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Abstract. Just as the function ring case we expect the existence
of the coefficient field for the integer ring. Using the notion of one
element field in place of such a coefficient field, we calculate abso-
lute derivations of arithmetic rings. Notable examples are the matrix
rings over the integer ring, where we obtain some absolute rigidity.
Knitting up prime numbers via absolute derivations we speculate the
arithmetic landscape. Our result is only a trial to a proper foundation
of arithmetic.
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Kronecker and many excellent arithmeticians attempted to study the arithmetic
geometry by looking at the intimate analogy between Z and Fp[T ]. Although
these two objects are similar in some respects, there exists a quite clear differ-
ence: the non-existence (or “invisibility”) of the constant (coefficient) field of
Z. Zeta functions suggest to compare

ζ̂Z(s) =
det(R− (s− 1

2 ))

s(s− 1)

and

ζ̂Fp[T ](s) =
1

(1− p−s)(1− p−(s−1))
,

where ζ̂ denotes the “completed zeta function”; in the latter case we know good
cohomologies with dimH0(Fp[T ]) = 1, dimH1(Fp[T ]) = 0, dimH2(Fp[T ]) = 1
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and Hi(Fp[T ]) = 0 for i > 2. Up to now, we have not come across a coho-
mology theory such as dimH0(Z) = 1, dimH1(Z) = ∞ with a skew-hermitian
operator R : H1(Z) → H1(Z), dimH2(Z) = 1 and Hi(Z) = 0 for i > 2.
Yet we can try to figure out the nature of the “constant field” F1 of Z

(Manin [9], Deninger [1], Kurokawa [6]). As a first little step we calculate F1-
derivations (in other words, “absolute derivations”) of Z and allied objects here.

The authors thank Professor Kazuya Kato for his patient listening to our prim-
itive tales in old days.
[One of our friends indicates the appearance of KAZUYA by looking at the
leading alphabets of sentences in the introduction: the readers are welcome to
find such an accidental coincidence.]

1 Absolute derivations

We define an absolute derivation of a ring R as a map D : R → R satisfying
the condition (Leibniz rule)

D(ab) = D(a)b+ aD(b) for all a, b ∈ R.

If an absolute derivation D satisfies moreover the additivity property

D(a+ b) = D(a) +D(b),

it is called a derivation of R. Here the word “absolute” indicates objects over
“the one element field F1”. Elements of the absolute mathematics are briefly
described in § 2 below. We denote by DerF1

(R) the set of all absolute deriva-
tions of R, and by DerZ(R) the set of all derivations of R.

1.1

We first determine the absolute derivations of the most simple but the funda-
mental case R = Z. For each prime p, define a map ∂

∂p : Z → Z by

∂

∂p
(x) =

x

p
· ordp(x).

Here ordp(x) denotes the p-order of x ∈ Z, that is, the integer ℓ such that x is
divisible by pℓ but is not divisible by pℓ+1. Namely we have

∂

∂p
(x) =

{
0 if p ∤ x

ℓpℓ−1 ·m if x = pℓ ·m (ℓ ≥ 1, p ∤ m)

and put ∂
∂p (0) = 0. It is easy to see that ∂

∂p satisfies the Leibniz rule;

∂

∂p
(xy) =

∂

∂p
(x)y + x

∂

∂p
(y),
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whence ∂
∂p ∈ DerF1

(Z). In fact, since ordp(xy) = ordp(x) + ordp(y), we see
that

∂
∂p (xy) = xy

p · ordp(xy)
= xy

p (ordp(x) + ordp(y))

=
(

x
p · ordp(x)

)
y + x

(
y
p · ordp(y)

)

= ∂
∂p (x)y + x ∂

∂p (y).

The following theorem shows these ∂
∂p ’s (p: prime numbers) span the set of the

absolute derivations of Z.

Theorem 1 We have the following direct product decomposition:

DerF1
(Z) =

⊕̂

p:prime

Z
∂

∂p
:=
{∑

p

cp
∂

∂p
; cp ∈ Z

}
⊂ EndF1

(Z),

where EndF1
(Z) = Map(Z,Z).

Proof: Note first that the infinite sum
∑

p cp
∂
∂p (x) ∈ ⊕̂pZ

∂
∂p is well-defined

since for each x ∈ Z, ∂
∂p (x) = 0 except the finite number of p. It is also easy

to see that such an expression is unique. The fact that the sum of absolute
derivations is also an absolute derivation, shows clearly that

DerF1
(Z) ⊃

⊕̂

p

Z
∂

∂p
.

It is therefore enough to prove that any D ∈ DerF1
(Z) can be written as

D =
∑

p

D(p)
∂

∂p
.

