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ABSTRACT. For a CM-field K which is abelian over a totally real
number field & and a prime number p, we show that the structure of
the x-component A% of the p-component of the class group of K is de-
termined by Stickelberger elements (zeta values) (of fields containing
K) for an odd character x of Gal(K/k) satisfying certain conditions.
This is a generalization of a theorem of Kolyvagin and Rubin. We de-
fine higher Stickelberger ideals using Stickelberger elements, and show
that they are equal to the higher Fitting ideals. We also construct and
study an Euler system of Gauss sum type for such fields. In the ap-
pendix, we determine the initial Fitting ideal of the non-Teichmiiller
component of the ideal class group of the cyclotomic Z,-extension of
a general CM-field which is abelian over k.

0 INTRODUCTION

It is well-known that the cyclotomic units give a typical example of Euler
systems. Euler systems of this type were systematically investigated by Kato
[8], Perrin-Riou [14], and in the book by Rubin [18]. In this paper, we propose
to study Euler systems of Gauss sum type which are not Euler systems in the
sense of [18]. We construct an Euler system in the multiplicative groups of
CM-fields, which is a generalization of the Euler system of Gauss sums, and
generalize a structure theorem of Kolyvagin and Rubin for the minus class
groups of imaginary abelian fields to general CM-fields.

The aim of this paper is to prove the structure theorem (Theorem 0.1 below),
and we do not pursue general results on the Euler systems of Gauss sum type in
this paper. One of very deep and remarkable works of Kato is his construction
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of the Euler system (which lies in H*(T))) for a Z,-representation T' associated
to a modular form. We remark that we do not have an Euler system of Gauss
sum type in H*(T), but fixing n > 0 we can find an Euler system of Gauss
sum type in H(T/p™), which will be studied in our forthcoming paper.

We will describe our main result. Let k be a totally real number field, and K
be a CM-field containing k such that K/k is finite and abelian. We consider
an odd prime number p and the p-primary component Ax = Clg ® Z, of the
ideal class group of K. Suppose that p does not divide [K : k]. Then, Ag
is decomposed into Ax = @, Aj where A} is the x-component which is an
Oy-module (where O, = Z,[Image x|, for the precise definition, see 1.1), and

X ranges over Q,-conjugacy classes of pr—valued characters of Gal(K/k) (see
also 1.1).

For k = Q and K = Q(up) (the cyclotomic field of p-th roots of unity),
Rubin in [17] described the detail of Kolyvagin’s method ([10] Theorem 7),
and determined the structure of Aé(up) as a Z,-module for an odd x, by using
the Euler system of Gauss sums (Rubin [17] Theorem 4.4). We generalize this
result to arbitrary CM-fields.

In our previous paper [11], we proposed a new definition of the Stickelberger
ideal. In this paper, for certain CM-fields, we define higher Stickelberger
ideals which correspond to higher Fitting ideals. In §3, using the Stickel-
berger elements of fields containing K, we define the higher Stickelberger ideals
©; Kk C Z,[Gal(K/k)] for i > 0 (cf. 3.2). Our definition is different from Ru-
bin’s. (Rubin defined the higher Stickelberger ideal using the argument of Euler
systems. We do not use the argument of Euler systems to define our ©; .)
We remark that our ©; x is numerically computable, since the Stickelberger
elements are numerically computable. We consider the x-component @?‘7 K-
We study the structure of the x-component A% as an O,-module. We note
that p is a prime element of O, because the order of Image x is prime to p.

THEOREM 0.1. We assume that the Iwasawa p-invariant of K is zero (cf.
Proposition 2.1), and x is an odd character of Gal(K /k) such that x # w (where
w is the Teichmiiller character giving the action on ), and that x(p) # 1 for
every prime p of k above p. Suppose that

Afe =0y /(p™) & ... ® Oy /(p™)
with 0 < ny < ... < n,. Then, for any i with 0 < i < r, we have
(pn1+..»+nr_i) — @},K

and ©F j = (1) for i > r. Namely,

Aje ~ @ O /O 1,k
i>0
In the case K = Q(up) and k = Q, Theorem 0.1 is equivalent to Theorem 4.4
in Rubin [17].
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This theorem says that the structure of A} as an O,-module is determined by
the Stickelberger elements. Since the Stickelberger elements are defined from
the partial zeta functions, we may view our theorem as a manifestation of a very
general phenomena in number theory that zeta functions give us information
on various important arithmetic objects.

In general, for a commutative ring R and an R-module M such that
r™ Lrr M —0

is an exact sequence of R-modules, the i-th Fitting ideal of M is defined to be
the ideal of R generated by all (r—1) x (r—4) minors of the matrix corresponding
to f for i with 0 <i < r. If i > r, it is defined to be R. (For more details, see
Northeott [13]). Using this terminology, Theorem 0.1 can be simply stated as

Fitt; 0, (A%) = @;f K

for all « > 0.

The proof of Theorem 0.1 is divided into two parts. We first prove the inclusion
Fitt; 0, (A%) D O} k. To do this, we need to consider a general CM-field which
contains K. Suppose that F' is a CM-field containing K such that F/k is
abelian, and F/K is a p-extension. Put Rp = Z,[Gal(F/k)]. For a character x
satisfying the conditions in Theorem 0.1, we consider R}, = O, [Gal(F/K)] and
AY, = Ap ®g, R} where Gal(K/k) acts on O, via x. For the x-component
0% € R} of the Stickelberger element of F' (cf. 1.2), we do not know whether
0% € Fitt, RY (A¥) always holds or not (cf. Popescu [15] for function fields).
But we will show in Corollary 2.4 that the dual version of this statement holds,
namely

L(0%) € Fittm;_l((A;)V)

where + : Rp — Rp is the map induced by o — o~! for 0 € Gal(F/k), and
(A%)Y is the Pontrjagin dual of A%.. We can also determine the right hand side

Fitt07R§'—1 ((A%)Y). In the Appendix, for the cyclotomic Z,-extension F.,/F,

we determine the initial Fitting ideal of (the Pontrjagin dual of) the non-
w component of the p-primary component of the ideal class group of F, as
a Ap = Z,[[Gal(Fx/k)]]-module (we determine Fittg s, ((Ap,)Y) except w-
component, see Theorem A.5). But for the proof of Theorem 0.1, we only
need Corollary 2.4 which can be proved more simply than Theorem A.5, so
we postpone Theorem A.5 and its proof until the Appendix. Concerning the
Iwasawa module Xp_ = IEHAF,L where F,, is the n-th layer of F/F, we

computed in [11] the initial Fitting ideal under certain hypotheses, for example,
if F/Q is abelian. Greither in his recent paper [4] computed the initial Fitting
ideal of X more generally.

In our previous paper [11] §8, we showed that information on the initial Fitting
ideal of the class group of F' yields information on the higher Fitting ideals of
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the class group of K. Using this method, we will show Fitt; o, (A%) D O}k in
Proposition 3.2.

In order to prove the other inclusion, we will use the argument of Euler systems.
By Corollary 2.4 which was mentioned above, we obtain

Ox A% =0.

(We remark that this has been obtained recently also in Greither [4] Corollary
2.7.) Using this property, we show that for any finite prime p of F there is
an element gy € (F* ® Zp)X such that div(gy ) = 0F[p]¥ in the divisor
group where [p] is the divisor corresponding to p (for the precise relation, see
84). These g%ﬁ 'S become an Euler system of Gauss sum type (see §4). For
the Euler system of Gauss sums, a crucial property is Theorem 2.4 in Rubin
[18] which is a property on the image in finite fields, and which was proved by
Kolyvagin, based on the explicit form of Gauss sums. But we do not know the
explicit form of our gfﬂ’ > SO We prove, by a completely different method, the
corresponding property (Proposition 4.7) which is a key proposition in §4.

