA, B̂ := lim
←−

n∈IP

Bn)

Assume that there exists 0 6= N ∈ IP such that N ·B̂tor = 0 and that N ·Ker(ϕ̂) = 0.
Then D := ∩n∈IP nA is the maximal P -divisible subgroup of A.

Proof It is evident that D contains the maximal P -divisible subgroup of A. Thus
it suffices to show that D is P -divisible. Let π : A → Â be the natural map and
put D′ = Ker(ϕ̂ ◦ π). By the assumption D = Ker(π) ⊂ D′ and N ·D′ ⊂ D. Take
x ∈ D. For any n ∈ IP there exists y ∈ A such that x = nN2y. Then we have
0 = ϕ̂(π(x)) = nN2ϕ̂(π(y)) so that ϕ̂(π(y)) ∈ B̂tor. By the assumption this implies
Nϕ̂(π(y)) = ϕ̂(π(Ny)) = 0. Hence z := Ny ∈ D′ so that x = n(Nz) ∈ n ·D. This
completes the proof of Lemma 7.7.

Lemma 7.8 Assume given 0 → D → A
π
−→ T → 0, an exact sequence of abelian

groups, where T is torsion and D is P -divisible. Write T = T (P )⊕T ′ where T (P )
is P -torsion and T ′ has no P -torsion element. Put D′ = π−1(T ′). Then D′ is
P -divisible and we have A ∼= D′ ⊕ T (P ).

Proof We have the exact sequence 0 → D → D′ → T ′ → 0. By definition T ′

is P -divisible and hence D′ is P -divisible. We show A ∼= D′ ⊕ T (P ). It suffices
to construct a map sℓ : T{ℓ} → A for each ℓ ∈ P such that π ◦ sℓ is the identity,
where M{ℓ} denotes the ℓ-primary torsion part of an abelian group M . We have
an exact Tor-sequence

0→ D′{ℓ} → A{ℓ} → T{ℓ} → 0 = D′ ⊗Qℓ/Zℓ

which can be viewed as an exact sequence of Zℓ-modules. SinceD′{ℓ} is ℓ-divisible,
it is an injective Zℓ-module (cf. [HS], Th. 7.1). Thus the above sequence splits
and we get the desired map sℓ. This completes the proof of Lemma 7.8.

Proof of Theorem 1.9: If V is smooth and proper, the claim follows from
Theorem 1.8 (1) and Theorem 7.2. If V is proper, there exists an alteration

Ṽ → V with Ṽ smooth and proper [dJ], and we get a commutative diagram

SK1(Ṽ )
NṼ /V
→ SK1(V )

↓ NṼ /K ↓ NV/K

K∗ = K∗

in which NṼ /V has finite cokernel by Lemma 6.2. Hence the claim for V follows

from that for Ṽ . If V is not proper, take an open immersion V →֒ W with W
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proper over K, and let Z = W \ V . Then we have a commutative diagram with
exact top row

SK1(Z) → SK1(W ) → SK1(V ) → 0
↓ NZ/K ↓ NW/K

K∗ = K∗

It gives a map Ker(NW/K) → SK1(V ) with finite cokernel, which shows that it
suffices to consider W , i.e. the case that V is proper. This completes the proof of
Theorem 1.9.

Proof of Theorem 1.8 (2) and (3): Lemmas 5.2 and 5.3 induce the exact
sequence for n ∈ IP

(7-3) HK
2 (Xη,Q/Z)[n]→ SK1(Xη)/n

ρXη,n

−→ πab
1 (Xη)/n

where we used that HK
2 (Xη,Z/nZ) ∼= HK

2 (Xη,Q/Z)[n] by Lemma 7.3. The as-
sumption H2(ΓX̃s

,Q) = 0 implies that H2(ΓX̃s
,Q/Z) is finite. On the other hand,

we have maps

HK
2 (X̃η,Q/Z

′)
∆2

X̃−→HK
2 (X̃s,Q/Z

′)
γ
X̃s−→HK

2 (ΓX̃s
,Q/Z′) , Q/Z′ = ⊕

ℓ 6=ch(K)
Qℓ/Zℓ,

where ∆2
X̃

is an isomorphism by Theorem 1.6 and γX̃s
is an isomorphism by

Theorem 1.4. Hence HK
2 (ΓX̃s

,Q/Z′) is finite, and by Lemma 7.4, HK
2 (Xη,Q/Z

′)
is finite as well. Thus, passing to the limit, the sequences (7-3) induces an injection

lim
←−

n∈IP

SK1(Xη)/n →֒ lim
←−

n∈IP

πab
1 (Xη)/n,

because lim
←−

A[n] = 0 = lim1

←−
A[n] for any finite abelian group A. Now Theorem

1.8 (2) follows from Lemma 7.7 by the same argument as in the proof of Theorem
1.8(1). Finally Theorem 1.8 (3) follows from 1.8 (2) together with Theorems 1.4
and 1.5, because in the case of good reduction the complex ΓXs

is contractible.
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[Sz] T. Szamuely, Sur la théorie des corps de classes pour les variétés sur
les corps p-adiques, J. reine angew. Math. 525 (2000), 183–212.
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Cohomologie Etale des Schemas, Tome 3, Lect. Notes in Math. 305,
Springer, Berlin 1973.

[SGA 5] A. Grothendieck et al., Cohomologie l-adique et Fonctions L, Lect.
Notes in Math. 589, Springer, Berlin 1977.

Uwe Jannsen
Fakultät für Mathematik
Universität Regensburg
Universitätsstr. 31
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