In order to see this we show that the absolute derivation D is completely
determined by its values D(p) on prime numbers p = 2, 3, 5, . . .. By successive
use of the Leibniz rule it is obvious to see that

D(pℓ) = ℓpℓ−1D(p).

Remark also that D(0) = D(1) = D(−1) = 0. Actually, the Leibniz rule shows

D(0) = D(0 · 0) = D(0) · 0 + 0 ·D(0) = 0,

D(1) = D(1 · 1) = D(1) · 1 + 1 ·D(1) = 2D(1),

whence it follows that D(1) = 0. Further,

0 = D(1) = D((−1) · (−1)) = D(−1)(−1) + (−1)D(−1) = −2D(−1).

Since any non-zero x ∈ Z can be written as x = ±pi11 pi22 · · · piℓℓ by primes
pj , using the Leibniz rule again the assertion follows, that is, D is completely
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determined once the values D(p) are given. To confirm the relation D =∑
p D(p) ∂

∂p holds it suffices to show D(q) =
(∑

p D(p) ∂
∂p

)
(q) for each prime

q. Since

∂

∂p
(q) =

{
1 (p = q)

0 (p 6= q),

it is actually immediate to have

(∑

p

D(p)
∂

∂p

)
(q) =

∑

p

D(p)
∂

∂p
(q) = D(q).

This completes the proof.

Remark 1 It is easy to see that DerZ(Z) = 0. In fact, since D(0) = D(1) =
D(−1) = 0 as above, the additivity asserts D(m) = 0 for m ∈ Z.

Remark 2 We have for primes p, q

[ ∂

∂p
, q
]
= δpq,

where q in the left-hand side is regarded as a multiplication operator, since

[ ∂

∂p
, q
]
(x) =

∂

∂p
(qx)− q

∂

∂p
(x)

=
( ∂

∂p
(q)x+ q

∂

∂p
(x)
)
− q

∂

∂p
(x) =

∂

∂p
(q)x = δpq · x.

1.2

We have the similar statement for Z[i] and Fp[T ].
Let Z[i] = {m + ni; m,n ∈ Z} (i =

√
−1) be the ring of Gaussian integers.

Let {π} be a complete set of representatives of the prime elements in Z[i].
Define the map ∂

∂π ∈ EndF1
(Z[i]) by

∂

∂π
(x) =

x

π
· ordπ(x).

Then similar to the theorem above we obtain the following:

Theorem 2 We have

DerF1
(Z[i]) =

⊕̂

π

Z[i]
∂

∂π
⊂ EndF1

(Z[i]).

Moreover, for prime elements π, π′ we have

[ ∂

∂π
, π′
]
= δππ′ .
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Now we consider the case R = Fp[T ], the polynomial ring over the finite field
Fp. Any f ∈ Fp[T ] can be factorized uniquely as

f = c · he1
1 · he2

2 · · ·heℓ
ℓ ,

where c ∈ Fp, ei ∈ Z≥0 and h1, h2, . . . , hℓ are monic irreducible polynomials,
that is, the prime elements in Fp[T ]. We define the order ordh(f) in an obvi-
ous way; ordhi

(f) = ei. Quite similarly as Theorem 1 we have the following
theorem.

Theorem 3 For a monic irreducible polynomial h ∈ Fp[T ], define a map ∂
∂h :

Fp[T ] → Fp[T ] by
∂

∂h
f(T ) =

f(T )

h(T )
· ordh(f).

Then we have

DerF1
(Fp[T ]) =

⊕̂

h:monic irred.

Fp[T ]
∂

∂h
.

Remark 3 We notice that ∂
∂h is different from the usual derivation. For ex-

ample, ∂
∂T (T

2) = 2T and ∂
∂T (T

2 + 1) = 0 here.

1.3

For some general unique factorization domains, we have the following result:

Theorem 4 Let R be a commutative unique factorization domain whose unit
group R× is a finitely generated abelian group. Fix a set of representative P0(R)
of irreducible elements of R \ (R× ∪ {0}) modulo R×, and a set of generators
P1(R) of R× modulo R×

tor, where R×
tor is the subgroup of torsion elements. Put

P (R) = P0(R) ∪ P1(R). Each element a ∈ R \ {0} can be uniquely written as

a = u
∏

π∈P (R)

πm(π),

where m(π) ∈ Z≥0 if π ∈ P0(R), m(π) ∈ Z if π ∈ P1(R), and u ∈ R×
tor. We

define
∂

∂π
(a) = m(π)

a

π

and
∂

∂π
(0) = 0.