It is possible to generalize Theorem 0.1 to characters of order divisible by p sat-
isfying some conditions. We hope to come back to this point in our forthcoming

paper.

I would like to express my sincere gratitude to K. Kato for introducing me to
the world of arithmetic when I was a student in the 1980’s. It is my great
pleasure to dedicate this paper to Kato on the occasion of his 50th birthday.
I would like to thank C. Popescu heartily for a valuable discussion on Euler
systems. I obtained the idea of studying the elements g?) p from him. I would
also like to thank the referee for his careful reading of this manuscript, and for
his pointing out an error in the first version of this paper. I heartily thank C.
Greither for sending me his recent preprint [4].

Notation

Throughout this paper, p denotes a fixed odd prime number. We denote by
ordy, : Q* — Z the normalized discrete valuation at p. For a positive integer
n, Wy, denotes the group of all n-th roots of unity. For a number field F', Op
denotes the ring of integers. For a group G and a G-module M, M denotes the
G-invariant part of M (the maximal subgroup of M on which G acts trivially),
and Mg denotes the G-coinvariant of M (the maximal quotient of M on which
G acts trivially). For a commutative ring R, R* denotes the unit group.
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1 PRELIMINARIES

1.1. Let G be a profinite abelian group such that G = A x G’ where #A is finite
and prime to p, and G’ is a pro-p group. We consider the completed group ring
Z,,[[G]] which is decomposed into

Z,(9)) = Z,[A][16']] ~ P O« (1G]

where x ranges over all representatives of Q,-conjugacy classes of characters
of A (a @X—leed character y is said to be Q,-conjugate to X’ if ox = x’ for
some o € Gal(Q,/Qp)), and O, is Z,[Image x] as a Z,-module, and A acts on
it via x (0@ = x(0)z for o € A and x € O,). Hence, any Z,[[G]]-module M is
decomposed into M =~ ), MX where

MX ~ M ®ZP[A] OX ~ M ®Zp[[g]] OXHQ/H

In particular, MX is an O,[[G']]-module. For an element x of M, the x-
component of x is denoted by zX € MX.
Let 1A be the trivial character o — 1 of A. We denote by M! the trivial
character component, and define M* to be the component obtained from M
by removing M!, namely

M=M"aM".
Suppose further that G’ = G x G” where G is a finite p-group. Let 1) be a
character of G. We regard Y1/ as a character of Gy = A x G, and define MX¥
by MX¥ = M ®z_1G,) Oxy where O,y is Oy = Zy[Image x¢)] on which Gy acts
via x?. By definition, if x # 1, we have MX¥ ~ (M*)X¥.

Let k be a totally real number field and F' be a CM-field such that F'/k is finite
and abelian, and p, C F. We denote by Fu/F the cyclotomic Z,-extension,
and put G = Gal(F/k). We write G = A x G’ as above. A Z,[[G]]-module M
is decomposed into M = MT @ M~ with respect to the action of the complex
conjugation where M¥* is the +-eigenspace. By definition, M~ = @X:Odd MX
where x ranges over all odd characters of A. We consider the Teichmiiller
character w giving the action of A on p,, and define M~ to be the component
obtained from M~ by removing M*%, namely

M~ =M~ M~

For an element x of M, we write ™ the component of x in M™.

1.2. Let k, F, Fs be as in 1.1, and S be a finite set of finite primes of k
containing all the primes which ramify in F/k. We define in the usual way the
partial zeta function for o € Gal(F/k) by

(s(s0)= Y N

(a,F/k)=c
a is prime to S
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for Re(s) > 1 where N(a) is the norm of a, and a runs over all integral ideals
of k, coprime to the primes in S such that the Artin symbol (a, F'/k) is equal
to 0. The partial zeta functions are meromorphically continued to the whole
complex plane, and holomorphic everywhere except for s = 1. We define

Ors= Y (s(0,0)07"

o€Gal(F/k)

which is an element of Q[Gal(F/k)] (cf. Siegel [21]). Suppose that S is the
set of ramifying primes of k in F//k. We simply write 0 for 0p s,,. We know
by Deligne and Ribet the non w-component (0rs)~ € Qp[Gal(F/k)]™ is in
Z,[Gal(F'/k)]~. In particular, for a character x of A with x # w, we have
(Op g)X € Z,[Gal(F/k)]x.

Suppose that S contains all primes above p. Let F,, denote the n-th layer of
the cyclotomic Zy-extension Fo,/F, and consider (8r, s)~ € Z,|Gal(F,/k)]~.
These 07 ¢’s become a projective system with respect to the canonical restric-
tion maps, and we define

Or...s € Zp[[Gal(Foo /R)]]™

to be their projective limit. This is essentially (the non w-part of) the p-adic
L-function of Deligne and Ribet [1].

2 INITIAL FITTING IDEALS

Let k, F', Fs be as in §1. We denote by ko /k the cyclotomic Z,-extension,
and assume that F' Nk, = k. Our aim in this section is to prove Proposition
2.1 and Corollary 2.4 below.

2.1. Let S be a finite set of finite primes of k containing ramifying primes
in Foo/k. We denote by F* the maximal real subfield of F. Put Ap =
Z,|[Gal(Fs /k)]] and Ap+ = Z,[[Gal(FL /k)]] which is naturally isomorphic
to the plus part A; of Ap. We denote by M g the maximal abelian pro-p
extension of Fiff which is unramified outside S, and by X’ r+ s the Galois group
of Moo, s/F5. We study X+ g which is a torsion Ap+-module.

We consider a ring homomorphism 77 '2: Ap — Ap which is defined by o
k(o)o~! for o € Gal(Fu/k) where k : Gal(Fx /k) — Z) is the cyclotomic
character giving the action of Gal(Fu/k) on pye. Let (Ap)™ and (AL)* =
(Ap+)* be as in §1.1. Then, 714 induces

7l (Ap)Y — (Aps)™.

Let 03 g € (Ap)™ be the Stickelberger element defined in 1.2.
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PROPOSITION 2.1. Assume that the the Iwasawa p-invariant of F is zero,
namely Xp+ ¢ is a finitely generated Zy-module. Then, Fittoa ., (Xp+ 5)*) is
generated by 7"%((9177OO S) except the trivial character component, namely

Fitto,AF+ ((XF;75)*)* = (Tﬁlb(agﬁx,s))'

Proof. We use the method in [11]. In fact, the proof of this proposition is much
easier than that of Theorem 0.9 in [11].

We decompose G = Gal(F /k) as in 1.1 (G = A x G’). Suppose that c is the
complex conjugation in A and put AT = A/ < ¢ >, and Gy = Gal(F*/k).
Then, we can write Go = AT x G where G is a p-group. For a character y of
A" with ¥ # 1a+, and a character 1 of G, we regard x1 as a character of
Go. We consider (XF;,S)Xw which is an O, [[Gal(Fs/F)]]-module (cf. 1.1).
Our assumption of the vanishing of the p-invariant implies that (X Pt S)X“’ is
a finitely generated O,-module. We will first show that (X P S)X‘/’ is a free
Oy-module.