Then

DerF1
(R) =

⊕̂

π∈P (R)

R
∂

∂π
.
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Proof. Each a ∈ R \ {0} is uniquely written as

a = u′
∏

π∈P0(R)

πm(π)

with u′ ∈ R×. Since R×/R×
tor is a free abelian group, we can write

u′ = u
∏

π∈P1(R)

πm(π)

with u ∈ R×
tor uniquely, where P1(R) is a finite set. It is clear that ∂

∂π ∈
DerF1

(R) by definition.

Now, take any X ∈ DerF1
(R). We show

X =
∑

π∈P (R)

X(π)
∂

∂π
.

Take an a ∈ R \ {0}. Express it as

a = u
∏

π∈P (R)

πm(π)

with u ∈ R×
tor. Then, using X(u) = 0 we have

X(a) =
∑

π∈P (R)

m(π)
a

π
X(π) =

∑

π∈P (R)

X(π)
∂

∂π
(a).

Hence,

X =
∑

π∈P (R)

X(π)
∂

∂π
.

Example 1 (1) If R = Z[
√
2], then P1(R) = {1 +

√
2}.

(2) If R = Z[T1, . . . , Tn], then P1(R) = ∅.

1.4

We note on a special subset of DerF1
(R) for R = Z and Z[i].

Theorem 5 Let p be a prime. Then gp = Z ∂
∂p is closed under the Lie bracket

defined by the commutator [·, ·] of EndF1
(Z). Similarly, for a prime element π

in Z[i], the subset gπ = Z[i] ∂
∂π of DerF1

(Z[i]) is closed under the commutator
of EndF1

(Z[i]).
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Proof: The first assertion is easily confirmed by using the relations

[pℓ
∂

∂p
, pm

∂

∂p
] = (m− ℓ)pℓ+m−1 ∂

∂p
.

The assertion for Z[i] can be proved similarly.

Remark 4 Define H = p∂, E = −p2∂, F = ∂ with ∂ = ∂
∂p . Then the formula

above implies the following commutation relations

[H,E] = E, [H,F ] = −F, [E,F ] = 2H.

These commutation relations coincide with those of standard generators
{H, E, F} of the simple Lie algebra sl2. Hence, the operator C := 2H2 +
EF + FE can be considered as an “absolute” Casimir operator (cf. [7]). This
element C commutes with each H,E, F , and moreover it is not hard to see that
C vanishes under the map gp → EndF1

(Z). It would be interesting to study the

“absolute Virasoro algebra” extending gp with its physical implications.

1.5

Let R be a (non-commutative) ring. For an element a ∈ R, we define an inner
derivation Da by Da(b) = ab − ba. It is easy to see that Da ∈ DerZ(R). We
denote the set of all inner derivations by InnDerZ(R). We have

InnDerZ(R) ⊂ DerZ(R) ⊂ DerF1
(R).

The main result of this subsection is the following:

Theorem 6 DerF1
(M2(Z)) = InnDerZ(M2(Z)).

Let D be an absolute derivation of M2(Z).

Lemma 1 D(0) = D(I2) = D(−I2) = 0.

Proof: Actually, D(0) = D(00) = 0, D(I2) = D(I2I2) = 2D(I2), 0 =
D((−I2)(−I2)) = −2I2D(−I2).

Let N =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, N ′ =

(
0 0
1 0

)
. These elements

satisfy the following relations HN = N , NH = −N , H2 = I2, HN ′ = −N ′,
N ′H = N ′, NN ′ = E11, N

′N = E22.

Lemma 2 (i) There exist a, b ∈ Z such that D(N) = aH + bN .

(ii) There exist a′, b′ ∈ Z such that D(N ′) = a′H + b′N ′.
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Proof: 0 = D(0) = D(N2) = D(N)N +ND(N). Then (i) follows easily. The
argument for N ′ is the same.

Lemma 3 D(H) = −2a′N − 2aN ′.

Proof: D(N) = D(HN) = HD(N) + D(H)N . Then D(H)N = a(H − I2).
Also,

−D(N) = D(−N) = D(NH) = D(N)H +ND(H).

Then ND(H) = −a(H + I2). By these two conditions, the diagonal entries of
D(H) are both zero, and the (2, 1)-entry of D(H) is −2a.
By D(HN ′) = D(−N ′), we have D(H)N ′ = −a′(I+H). Then the (1, 2)-entry
of D(H) is −2a′.

Lemma 4 There exists q ∈ Z such that for all c ∈ Z

D(H + cN) = D(H) + c(aH + qN),
D(I2 + cN) = c(aH + qN).

Proof: Let Ac := H + cN for c ∈ Z. Since

D(N) = D(AcN) = AcD(N) +D(Ac)N

and (i) of Lemma 2, we have D(Ac)N = acN + a(H − I2). Also,

−D(N) = D(−N) = D(NAc) = D(N)Ac +ND(Ac).

Then ND(Ac) = −a(H+I2)−acN . By these two conditions, we have D(Ac) =
qcN + acH − 2aN ′. By setting c = 0, we have D(H) = q0N − 2aN ′. Then
q0 = −2a′.
Notice

D(I2 + (c′ − c)N) = D(AcAc′)

= AcD(Ac′) +D(Ac)Ac′

= (c′ − c)aH + (qc′ − qc)N.

Then qc′+c − qc = qc′ − q0. This means that Z ∋ c 7→ qc − q0 ∈ Z is an additive
map. We set q = q1 − q0, then qc = cq + q0. This proves the lemma.

Lemma 5 We have

D(H + cN ′) = D(H) + c(a′H − qN ′),
D(I2 + cN ′) = c(a′H − qN ′).
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Proof: By a similar argument, there exists q′ ∈ Z, independent of c, such that

D(H + cN ′) = D(H) + c(a′H + q′N ′),
D(I2 + cN ′) = c(a′H + q′N ′)

for all c ∈ Z. In fact, let A′
c := H + cN ′ for c ∈ Z. Since

D(−N ′) = D(A′
cN

′) = A′
cD(N ′) +D(A′

c)N
′

and (ii) of Lemma 2, we have D(A′
c)N

′ = −a′cN ′ − a′(H + I2). Also,

D(N ′) = D(N ′) = D(N ′A′
c) = D(N ′)A′

c +N ′D(A′
c).

ThenN ′D(A′
c) = a′(H−I2)+a′cN ′. By these two conditions, we haveD(A′

c) =
q′cN

′ + a′cH − 2a′N . By setting c = 0, we have D(H) = q′0N
′ − 2a′N . Then

q′0 = −2a. The remaining is similar to the previous lemma.
Now we put B = (I2 + N)(I2 − N ′). Then, det(B) = 1 and tr(B) = 1 show
that B3 = −I2. Hence

0 = D(B3) = D(B)B2 +BD(B)B +B2D(B).

By multiplying −B from the left, we have

BD(B)B−1 +B−1D(B)B +D(B) = 0.

Taking the trace, 3tr(D(B)) = 0. On the other hand, calculate as

D(B) = D(I2 +N)(I2 −N ′) + (I2 +N)D(I2 −N ′)

= (aH + qN)(I −N ′)− (I +N)(a′H + q′N ′),

then tr(D(B)) = −q′ − q. Thus q′ = −q.

Proof of Theorem 6: We use the notation above, especially, a, a′, q ∈ Z.
Let Y = a′N − aN ′ + qE11 ∈ M2(Z). We note that

[Y,H] = −2a′N − 2aN ′,
[Y,N ] = aH + qN,
[Y,N ′] = a′H − qN ′.

We consider the corresponding inner derivation DY ∈ InnDerZ(M2(Z)). Then
D(H) = DY (H), D(I2+ cN) = DY (I2+ cN) and D(I2+ cN ′) = DY (I2+ cN ′)
for all c ∈ Z. Recall the fact that the group GL(2,Z) is generated by {H, I2 +
cN, I2+cN ′ | c ∈ Z}. Then we know that D(A) = DY (A) for all A ∈ GL(2,Z).
We put Z := D−DY ∈ DerF1

(M2(Z)). Then we have proved that Z(A) = 0 for
all A ∈ GL(2,Z), Z(N) = bN for some b ∈ Z. We set K = N +N ′ ∈ GL(2,Z).
Then NKN = N implies that

Z(N)KN +NKZ(N) = Z(N).
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This shows bN = 0 and so b = 0.

Now we take a non-zero integer λ ∈ Z. Consider a matrix A ∈ GL(2,Z) with
(2, 1)-entry of A is divisible by λ. We define A′ ∈ GL(2,Z) by

(E11 + λE22)A = A′(E11 + λE22).

Then

Z(E11 + λE22)A = A′Z(E11 + λE22),

(E11 + λE22)
−1Z(E11 + λE22)A = A(E11 + λE22)

−1Z(E11 + λE22)

for all A as above. Such an A is so many, this equality holds for all A ∈ M2(Z).
This means that (E11 + λE22)

−1Z(E11 + λE22) is a scalar matrix since it
commutes with all the right multiplication. Therefore, there exists τ(λ) ∈ Z

such that

Z(E11 + λE22) = τ(λ)(E11 + λE22).

On the other hand, we have (E11 + λE22)N = N . Since Z(N) = 0, we have
Z(E11 + λE22)N = 0. This shows that τ(λ) = 0. We have proved Z(E11 +
λE22) = 0 for all non-zero λ ∈ Z. By considering K(E11 + λE22)K, we know
that Z(λE11 + E22) = 0. This proves that Z(A) = 0 for all A ∈ M2(Z) with
det(A) 6= 0.