Let H C G be the kernel of ¥, and M be the subfield of F' correspond-
ing to H, namely Gal(F/M) = H. We denote by M the cyclotomic Z,-
extension of M and regard H as the Galois group of Fo/Ms. We will see
that the H-coinvariant ((Xp+ ¢)X)m is naturally isomorphic to (Xy+ ¢)¥.
In fact, by taking the dual, it is enough to show that the natural map
HY(0y4 [1/5),Qy/Zp) " — (HY(Op [1/S),Qp/Z,)X ) of etale coho-
mology groups is bijective where O+ [1/5] (resp. Op+[1/5]) is the ring of
S-integers in MJ (resp. F). This follows from the Hochschild-Serre spectral
sequence and H(H,Q,/Z,)X = H%*(H,Q,/Z,)X = 0. Hence, regarding
Xt as a character of Gal(M ™ /k), we have

,S)Xw = (XM;g,s)w-

We note that (X;,+ ¢)X does not have a nontrivial finite O, [[G’]]-submodule
(Theorem 18 in Iwasawa [5]), so is free over O, by our assumption of the -
invariant. We will use the same method as Lemma 5.5 in [11] to prove that
(XM;S)X‘/’ is free over O,,. We may assume 1 # 1, so p divides the order of
Gal(M™*/k). Let C be the subgroup of Gal(M ™ /k) of order p, M’ the subfield
such that Gal(M+/M’) = C, and put N¢ = Y,cco. We have an isomorphism
(XM;,S)W ~ (Xy+ s)/(Ne). Let o be a generator of C. In order to prove

(XF+

oo

that (XM; §)X¥ is free over O,y, it is enough to show that the map
oo —1: (Xyx o)X/ (No) — (Xyz o)

is injective. Hence, it suffices to show ((X),+ $)X)¢ = Ne((Xy+ 5)%), hence
to show HO(C, (Xt §)X) = 0. Taking the dual, it is enough to show

H(C, Helt(OM:O[l/S],Qp/Zp)Xfl) = 0. This follows from the Hochschild-
Serre spectral sequence and HZ, (O [1/5],Qp/Z,) = 0 (which is a famous
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property called the weak Leopoldt conjecture and which follows immediately
from the vanishing of the p-component of the Brauer group of M/.).
Thus, (Xp+ )XV is a free Oyy-module of finite rank. This shows that

Fitt()’OXip[[Gal(Foo/F)]]((XF;‘S)X@Z)) coincides with its characteristic ideal. By
Wiles [25] and our assumption, the p-invariant of (77 '4(03_ &))X" is also zero,
and by the main conjecture proved by Wiles [25], we have

V) = (N0, )X,

This holds for any x and ¢ with x # 1a. Hence, by Corollary 4.2 in [11], we
obtain the conclusion of Proposition 2.1.

Fitto,0,, [[Gal(Fu /P ((Xrz

oo

2.2. For any number field F, we denote by Az the p-primary component of
the ideal class group of F. Let F' be as above. We define

A Foo — limA F,
—

where F), is the n-th layer of F./F. We denote by (Ap_)Y the Pontrjagin
dual of Ar_. Let S}, be the set of primes of k lying over p. By the orthogonal
pairing in P.276 of Iwasawa [5] which is defined by the Kummer pairing, we
have an isomorphism

(Xpr )" (AF)Y (1)

oc,Sp

Let © : A — Ap be the ring homomorphism induced by ¢ — o' for
o € Gal(Fw/k). For a character x of A, ¢ induces a ring homomorphism

—1

A% — A% which we also denote by ¢. Since there is a natural surjective ho-

momorphism (Xp+ )* — (Xp+ . )*, Proposition 2.1 together with the above
»Sp

0,8 [~

isomorphism implies

COROLLARY 2.2. Let x be an odd character of A such that x # w. Under the
assumption of Proposition 2.1, we have

Wb ) € Fitty 1 (A5 )Y).

Next, we consider a general CM-field F' such that F/k is finite and abelian
(Here, we do not assume p, C F). Put Rp = Z,[Gal(F/k)]. Let G be the p-
primary component of Gal(F/k), and Gal(F/k) = A x G. Suppose that y is an
odd character of A with x # w. We consider R} = O, [G], and define: : Rp —

Rp and v : Rf, — R?l similarly as above. If we assume that the Iwasawa u-
invariant of F' vanishes, (Xp(,,).., 5)X71“ is a finitely generated O,-module, so
we can apply the proof of Proposition 2.1 to get L(@}fﬂws) € FittO)A;ﬁq ((A};OO)V).
Since Ap — Ap(, s injective ([24]jjrop.13f6), (A’Ig(up)oc)\/ — (A¥)Y is
surjective. The image of (0 ¢) € Af in Rp is ¢(0f ¢). Hence, we obtain
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COROLLARY 2.3. Assume that the Iwasawa p-invariant of F' is zero. Then, we
have

WOx.s) € Fitt) -t ((A%)Y).

Let Sp(u,).. (resp. Sr) be the set of ramifying primes in F(j,)o0/k (resp.
F/k). Note that Sg(, ). \ Sr C S, and

-1
9F7SF(up)oo = (HPESF(HP)OO\SF(l - (,Op ))QF’SF

where ¢, is the Frobenius of p in Gal(F/k). If x(p) # 1 for all p above p,
1

(1-— gogl)x is a unit of R? because the order of x is prime to p. Therefore,
we get

COROLLARY 2.4. Assume that the Twasawa p-invariant of F is zero, and that
x(p) # 1 for all p above p. Then, we have

L(0%) € FittmRF (A%)Y).

3 HIGHER STICKELBERGER IDEALS

In this section, for a finite abelian extension K/k whose degree is prime to p,
we will define the ideal ©; x C Z,[Gal(K/k)] for i > 0. We also prove the
inclusion ©} ;- C Fitt; 0, (A)) for K and x as in Theorem 0.1.

3.1. In this subsection, we assume that O is a discrete valuation ring with
maximal ideal (p). We denote by ord, the normalized discrete valuation of O,
so ord,(p) = 1. For n, r > 0, we consider a ring

A”ﬂ’ = O[[Sla ceey STH/((l + Sl)pn — 1, ceey (]_ —+ Sr)pn — 1)

Suppose that f is an element of A, , and write f = Zil,_“irzoail“_irS?...S}k
mod Z where Z = ((14+51)?" —1,..., (1+8S,)?" —1). For positive integers i and
s, weset s =min{z € Z:s < p*}. Assume s’ < n. If 0 < j < p*, we have
ord, (")) = ordy,(p"!/(j!(p" — 5)!)) > n—s'+1. Hence, for i1, .., i, < s < p*,
@i, ,...i,, mod p"_s/“‘1 is well-defined from f € A,, .. For positive integers i and
s with s’ < n, we define I; s(f) to be the ideal of O which is generated by

p=s' 1 and

{ail .... iy - Oéil,...,ir SS and 21++’Lr SZ}

Since ay, ... i, is well-defined mod pn—s'+1 I; s(f) C O is well-defined for any ¢
and s € Z~q such that n > s’
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LEmMMA 3.1. Let o : A, — A, be the homomorphism of O-algebras defined
by a(Sy) =T, (1+5;)%i =1 for 1 <k, j <1 such that (ax;) € GLn(Z/p"Z).
Then, we have

Lis(a(f) = Li,s(f)-

Proof. It is enough to show I; s(f) C I;s(a(f)) because if we obtain this
inclusion, the other inclusion is also obtained by applying it to a~!. Further,
since (ay;) is a product of elementary matrices, it suffices to show the inclusion
in the case that « corresponds to an elementary matrix, in which case, the
inclusion can be easily checked.

In particular, let ¢ : A, , — A, , be the ring homomorphism defined by
t(Sk)=(1+ Sk)~! —1for k=1,...,7. Then, we have

Ii,s(['(f)) == Iz,s(f)

which we will use later.

3.2. Suppose that k is totally real, K is a CM-field, and K/k is abelian such
that p does not divide [K : k]. Put A = Gal(K/k). For i > 0, we will define the
higher Stickelberger ideal ©; x C Zp[A]. Since Zy[A] ~ P, Oy, it is enough
to define (0; x)X. We replace K by the subfield corresponding to the kernel of
X, and suppose the conductor of K/k is equal to that of x.

For n, r > 0, let Sk, denote the set of CM fields F' such that K C F, F/k
is abelian, and F/K is a p-extension satisfying Gal(F/K) ~ (Z/p™)®". For
F € Sk n,r, we have an isomorphism

Z,[Gal(F/k)X ~ Z,|A]X[Gal(F/K)] = O [Gal(F/K)).