For any matrix C in M2(Z) of rank one, there exist A,A′ ∈ M2(Z) with
detA 6= 0, detA′ 6= 0 such that C = ANA′. This shows that Z(C) = 0.
Finally we have Z(0) = 0.

This result would suggest a kind of rigidity or semi-simplicity of M2(Z) as an
absolute algebra, but it is not quite sure, at this moment, that such a notion can
be formulated rigorously. We also remark that some argument can be extended
to other non-commutative algebras. For example, the following result is proved
in [10]: Let R ∋ 1 be a ring contained in the algebraic closure Q̄. Then for
each n ≥ 2,

DerF1
(Mn(R)) = InnDerZ(Mn(R)) = {Da | a ∈ Mn(R)}.

1.6 Absolute Hochschild cohomology

Theorem 6 can be stated as

H1
F1

(M2(Z),M2(Z)) = 0,

where the left-hand side indicates the absolute Hochschild cohomology in the
following sense. Let R be a ring and M be an R-bimodule. Let C0

F1
= M ,

C1
F1

= Map(R,M), C2
F1

= Map(R×R,M), Cn
F1

= Map(Rn,M). We define a
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derivation δn : Cn
F1

→ Cn+1
F1

by

(δ0m)(a) = am−ma,

(δ1f)(a1, a2) = a1f(a2)− f(a1a2) + f(a1)a2,

(δnf)(a1, . . . , an+1) = a1f(a2, . . . , an+1) +

n∑

i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1)

+(−1)n+1f(a1, . . . , an)an+1.

Then (δ∗, C∗
F1

) is a chain complex of abelian groups. We call the cohomology
groups Hn

F1
(R,M) = Kerδn/Imδn−1 of this chain complex by the absolute

Hochschild cohomology (cf. [8]). In particular,

H0
F1

(R,R) = Kerδ0 = {b ∈ R | ba = ab for all a ∈ R},

the center of R, and

H1
F1

(R,R) = DerF1
(R)/InnDerZ(R).

For example, Theorem 1 says

H1
F1

(Z,Z) =
⊕̂

p:prime

Z
∂

∂p
.

2 Absolute mathematics

We explain the background material of absolute mathematics, i.e., the math-
ematics over F1. As noted in Manin [9] the first appearance of F1 seems to
be in GLn(F1) = Sn where Sn is the symmetric group of order n. This might
be a folklore, but a much precise reference was supplied by Soulé [11] citing a
paper [12] by Tits. There it seems that Tits conjectured G(F1) = W (G) for
each algebraic group G, where W (G) is the Weyl group; in the case G = GLn

we get GLn(F1) = W (GLn) = Sn again.
We consider that GLn(F1) = Sn suggests to identify the category Mod(F1) of
F1-modules with the category Set of sets. Let denote the free F1-module over

a set X by F
(X)
1 . Then the more precise expectation is as follows: for objects

X and Y of Set, the corresponding objects of Mod(F1) are F
(X)
1 and F

(Y )
1

respectively with the corresponding morphisms

HomSet(X,Y ) ∼= HomMod(F1)(F
(X)
1 ,F

(Y )
1 ).

Hence, especially for X = {1, 2, . . . , n} it would hold that

Mn(F1) = EndMod(F1)(F
n
1 ) = EndSet({1, 2, . . . , n})

and
GLn(F1) = AutMod(F1)(F

n
1 ) = AutSet({1, 2, . . . , n}) = Sn,
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which give #Mn(F1) = nn and #GLn(F1) = n!. For example

M2(F1) =

{(
1 1
0 0

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 0
1 1

)}

and

GL2(F1) =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
= S2.

(Here we may omit 0’s respecting F1 = {1}.)
Furthermore we identify the category Alg(F1) of F1-algebras with the category
Monoid of monoids according to the following picture:



Alg(Z)
ւ ց

Mod(Z) Alg(F1)
ց ւ

Mod(F1)




=




Ring

ւ ց
Ab Monoid

ց ւ
Set




under the forgetful functors

(R,×,+)
ւ ց

(R,+) (R,×)
ց ւ

R.

Then, the absolute derivations DerF1
(R) of a ring R studied in §1 would be

understood by looking at the multiplicative monoid structure of the ring R.
(Actually we do not forget completely the additive structure.) Now we state
a problem to which the absolute mathematics may be applicable. Let X be
a (projective smooth) scheme of finite type over Spec(Z). The Hasse zeta
function is defined as

ζX(s) =
∏

x∈X0

(1−N(x)−s)−1

where x runs over the set X0 of closed points (0-dimensional points) of X
and N(x) is the cardinality of the residue field at x. It is expected that
there exists the so-called gamma factor ΓX(s) and that the completed zeta

function ζ̂X(s) = ζX(s)ΓX(s) is meromorphic in s ∈ C with the functional
equation s ↔ dim(X) − s. For our purpose it is convenient to formulate the
following conjecture (cf. Kurokawa [4], Deninger [2]): There would exist co-
homologies Hm(X) for m = 0, 1, . . . , 2 dim(X) with skew-hermitian operators
Rm : Hm(X) → Hm(X) satisfying

ζ̂X(s) =

2 dim(X)∏

m=0

det
(
Rm − (s− m

2
)
)(−1)m+1

.
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We refer to Deninger [1], [2] for various investigations. For example, in the case
X = Spec(Z), we expect

ζ̂(s) = ζ(s)π−s/2Γ(
s

2
) =

det(R1 − (s− 1
2 ))

s(s− 1)
,

where we consider that H0(Spec(Z)) and H2(Spec(Z)) are one dimensional
with the trivial R0 and R2. Of course H1(Spec(Z)) should be infinite dimen-
sional.

Problem Can such a cohomology Hm(X) and an operator Rm : Hm(X) →
Hm(X) be constructed via the absolute mathematics ? Is Hm(X) interpreted
as a cohomology of the associated absolute scheme Xabs → Spec(F1) ?

Some trials will be made in §3 and §4 below.

3 Zeta functions for absolute derivations

3.1

For a map X : Z → C, we define the zeta function attached to X by the
Dirichlet series:

ζ(s,X) :=

∞∑

n=1

X(n)

ns
.

Lemma 6

ζ(s,
∂

∂p
) =

ζ(s− 1)

ps − p
.

Proof: We start with
∂

∂p
(n) =

n · ordp(n)
p

.

Then

ζ(s,
∂

∂p
) =

1

p

∞∑

n=1

ordp(n)n
−(s−1).

We express n = pkm with (p,m) = 1, and k ≥ 0.

ζ(s,
∂

∂p
) =

1

p

∑

m:(p,m)=1

m−(s−1)
∞∑

k=0

kp−k(s−1)

=
1

p
× ζ(s− 1)(1− p−(s−1))× p−(s−1)

(1− p−(s−1))2

= ζ(s− 1)× 1

ps − p
.
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Theorem 7 For an X ∈ DerF1
(Z) of finite type, i.e., X(p) = 0 for all but

finitely many primes p,

ζ(s,X) :=
∞∑

n=1

X(n)

ns
= ζ(s− 1)

∑

p:primes

X(p)

ps − p
.

This can be extended to a meromorphic function on the whole complex plane.
The special value at s = 0 is given by

ζ(0, X) =
1

12

∑

p

X(p)

p− 1
.

Proof: It follows directly from Lemma 6 and X =
∑

p

X(p)
∂

∂p
.

3.2 Quantum noncommutativity

We introduce the noncommutativity of primes as “ζ(0, [ ∂
∂p ,

∂
∂q ])”.

First we give a rather explicit formula of the zeta of the commutator of absolute
derivations.

Lemma 7

ζ(s, [
∂

∂p
,
∂

∂q
]) =

1

pq
ζ(s− 1)

(
(1− q−(s−1))

∞∑

k=1

pk
q−pk(s−1)

(1− q−pk(s−1))2

−(1− p−(s−1))
∞∑

k=1

qk
p−qk(s−1)

(1− p−qk(s−1))2

)
.

Proof: We start with

∂

∂p
(
∂

∂q
(n)) =

n

pq
(ordq(n)ordp(n) + ordq(n)ordp(ordq(n))) .

Then

[
∂

∂p
,
∂

∂q
](n) =

n

pq
(ordq(n)ordp(ordq(n))− ordp(n)ordq(ordp(n))) .

We set n = qkm with (q,m) = 1, and k ≥ 0. Then

ζ(s, [
∂

∂p
,
∂

∂q
]) =

1

pq

(
∞∑

n=1

ordq(n)ordp(ordq(n))n
−(s−1) − · · ·

)

=
1

pq


 ∑

m:(q,m)=1

m−(s−1)
∞∑

k=1

k ordp(k)q
−k(s−1) − · · ·




=
1

pq

(
(1− q−(s−1))ζ(s− 1)

∞∑

k=1

k ordp(k)q
−k(s−1) − · · ·

)
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We set k = plm′ with (p,m′) = 1 and l ≥ 0. Then

∞∑

k=1

k ordp(k)q
−k(s−1) =

∞∑

l=1

∑

m′:(p,m′)=1

plm′lq−plm′(s−1))

=
∞∑

l=1

lpl

(
∞∑

m′=1

m′q−plm′(s−1) −
∞∑

m′=1

(pm′)q−pl+1m′(s−1)

)

=

∞∑

l=1

lpl

(
q−pl(s−1)

(1− q−pl(s−1))2
− p

q−pl+1(s−1)

(1− q−pl+1(s−1))2

)

=

∞∑

l=1

lpl
q−pl(s−1)

(1− q−pl(s−1))2
−

∞∑

l=0

lpl+1 q−pl+1(s−1)

(1− q−pl+1(s−1))2

=
∞∑

l=1

pl
q−pl(s−1)

(1− q−pl(s−1))2
.