Fixing generators of Gal(F/K), we have an isomorphism between
Oy [Gal(F/K)] and A, , with O = O, in 3.1 (the fixed generators oy,...,0,
correspond to 1+ S,...,1 +5,.).
We first assume y is odd and x # w. Then, 0% is in Z,[Gal(F/k)]X =
O, [Gal(F/K)] (cf. 1.2). Using the isomorphism between O, [Gal(F/K)] and
Ay, for i and s such that n > ', we define the ideal I; ;(6%) of O, (cf.
3.1). By Lemma 3.1, I; s(6%) does not depend on the choice of generators of
Gal(F/K).
We define (©g k)X = (0} ). Suppose that (Og k)X = (p™). If m = 0, we define
(©4,x)X = (1) for all i > 0. We assume m > 0. We define Sk, = {J,~¢ Sk ,n,r-
We define (0; 5, k)X to be the ideal generated by all I; 4(0%)’s where F' ranges
over all fields in Sk, for alln > m + s’ —1 where ' = min{z € Z : s < p®} as
in 3.1, namely
(ei,s,K)X = U ILS(‘%(?)'
FeSk,n
n>m4s’ —1
We define (0; k)X by (04, k)X = U,+0(Oi,s,x)X. For x satisfying the condition
of Theorem 0.1, we will see later in §5 that (0; k)X = (0, 1,x)X.
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For F € Sk m with m > 0, I, 1 (0%) contains p™ (note that s’ =1 when s = 1),
so p™ € (©;,kx)X. Since (Og k)X = (p™), (Oo k)X is in (O; k)X. It is also clear
from definition that (©; s k)X C (©i41,6,x)X for i > 0 and s > 0. Hence, we
have a sequence of ideals

(@07K)X C (el,K)X C (GQ,K)X C ...

We do not use the w-component in this paper, but for y = w, we define
(©0,x)X = (0x Anng_ [Gai(k/k)) (Hp= (K)))X. For i > 0, (©; )X is defined sim-
ilarly as above by using z67. instead of 6% where x ranges over elements of
Anng (Gai(r/k)) (p= (F))X. For an even x, we define (0; k)X = (0) for all
i>0.

PROPOSITION 3.2. Suppose that K and x be as in Theorem 0.1. Then, for any
i >0, we have
(@i7K)X C Fitti,ox (A}({)

Proof. At first, by Theorem 3 in Wiles [26] we know #A% = #(0,/(0%)),
hence (O, k)X = Fittg,0, (A%). (In our case, this is a direct consequence of
the main conjecture proved by Wiles [25].) We assume ¢ > 0. By the definition
of (04, k)X, we have to show I; ((6%) C Fitt; o (A%) for F' € Sk » where the
notation is the same as above. By Lemma 3.1, I; (6%) = I, s(¢(0%)). Hence,
it is enough to show
I; s((0%)) C Fitty 0, (A%).

We will prove this inclusion by the same method as Theorem 8.1 in [11].
We write O = Oy = Oy -1, and G = Gal(F/K). As in 3.2, we fix an
isomorphism O[Gal(F/K)] ~ A,, by fixing generators of G. We consider
(A%)Y = (AF®z,a)0)Y = (Ar ®z,[Gal(F/k)) O[G])¥ which is an O[G]-module.
Since F/K is a p-extension, it is well-known that the vanishing of the Iwasawa
p-invariant of K implies the vanishing of the Iwasawa p-invariant of F ([6]
Theorem 3). By Corollary 2.4, we have

1(0%) € Fitto, o1 ((A%)Y)-

Since x # w and x is odd, for a unit group O3, we have (OF ® Z,)X =
fp (F)X = 0, so H'(Gal(F/K),0%)X = HY(Gal(F/K), (0% ® Z,)X) = 0.
This shows that the natural map A} — A% is injective. Hence, regarding
A%, as an O[G]-module (G acting trivially on it), we have

Fitto, 0(¢1((A%)") C Fitto o1 ((A%)"),

and
1(0%) € Fitto, o1 ((A%)"Y).
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Hence, by the lemma below, we obtain
I; s(«(0%)) C Fitt; o(A%).
This completes the proof of Proposition 3.2.

LEMMA 3.3. Put Ig = (S1,...,S:). Then, Fittg oic)((A%)Y) is generated by
Fitt; 0(A%)(Ig)’ for all j > 0.

Proof. Put M = (A%)Y. Since O is a discrete valuation ring, M" is isomorphic
to M as an O-module. Hence, Fitt; o (M) = Fitt; o(M") = Fitt; o (A%).

We take generators e,...,e;, and relations X7 jamer = 0 (ag € O, I =
1,2,...,m) of M as an O-module. Put A = (ay;). We also consider a rela-
tion matrix of M as an O[G]-module. By definition, I annihilates M. Hence,
the relation matrix of M as an O[G]-module is of the form

Si o Se e . 0 .0
0 o 0 oo o 0 .. 0

A
0 oo 0 o . S .. 8,

Therefore, Fittg ojg)(M) is generated by Fitt; 0(M)(Ig)? for all j > 0.

4 EULER SYSTEMS

Let K/k be a finite and abelian extension of degree prime to p. We also assume
that K is a CM-field, and the Iwasawa p-invariant of K is zero. We consider
a CM field F such that F/k is finite and abelian, F' D K, and F/K is a p-
extension. Since the Iwasawa p-invariant of F is also zero, by Corollary 2.4,
we have +(0%)(A%)Y = 0. Hence, we have

03 A5 = 0.

We denote by O, Divp, and Ap the unit group of F, the divisor group of F,
and the p-primary component of the ideal class group of F. We write [p] for
the divisor corresponding to a finite prime p, and write an element of Divp
of the form Ya;[p;] with a; € Z. If () = IIp]* is the prime decomposition
of x € F*, we write div(z) = Xa;[p;] € Divp. Consider an exact sequence

0—05p®2Z, — F*®Z, 9% Divp ®Z, — Ap — 0. Since the functor
M — M~ is exact and (Of ® Z,)~ =0,

0— (F* ®Z,)~ L% (Divp ®Z,)~ — AF — 0

is exact. For any finite prime pp of F', since the class of 0% [pr]|™ in Aj vanishes,
there is a unique element gr ,, in (F* ® Z,)"~ such that

div(grpr) = 07 [pF]™.
By this property, we have
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LEMMA 4.1. Suppose that M is an intermediate field of F/K, and Sg (resp.
Shr) denotes the set of ramifying primes of k in F/k (resp. M/k). Let ppr be a
prime of M, pp be a prime of F above prr, and f = [Op/pr : Or/pum]. Then,
we have
Nepa(grpe) = C [T (=3 (90,00)”
AESF\SMm

where Np/yp : F* — M> is the norm map, and ¢y is the Frobenius of X in
Gal(M/k).

Proof. In fact, we have

div(Npa(9r,or)) = crp(0F) [Np/ (pr)]™

where cp/y 1 Zp|Gal(F/k)] — Z,]|Gal(M/k)] is the map induced by the
restriction o + o5 and Ng/p(pr) is the norm of pr. By a famous property
of the Stickelberger elements (see Tate [23] p.86), we have

crm(07) = (( H (1= o3 "))0m)~,

AESF\SMm

hence the right hand side of the first equation is equal to ([ eg,\s,, (1 —

©x )0ar)~ flom] ™. This is also equal to div(([Tyes, s, (1 =95 )™ (9a1,00)7)-
Since div is injective, we get this lemma.