This proves the lemma.

Remark 5 Notice a partial functional equation under s ↔ 2− s.

Remark 6 Let φp(z) =

∞∑

n=1

ordp(n)z
n. Then the Mellin transform of φp is

pζ(s+ 1, ∂
∂p ), and the series in the lemma above is obtained as

∞∑

l=1

pl
q−pl(s−1)

(1− q−pl(s−1))2
=

∞∑

l=1

pl
zp

l

(1− zpl)2

∣∣∣∣∣
z=q−(s−1)

= z
∂

∂z

∞∑

l=1

zp
l

1− zpl

∣∣∣∣∣
z=q−(s−1)

= zφ′
p(z)

∣∣
z=q−(s−1) .

Now we give a rigorous definition of the quantum noncommutativity motivated
by the lemma above.

Definition The quantum noncommutativity, abbreviated as QNC, of p and q
is defined by

QNC(p, q) =
1

12pq

(
(q − 1)

∞∑

k=1

pk
q−pk

(1− q−pk)2
− (p− 1)

∞∑

k=1

qk
p−qk

(1− p−qk)2

)
.

Numerically,
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QNC(2, 3) = 0.00220482..,

QNC(2, 5) = 0.00172077..,

QNC(2, 7) = 0.00124803..,

QNC(3, 5) = 0.00031155...

Note that QNC(p, p) = 0 and it seems that QNC(p, q) > 0 for p < q.
We remark that QNC(p, q) has a neat expression using the Jackson integral
(q-integral). We recall the following standard notions in q-analysis [3]. For an
appropriate function f(x), we define the Jackson integral

∫ ∞

1

f(x)dqx :=

∞∑

k=1

(qk − qk−1)f(qk)

with a base q. For a real number x, we define the corresponding q-number

[x]q :=
qx/2 − q−x/2

q1/2 − q−1/2
.

Then the quantum noncommutativity is expressed as

QNC(p, q) =
1

12pq

(
(q − 1)

∞∑

k=1

pk
q−pk

(1− q−pk)2
− (p− 1)

∞∑

k=1

qk
p−qk

(1− p−qk)2

)

=
1

12pq

(
(q − 1)

(q1/2 − q−1/2)2

∞∑

k=1

pk
1

[pk]2q
− (p− 1)

(p1/2 − p−1/2)2

∞∑

k=1

qk
1

[qk]2p

)

=
1

12(p− 1)(q − 1)

(∫ ∞

1

dpx

[x]2q
−
∫ ∞

1

dqx

[x]2p

)
.

Question (A) Let R = (rpq)p,q:primes with rpq =“ζ(0, [ ∂
∂p ,

∂
∂q ])”= QNC(p, q).

Then does it hold that

ζ̂Z(s) =
det(1−R(s− 1

2 ))

s(s− 1)
?

Here we may recall that

H1
F1

(Z,Z)C = ⊕̂pC
∂

∂p
.

(B) For a sheaf (automorphic or Galois) ρ of Z, let Rρ = (rpq(ρ)) with

rpq(ρ) =

(
ρ(p) + ρ(q)∗

2

)
rpq,

where ρ(q)∗ is the adjoint of ρ(p). Then does it hold that

L̂(s, ρ) =
det(1−Rρ(s− 1

2 ))

sm(ρ)(s− 1)m(ρ)

where m(ρ) is the multiplicity of the trivial representation in ρ ?
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Remark 7 Let P be a set of “generalized primes” with the zeta function

ζP (s) =
∏

p

(1−N(p)−s)−1,

whose conjectual functional equation is s 7→ d(P ) − s. Let R : V → V be
a linear operator on a complex vector space V . Assume that there is a basis
{vp | p ∈ P} of V indexed by P . Let {eµ | µ ∈ Spect(R)} be an R-eigen basis
of V with Reµ = µeµ. Thus

⊕µCeµ = V = ⊕pCvp.

Take a suitable test function W such that W (R) has a trace. Then we have
(under a suitable condition) a so-called “trace formula”

∑

µ

W (µ) =
∑

p

M(p)

where M(p) = M(p, p) is given by

W (R)vp =
∑

q

M(q, p)vq.