REMARK 4.2. By the property 63 A% = 0, we can also obtain an Euler system
in some cohomology groups by the method of Rubin in [18] Chapter 3, section
3.4. But here, we consider the Euler system of these gr,,’s, which is an
analogue of the Euler system of Gauss sums. I obtained the idea of studying
the elements gp,,,. from C. Popescu through a discussion with him.

Let Hy be the Hilbert p-class field of k, namely the maximal abelian p-extension
of k which is unramified everywhere. Suppose that the p-primary component
Ay, of the ideal class group of k is decomposed into Ay, = Z/p"Z®...®Z/p*Z.
We take and fix a prime ideal q; which generates the j-th direct summand for
each j = 1,...;s. We take £ € k™ such that q?aj = (&) for each j. Let U
denote the subgroup of k™ generated by the unit group O, and &;,...,.&s. For a
positive integer n > 0, we define P,, to be the set of primes of k& with degree 1
which are prime to pqj - ... - qs, and which split completely in K Hy, (#pn,ul/f’”).

LEMMA 4.3. Suppose A € P,. Then, there exists a unique cyclic extension
kn(N) /K of degree p™, which is unramified outside X, and in which X is totally
ramified.

Proof. We prove this lemma by class field theory. Let Cy (resp. Clj) be the
idele class group (resp. the ideal class group) of k. For a prime v, we denote
by k, the completion of k at v, and define Uy, to be the unit group of the ring
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of integers of k, for a finite prime v, and Uy, = k, for an infinite prime v. We
denote by U ,% the group of principal units for a finite prime v. We define Cy, » »
which is a quotient of C, ® Z,, by

Croan = (KX /UL) @ Z/p"Z & (k) /Us,) ® Zp)/(the image of k*)
VFEN

where v ranges over all primes except A. Since A splits in Hy, the class of A in
Clp ® Z, = Ay, is trivial. Hence, the natural map

@kvx ®Z, — EB(/{UX/U;%) ®Z, — (@ Z,)/(the image of k*) = Ay
(v ranges over all primes) induces Ci, x,, — Aj, and we have an exact sequence

(Uky JUL) @ Z/p"Z —% Chrm — Ay, — 0.

Let £()) denote the residue field of X. Since X splits in k(pyn ), (Uk, /UL ) ®
Z/p"Z = k(\)*®Z/p"Z is cyclic of order p™. Since A splits in k(pyn, (0;)Y/P"),
O/ is in (Ug,)?" and a is injective (Rubin [18] Lemma 4.1.2 (i)). Next, we will
show that the exact sequence

0 — (Usy JUL) @ Z/p"Z — Chan —= Ap — 0

splits. Let q;, a;, §; be as above. Suppose that 7q; is a uniformizer of k,,. We
denote by Il,; the idele whose q;-component is 7Tq.]. and whose v-component is
1 for every prime v except for q; (the A\-component is also 1). Since A splits
in k;(fjl./pn), we have &; € (Ug,)?". Hence, the class of & € k* in (k{ /UL ) ®
Z/p"26D, (k) /Uk,)®Zy, coincides with (qu)paj . This shows that the class
g, le, s of Iy, in Ci x ., has order p® because b([Ilq,]c, ,.,.) = [q;]a, where
[9]4, is the class of q; in Ar. We define a homomorphism b : Ay, — Cp xn
by [9;]a, = [g,]c,.., forall j = 1,...;s. Clearly, b’ is a section of b, hence
the above exact sequence splits. By class field theory, this implies that there is
a cyclic extension k,(\)/k of degree p™, which is linearly disjoint with kg /k.
From the construction, we know that A is totally ramified in k,,(\), and k,, () /k
is unramified outside A. It is also clear that &, () is unique by class field theory.

As usual, we consider Kolyvagin’s derivative operator. Put Gy = Gal(k,,(\)/k),
and fix a generator o of G for A € P,,. We define N, = Ef;algi € Z|G,] and
D, = Zf;gliof\ € Z[G,]. For a squarefree product @ = Ay -...- A\, with \; € Py,
we define k,(a) to be the compositum k;,(A1)...kn(A;), and K, () = Kky(a).
We simply write K(q) for K, (q) if no confusion arises. For a = Ay -...- A,
we also define Ny = [[;_, Nx, and Dy = [[;_, D, € Z[Gal(k,(a)/k)] =
Z[Gal(K(q)/K)]. For a finite prime p of k which splits completely in K (g,
we take a prime pg, of K(,. By the standard method of Euler systems
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(cf. Lemmas 2.1 and 2.2 in Rubin [17], or Lemma 4.4.2 (i) in Rubin [18]),
we know that there is a unique Rapi,, € (K* ® Z/p™)~ whose image in

(K(Xa) ® Z/p™)™ coincides with Da(gK(“%pK(u)). We also have an element §, €
Z/p"[Gal(K/k)]™ such that Dae?((u) = Vk(,,/k(0a) (mod p™) where vi  /k :
Z,Gal(K/k)]~ — Z,[Gal(K(q)/k)]™ is the map induced by o ZT‘K:UT
for o € Gal(K/k). This d, is also determined uniquely by this property. We
sometimes write k4 for Ra,pi ) if no confusion arises.

We take an odd character x of Gal(K/k) such that x # w, and consider the
x-component ky € (K* @ Z/p™)X, 65 € Z/p"[Gal(K/k)]X = Oy, ...etc.

LEMMA 4.4. Put S; = oy, — 1 € Oy[Gal(K(q)/K)]. Then, we have

(=1)"6XS; -...- S, (mod (p", Si,...,S%)).

ex
K(a)

Proof. We first prove 9}%(“) =aS; - ...- S, mod (S%,...,52%) for some a € O, by
induction on 7. For any subfields M; and Mj such that K C My C Mz C K(g),
we denote by car, /ar, 1 Oy[Gal(Mz/K)] — O, [Gal(M;/K)] the map induced

by the restriction o — oy, . Since CK(M)/K(%QM)) =((1 _@;11)9K)X (cf. Tate
(23] p.86) and Ay splits completely in K, we have CK(M)/K(%((A )) = 0. Hence,
1
S1 =0y, — 1 divides (9}2(A - So the first assertion was verified for r = 1.
1

Let a; = a/A; for @ with 1 < 4 < r. Then, we have CK(G)/K(%)(O}(((“)) =
((1— cp;il)GK(u_))X. Since \; splits completely in K, oy, is in Gal(K(q,)/K).
Hence, 1 — cp;il is in the ideal Igay(r(, ,/K) = (S1, .0y Si=1, Si+1, -, Sp). This
implies that cK(a)/K(m(H}({(n)) is in the ideal (S%,..., 87 1,8%4,...,S7) by the
hypothesis of the induction. This holds for all 7, so 9}2@ can be written as
H}C((u) = a+f3 where a is divisible by all S; fori = 1,...,7, and B is in (S?, ..., S?).
Therefore, 9}2(” =aS; - ...- S, mod (5%, ..., 82) for some a € O,.

Next, we determine a mod p™. Note that S;Dy, = —N,, (mod p™). Hence,
S2D,, =0 (mod p™). Thus, we have

Da(H;(((u)) = Dqy(aSy ... S;) = (—=1)"Ny(a) (mod p™).

Hence, No((—1)"a) = v,/ ((=1)"a) = vk, /x(6a) (mod p™), which implies
d¢ = (=1)"a (mod p") because v, /x mod p" is injective. This completes
the proof of Lemma 4.4.

We put G = Gal(K(q)/K). Asin §3, we have an isomorphism O, [G] ~ A, , by
the correspondence oy, <> 1+ 5; where A, ;. is the ring in 3.1 with O = O,,.
For i, s > 0 and 9}‘((0) € 0,[G], we have an ideal Iz-,s(@‘((ﬂ)) of Oy as in 3.2.

By the definition of Ii,s(ﬁﬁw) and Lemma 4.4, we know that ITJ(G}C((G)) is
generated by 6% and p™. Thus, we get
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COROLLARY 4.5.
La(0,) = (0%.0").

For a prime A of k, we define the subgroup Div}\< of Divk ®Z, by Divﬁ‘( =
@D, 1» Zp[Ak] where Ak ranges over all primes of K above A. We fix a prime
Ak, then Div} = Z,[Gal(K/k)/Dx][\x] where Dy, is the decomposition
group of \g in Gal(K/k). Let divy : (K* ® Z,)X — (Divj)X be the map
induced by the composite of div : K* ® Z,, — Divk ®Z, and the projection
Divg ®24, — Divﬁ‘(. The following lemma is immediate from the defining
properties of Ka,px g, and d,, which we stated above.

LEMMA 4.6. Assume that p is a finite prime of k which splits completely in K ).
We take a prime pk , of K@) and a prime pr of K such that pk | px | p-
(i) din(“é,pK(u)) = (dalpk])* (mod p™).

(i) If \ is prime to ap, we have div)\(néw(n)) =0 (mod p").

We next proceed to an important property of k3, Koy Suppose that A is a prime
in P, with (A,a) =1 and p is a prime with (p, aX) = 1. We assume both p and
A split completely in K (q). Put W = Ker(divy : (K*®Z,)X — (Divi)X), and
Ry = D n £(AKx)™ where £(A) is the residue field of Ag (k(Ax) coincides
with the residue field £(\) = Oy /A of X because A splits in K) and Ax ranges
over all primes of K above A\. We consider a natural map

O W/WP — (Ric/(Rj )" )X

induced by z — (z mod Ax). Note that N(A) =1 (mod p™) because A € P,,.
So, R} /(Ry)P" is a free Z/p"Z[Gal(K/k)]-module of rank 1. We take a basis
u € (Ry/(R})P")X, and define €y, : W/WP" —s (Z/p"Z[Gal(K/k)])X ~
O, /(p") to be the composite of £ and v — 1. By Lemma 4.6 (ii), %"pK(n)
is in W/W?" (note that W/W?" C (K* ® Z/p"Z)X). We are interested in
KA,u(nif,pK(q)). We take a prime pk , (resp. Ak,) of K(q) and a prime px
(resp. Ak) of K such that px , | prc | p (resp. Ak, | Ak [ A).

PROPOSITION 4.7. We assume that x(p) # 1 for any prime p of k above p,
and that [pk| and [Nk yield the same class in A%,. Then, there is an element
x € W/WP" satisfying the following properties.

(i) For any prime X of k such that (\',a) = 1, we have

divA/(nff,pK(a) /x) =0 (mod p").

(ii) Choosing u suitably, we have
1-N\)!
where N(X) = #x(X) = #(Or/N).

In particular, in the case a = (1) we can take v = gf(,pk mod WP".

Oyu(r) = 0gy (mod (63, p™))
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This proposition corresponds to Theorem 2.4 in Rubin [17], which was proved
by using some extra property of the Gauss sums. For our gp,,, we do not have
the property corresponding to Lemma 2.5 in [17], so we have to give here a proof
in which we use only the definition of gr,,,, namely div(gy ,.) = (0r[pr])X.

Proof of Proposition 4.7. We denote by Ak ,,, the unique prime of K4y above
AK (- Put N = ord,(N(A) —1) +2n. We take by Chebotarev density theorem
a prime p’ of k which splits completely in K (qx)(p,~) such that the class of
[p’K(M)] in A)fcf(m for a prime p’K(M) of K(qx) over p’ coincides with the class of
[Ai(on]- Let pf be the prime below p’K(m. Then, the class of [Ak], the class
of [p], and the class of [px| in A) all coincide. Hence, there is an element
a € W such that div(a) = [px] —[p] Define z € W/W?" by 2 = k¥ -ad%

a,p’
By Lemma 4.6 (ii), divy/ (/Qif,pK(ﬂ)/x) = 0 (mod p") for a prime N su(cal)l that
(N,app’) = 1. By Lemma 4.6 (i), the same is true for A’ = p and p’. Thus,
we get the first assertion. In the case a = (1), we take y = g}%p,}(agﬁ. Then,
div(y) = div(gy ,.): 50 ¥ = gk > and we have gi = mod Wr" = y mod
wr" =z,
In order to show the second assertion, it is enough to prove

1- N(A)_l n
. DlRay ) =00y (modp?) (1)
for some wu. Set Div;‘((uk) = D\ Zp[v] and R;‘((M) = D,prl)* =

GBU\A(OK(M) /v)* where v ranges over all primes of K. above A. Since
the primes of K, above A are totally ramified in K,»), (Div}\(WM)X is
isomorphic to O, [Gal(K(q)/K)] and (R;}(M)/(R;‘((M))pn)x is isomorphic to
O, /(p™)[Gal(K (q)/K)]. We consider W, = Ker(divy : (Kg;/\) ® Zp)X —

(Div;‘((qx))x) and a natural map

. " A A n
EA,K(M) : WK(M) /WI;%(M) — (RK(M)/(RK(M> o)X

We take b € (K(Xa/\) ® Zp)* such that div(b) = [Ak.,] = Pk, ]-
Then, b = 0y, (b7*7") is a generator of (R;‘{(M)/(R;‘((M))pn)x as an
O,/ (p™)[Gal(K (q)/K)]-module ([19] Chap.4 Prop.7 Cor.1). Using this ', we

identify (R;‘((M)/(R}{(M))p")x with O, /(p")[Gal(K (q)/K)], and define

n

g/\)K(u)\%b, : WK(a)\)/Wfp} — OX/pn[Gal(K(a)/K)]

(an)
Since A splits completely in K(q), Cr,,, /Ko (9}2([“)) = 0 by the formula in the
proof of Lemma 4.1. Hence, o) — 1 divides 9}(((9;)' Since (o — 1)[Ak o] =

0, we have 9}2(”) [AK(any X = 0. So, div(g;%(ak),p,}(( A)) = div((b” %@ )x) =
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X

-0
GK(W = (b )X,

, X o o X
[pK(M)] . The injectivity of div implies that gK<M)7p}<(M)

Further, by Lemma 4.4, we can write
H}C((M) = (-1)""16X8 ..o Sp(oxy — 1)+ B (mod p")

where 8 € (S%, ..., 92, (0 —1)?). Since o) — 1 divides 9}2(“”7 o — 1 also divides
B. We write 8 = (ox — 1)B". So 0 . = (ox — D((=1)"t65 81 .- S+ )
(mod p™). Then,
X _ —Ox,,
ON K (ary b (QK(MM/K(W) = U\ K b (b5 @0)X)

= —CK(G,\)/K(Q) ((_1)7”4»15;()\81 C et S/,'- + /B,)

= (=1)70581 - Sr — CK(aA)/K(a)(B/)'
Since ¢k, /K. (B') € (S%2,...,8?), using S;D), = —N,, (mod p") and
S2Dy, =0 (mod p"), we have

)Pe

Da((_l)réifksl Ce s Sy — cK(aA)/K(n)(ﬁ/))
= Na‘s;(,\

VK(a)/K(azf)\)-

l (g%

We similarly define Wy, = Ker(divy for K(q)) C (K(Xu) ® Zp)X. Recall
that W = Ker(divy for K) C (K ® Z,)X. Let £x (resp. £x K A K(ar))
be the natural map Wic/WJ — (RX/(R)P)X (vesp. Wi, /WE. —
(R}\((a)/(R;\((u))p")X7 WK(M)/W;; - (R;\((u/\)/(R;\((ax) )p

commutative diagram

n . .