When

W (µ) = log(µ− (s− d(P )

2
))

and
M(p) = log((1−N(p)−s)−1)

we would obtain the determinant expression

ζP (s) =
∏

p

(1−N(p)−s)−1

=
∏∐

µ

(µ− (s− d(P )

2
))

= Det(R− (s− d(P )

2
)).

By this way we would have the analytic continuation of the zeta functions and
the L-functions.

4 Towards absolute schemes

We try to set up the first step to F1-schemes. Recall that the usual scheme is
coming from the affine scheme SpecZ(A) = Spec(A) for a (commutative) ring
A, where SpecZ(A) is the set of the prime ideals of A with the Zariski (Stone-
Jacobson-Gelfand) topology. Since we consider an F1-algebra as a monoid, we
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define Spec(M) for a monoid M . A typical example is the case M = (A,×)
for a ring A.
Generalizing a bit, let X be an algebraic system having an associative multi-
plication with the identity element 1. We assume that X has the zero element
0 (satisfying 0 · x = x · 0 = 0 for all x ∈ X). An equivalence relation α on X
is called a congruence if α is compatible with the algebraic operations on X.
For example, if x ≡ x′ and y ≡ y′ mod α, then xy ≡ x′y′ mod α. In other
words, such an α is associated to the residue (quotient) algebraic system X/α.
We denote by Cong(X) the set of all congruences on X.

Example 2 A congruence on a (not necessary commutative) ring corresponds
to a two-sided ideal.

Example 3 A congruence on a group corresponds to a normal subgroup.

We say that a congruence α on X is a prime congruence if X/α is integral in
the sense that X/α has no (non-zero) zero divisors: if x 6≡ 0, y 6≡ 0 mod α,
then xy 6≡ 0 mod α. We denote by Spec(X) the set of the prime congruences
on X with the following topology: the closed subsets are

V (β) = {α ≤ β | α is a prime congruence}

for β ∈ Cong(X). Here α ≤ β means that x ≡ 0 mod β implies x ≡ 0
mod α. As in the usual case, it is checked that such V (β)’s satisfy the needed
conditions for closed sets by

V (id) = X, V (triv) = ∅,

V (β1) ∪ · · · ∪ V (βn) = V (β1 ∧ · · · ∧ βn),⋂

λ∈Λ

V (βλ) = V (
∑

λ

βλ),

where X/triv = {1}, X/id = X, and
∑

λ βλ denotes the congruence generated
by βλ’s.
For a ring A, we define

(SpecZ(A))
abs = SpecF1

(A) = Spec((A,×)).

[Notice that Spec((A,×)) is not the set of usual “ideals” of (A,×).] Then we
have the natural map

SpecZ(A) −→ SpecF1
(A)

since each congruence on the ring A induces a congruence on the multiplicative
monoid (A,×). The “local-global” map

A −→
∏

α∈Spec
F1

(A)

(A/α)
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refines the usual local global map

A −→
∏

γ∈Spec
Z
(A)

(A/γ).

For example, SpecF1
(Z) and

∏

α∈Spec
F1

(Z)

(Z/α) are both big and unusual.

Remark 8 The absolute fundamental group π1(SpecF1
(Z)) would be interest-

ing from the view point of the Langlands conjecture since for each unramified
automorphic representation π of GLn(A) (A being the adele ring of Q) we
may have an n-dimensional representation (local system)

ρ : π1(SpecF1
(Z)) → GLn(C)

satisfying
L(s, π) = L(s, ρ).

Now we notice on the F1-tensor product. We define the F1-tensor product of
rings A and B as

A⊗F1
B = (A,×) ∗ (B,×)

the free product of monoids under the identification

1A = 1B = 1 and 0A = 0B = 0.

Theorem 8

SpecF1
(A⊗F1

B) = SpecF1
(A)× SpecF1

(B).

Proof: We show
Spec(M ∗N) ∼= Spec(M)× Spec(N)

by sending α ∗ β to (α, β), where M and N are multiplicative monoids having
1 and 0. Here α ∗ β is the natural congruence on M ∗ N coming from α and
β. Since it is easy to see that α ∗ β is a prime congruence on M ∗N if α and
β are prime congruences on M and N respectively by

(M ∗N)/(α ∗ β) ∼= (M/α) ∗ (N/β),

it is sufficient to show that the map is surjective. Let γ be a prime congruence
on M ∗N . Then we obtain a congruence α on M and a congruence β on N by
restricting γ to M and N respectively, and it holds that γ = α ∗ β. Since

(M ∗N)/γ ∼= (M/α) ∗ (N/β),

we know that α (resp. β) is a prime congruence on M (resp. N).

Thus we have

SpecF1
(Z⊗F1

Z) = SpecF1
(Z)× SpecF1

(Z)

where Z⊗F1
Z = Z ∗ Z, as expected in [4]–[7] and [9].
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