)X). We have a

(aX)

p" p" p"
WK/WK WK(u)/WK(u) WK(a,\)/WK(uM

Oy ll*vK(u) lg*'K(uM

(RY /(R — (R [(R Y — (R, /(B )"
where the horizontal arrows are the natural maps. We take a generator u’ of
(R}\((n)/(R;‘(m)pn)X as an O, /(p")[Gal(K(q)/K)]-module, and a generator u”

of (R /(R})P")X as an O, /(p")-module such that the diagram

p" p" p"
WK/WK — WK(a)/WK(a) — WK(M)/WK(M)
la"“// JZNK(a)v“, JA’K(M)’M
VK (q)/ K id

Ox/(@")  — Oy/(p")[Gal(K@o)/K)] — Oy/(p")[Gal(K(q)/K)]

commutes where vk . /x 1s the norm map defined before Lemma 4.4, and id is
the identity map.
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. . X Du .
Using the above computation of E)"K(“A)’bl((gK(u/\)vp}((nA)) ), if we get

1-N)!
pn

éA,Km(g;(((n) )= g)‘aK(a)\) (gﬁ(ax) (2)

’ / )
7pK(a) 7pK(aA)

we obtain (1) from the above commutative diagram.

The relation (2) is sometimes called the “congruence condition”, and can be
proved by the method of Rubin [18] Corollary 4.8.1 and Kato [8] Prop.1.1.
Put L = Kq)(up~) and Liny = Kqx)(pp~) (Recall that N was chosen in the
beginning of the proof). We take a prime p'L(A) of L) above p’K(M), and

denote by p the prime of L below ple' We define ¢, 1, : WL/WEN —

N N N ..
(Ry/(Rp)P" )X, and WIS WL(A)/Wf(A) - (RE(A)/(RQM)Z} )X similarly.
We identify (R} /(R})P" )X with (R} /(R} )7 )X by the map induced by
the inclusion. Then, the norm map induces the multiplication by p™. Since

NL(A)/L(Q%(,\),p'L . ) = (1 - ‘P;l)gi,p}j we have p”(A,L(A)(gf(Mp/Lm) =(1-

N(A)*l)ZA,L(gz’pi). Hence,

KA,L(A>(9f(A)7p/L(A)) p~"(1— N(A)—l)ﬁ,\@(gf,pi) (mod pN").

Let S be the set of primes of k ramifying in L(y) and not ramifying in
K. Note that if p € S, p is a prime above p. By Lemma 4.1

X — X X —

we have Np ., /., (gL(A),p,LM)) = 6K<M)9K<M)7P;<( N and Np/f (gL’P’L) =
X _ —1

EK(G)gK(ayp}((n) where e, = (Hpes(l — ¢, )X € Oy[Gal(K(qr)/K)] and

€K () = CKiany/Kim (€K (ary) (CK(ar)/K (o 1S the restriction map). Since we as-

sumed x(p) # 1 for all p above p, €f,,, is a unit of O [Gal(K(qy)/K)]. Hence,
we obtain (2) by taking the norms Ny, /k ,,, of both sides of the above for-
mula. This completes the proof of Proposition 4.7.

5 THE OTHER INCLUSION

In this section, for K and x in Theorem 0.1 and i > 0, we will prove
Fitt; 0, (A%) C (©4,x)X to complete the proof of Theorem 0.1. More precisely,
we will show Fitt; o (A)%) C (©4,1,x)X.

As in Theorem 0.1, suppose that

A =0y /(p") ® ... ® O,/ (p"7)

with 0 < n; < ... < n,. We take generators cy,...,c,- corresponding to the above
isomorphism (c; generates the j-th direct summand). Let P,, be as in §4. We
define

Q; ={A € P, : thereis a prime A\ of K above A such that

the class of Ag in A% is c,},
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and Q@ =, <<, Qj. We consider an exact sequence

0 — (K* ® Z)X 2% (Divg ®Z,)X — AL —» 0.

For A € Q, we have (Z,[Gal(K/k)|[Ak])X = Oy[Ak]X. We define Mg to be the
inverse image of P, Ox[ kX by div : (K* ® Z,)X — (Divg ®Zy)*. On
the other hand, as an abstract O,-module, A} fits into an exact sequence

T T
! 9
0— @Oxej — @Oxe;- — AL —0
j=1 j=1

where (e;) and (e}) are bases of free Oy-modules of rank r, f is the map
!

ej > piej, and g is induced by e;- > cj. We define 8 : @, co Ox[Ax]¥ —

@;:1 Oyé; by [Ak]X ¢} for all A € Q; and j = 1,...,7. Then, § induces

a: Mg — @;:1 Oyej, and we have a commutative diagram of O,-modules
0 — Mo B Do OMk]X — A — 0

e |? [
0 — @_,0¢; b @ 0¢ L oA — 0
Put m = lengthy, (A)). We take n > 0 such that n > 2m and pyn+1 ¢ K. We
use the same notation as in Proposition 4.7. Especially, we consider
O W/WP — (R /(R)”" )% = O,/ (0")
for A € Q.

LEMMA 5.1. Suppose that a, A, p,...etc satisfy the hypotheses of Proposition
4.7. We further assume that the primes dividing alp are all in Q. Then, there
erists f%ff,pK(a) € Mg satisfying the following properties.

(i) For any prime X' such that (X, ap) = 1, we have

divy (R, )=

divp(/%flﬂpk(a)) = (6a[px])X  (mod p).

1- N~
pn

a

ING ( )) =wudy, (mod (6%,p™))
for some u € OF .

Proof. Let = be an element in W/WP" | which satisfies the conditions in Propo-
sition 4.7, and take a lifting y € W of . By Proposition 4.7 (i) and Lemma
4.6, we can write div(y) = A + p"B where A is a divisor whose support is
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contained in the primes dividing ap. Since the class of p™B in A} is zero, we
can take z € (K* ® Z,)X such that div(z) = p™B. Put /%ff’pK(n) =y/2P" "
Then, ’%%ﬁpK(ﬂ) is in Mg, and satisfies the above properties (i), (ii), and (iii) by
Proposition 4.7 and Lemma 4.6.

We will prove Theorem 0.1. First of all, as we saw in Proposition 3.2,
Fitto,0,(A%x) = ©pg. Recall that we put m = lengthy (Aj), so
Fitto,0, (A%) = (p™). Next, we consider the commutative diagram before
Lemma 5.1. We denote by a; : Mg — Oye; ~ O, the composite of «
and the j-th projection. We take p, € Q, and a prime p, g of K above
pr. We consider g}%an € Mg. We choose A\, € Q, such that A\, # p,
ord,(N(A;) — 1) = n, the class of A\, x in A% coincides with the class of p, f,
and o, (g5, )modp™ = u'ly (g%, ) for some u’ € OF. This is possible
by Chebotarev density theorem (Theorem 3.1 in Rubin [17], cf. also [16]). By
the commutative diagram before Lemma 5.1 and div(gj, i) = 0% pr kX, we
have

Ordp(ar(g}(,pr,;()) +n, = ord, (6%) = m. (3)
On the other hand, by Proposition 4.7, we have (), (g) , ) = udy mod (p™)
for some u € OF. Hence, ar(9%, ) = Wl (9%,. ) = w6y mod (p™).
From (3), 6X mod p™ # 0, hence, ord, (. (g}qu{))
element x in O, /p™, ord,(z) is defined to be ord,(Z) where Z is a lifting of =
to Oy). Therefore, we have

= ord, (65 ) (for a nonzero

ord, (6 ) =m —n,.
Hence, Fitty o (A)) = (p" ") is generated by .7171(0}((A ,) by Corollary 4.5.
Thus, FittLox (A)I({) C (@1,17[{))( C (el,K)X-
For any i > 1, we prove Fitt; o (A)%) C O by the same method. We will
show that we can take A\, € Q,, A\r_1 € Q,_1,...inductively such that &,
generates Fitt; o, (A%) where a; = A, - ...- A\p_jj1. For i such that 1 <i <,
suppose that A,,...,.\._;+2 were defined. We first take p,_;+1 € Q,_;+1, which

splits completely in K4, ,). We consider x = /%2,2717[,“”1,}((%71) € Mg where

we used the notation in Lemma 5.1. We choose A\,_;+1 € Q,_;y1 such that
Ar—it1 7# pr—it1, Ordp(N(Ar—iy1)—1) = n, Ar_i41 splits completely in Kq, ),
the class of A\,_;41,x in A) coincides with the class of p,_;41,x in A}, and
ar—it1(k) mod p" = u'ly,_, (k) for some v’ € OF. This is also possible
by Chebotarev density theorem (Theorem 3.1 in Rubin [17], cf. also [16]).
By Lemma 5.1 (i), div,, _,,, (k) = 0&,_, [pr—i+1]X (mod p™). Hence, from the
commutative diagram before Lemma 5.1, we obtain

ordy (ar—it1(K)) +np_iy1 = ordy (6% ).

By the hypothesis of the induction, we have ord, (43, ,) =n1+ ...+ np—iy1. It
follows that
ordy(ar—it1(K)) =n1 + ... + np_y.
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On the other hand, by Lemma 5.1 (iii), we have

Ordp(arfiJrl(H)) = Ordp(gkrfwrl (H» = Ordp(éaci,l)\r,Hl)
= ord,(6y,).
Therefore,
ord, (0%,) = ny + ... + 1.
This shows that d3, generates Fitt; o (A)) = (p™* T " =), Hence, by Corol-
lary 4.5 we obtain
Ii,1(9§(<ni)) = (5;:) = Fitti,OX (A}(()

Thus, we have Fitt; o (A%) C (0i1,x)X C (O4,x)X.

Note that for i = 7, we have got ©Y ;- = (1). Hence, O ; = (1) for all i > r,
and we have Fitt; o (A)) = O for all ¢ > 0. This completes the proof of
Theorem 0.1. ,

A APPENDIX

In this appendix, we determine the initial Fitting ideal of the Pontrjagin dual
(A;oo)v (cf. §2) of the non-w component of the p-primary component of the
ideal class group as a Z,[[Gal(Fu /k)]]-module for the cyclotomic Z,-extension
F of a CM-field F such that F/k is finite and abelian, under the assumption
that the Leopoldt conjecture holds for k and the p-invariant of F' vanishes.
Our aim is to prove Theorem A.5. For the initial Fitting ideal of the Iwasawa
module Xp_ = liinAFn of Fi, see [11] and Greither’s results [3], [4].

Suppose that Aj,...,\. are all finite primes of k, which are prime to p and
ramifying in F,/k. We denote by Py, the p-Sylow subgroup of the inertia
subgroup of \; in Gal(Fu/k). We first assume that

(%) Py, X ... x Py, C Gal(Fx/k).

(Compare this condition with the condition (A,) in [11] §3.) We define a set
H of certain subgroups of Gal(F./k) by

H={H;x..xH, | H; is a subgroup of Py, for all ¢ such that 1 <i<r}.
We also define

M={My |k C My C Fyx, M is the fixed field of some H € H}.
For an intermediate field My, of Fy /k, we denote by

Vi /Moo * Zpl[Gal(Moo /F)]]™ — Zy[[Gal(Foo /F)]]™
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the map induced by o +— ET‘MOO =T for 0 € Gal(Mu/k). We define O% sk
to be the Z,[[Gal(Fi /k)]|~-module generated by v /. (037 ) for all Mo, €
Mp_ k-

Put Ap = Z,[[Gal(Fx /k)]]. Let ¢ : Ap — Ap be the map defined by o — o1
for all 0 € Gal(Fy/k). For a Ap-module M, we denote by M~ to be the
component obtained from M~ by removing M* ', namely M~ = M~ @ M«
if 1, C F,and M~ = M® otherwise (cf. 1.1). The map ¢ induces M~ — M~
which is bijective.

PROPOSITION A.1. We assume that the p-invariant of F vanishes. Under the
assumption of (%), we have

Fittonp ((A%.)")~ = u(OF_ x)-

Proof. This can be proved by the same method as the proof of Theorem 0.9
in [11] by using a slight modification of Lemma 4.1 in [11]. In fact, instead of
Corollary 5.3 in [11], we can use

LEMMA A.2. Let L/K be a finite abelian p-extension of CM-fields. Suppose
that P is a set of primes of Ko, which are ramified in Lo, and prime to p. For
v € P, e, denotes the ramification index of v in Loo/Ks. Then, we have an
exact sequence

0— Ax — (A7 )CEe/B) s (B Z/e,Z)~ — 0
veEP

Proof of Lemma A.2. It is enough to prove fIO(LOO/KOO,A}:m) =
(B,cpZ/e,Z)~.  Let P; be the set of primes of K, ramifying in
L,. Then, by Lemma 5.1 (ii) in [11], we have IYO(LH/K”,AE”) =
(@vep,/L Hl(Ln,w/Kn,v,OEnﬁw))N = (GBUEP,,'L Z/e,Z)~ where w is a prime
of L, above v. If v is a prime above p, it is totally ramified in K
for sufficiently large m, hence we have li_r>n(EBv€P7,NU|p Z/e,Z)” = 0. On

the other hand, im(ED,cp/ .y, Z/evZ)” = (D,cp Z/esZ)~. Thus, we get
5
HO(LOO/KOOaAE(X,) = (@veP Z/e,Z)~.

Next, we consider a general CM-field F' with F/k finite and abelian. We assume
that the Leopodt conjecture holds for k.

LEmMA A.3. (Iwasawa) Let A be a prime of k not lying above p. Suppose that
k(Ap™>) is the mazimal abelian pro-p extension of k, unramified outside pA.
Then the ramification index of A in k(Ap™) is p™* where ny = ord,(N(A) —1).

In fact, Iwasawa proved that the Leopoldt conjecture implies the existence of
“M-field” (g-field) in his terminology ([5] Theorem 1). This means that the
ramification index of A is p™*.
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LEMMA A.4. Let F/k be a finite abelian extension such that F is a CM-field.
Then, there is an abelian extension F'/k satisfying the following properties.
(i) F!, D Fw, and the extension F._ /Fw is a finite abelian p-extension which
is unramified outside p.

(i) F!, satisfies the condition (x).

Proof. This follows from Lemme 2.2 (ii) in Gras [2], but we will give here a
proof. Suppose that Ap,..., A, are all finite primes ramifying in F., /k, and prime

to p. We denote by eE\Z: ) the p-component of the ramification index of A; in F,.

By class field theory, eg\’z) < p™i. We take a subfield k; of k(\;p™) such that

k;/k is a p-extension, and the ramification index of k;/k is e(ﬁ ). This is possible

by Lemma A.3. Take F’ such that F., = Fioky...k,. It is clear that F’ satisfies
the condition (i). Since ky...k, C F., F’ satisfies the condition (x).

We define L(@;oo/k) by L(@;Oo/k) = CF;/FW(L(@;(;O/ZC)) where cpr /.

Apr — Ap is the restriction map. This L(@Foo/k) does not depend on the
choice of F’. In fact, we have

THEOREM A.5. We assume the Leopoldt conjecture for k and the vanishing of
the p-invariant of F. Then, we have

Fitto,n, ((A7,.)")~ = «(OF_ )-

Proof. We take F’ as in Lemma A.4. By Proposition A.1, Theorem A.5 holds
for F!_. Since F!_/F is unramified outside p, by Lemma A.2 the natural map
Ax — (AR )GallFeo/Fo) i an isomorphism. Hence, we get

Fittoa, (A7 )")~ = cry/r. (Fittoa,, (A5 )")%) = cryyr (U(OF i)
= ,;Oo/k)-

This completes the proof of Theorem A.5.
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