A Bound for the Torsion in the K-Theory of Algebraic Integers

Christophe Soulé

Received: November 6, 2002
Revised: May 30, 2003

A Kazuya Kato, qui marche sous la lune.

Abstract

Let m be an integer bigger than one, A a ring of algebraic integers, F its fraction field, and $K_{m}(A)$ the m-th Quillen K-group of A. We give a (huge) explicit bound for the order of the torsion subgroup of $K_{m}(A)$ (up to small primes), in terms of m, the degree of F over \mathbf{Q}, and its absolute discriminant.

Let F be a number field, A its ring of integers and $K_{m}(A)$ the m-th Quillen K-group of A. It was shown by Quillen that $K_{m}(A)$ is finitely generated. In this paper we shall give a (huge) explicit bound for the order of the torsion subgroup of $K_{m}(A)$ (up to small primes), in terms of m, the degree of F over \mathbf{Q}, and its absolute discriminant.
Our method is similar to the one developed in [13] for $F=\mathbf{Q}$. Namely, we reduce the problem to a bound on the torsion in the homology of the general linear group $\mathrm{GL}_{N}(A)$. Thanks to a result of Gabber, such a bound can be obtained by estimating the number of cells of given dimension in any complex of free abelian groups computing the homology of $\mathrm{GL}_{N}(A)$. Such a complex is derived from a contractible $C W$-complex \widetilde{W} on which $\mathrm{GL}_{N}(A)$ with compact quotient. We shall use the construction of \widetilde{W} given by Ash in [1]. It consists of those hermitian metrics h on A^{N} which have minimum equal to one and are such that their set $M(h)$ of minimal vectors has rank equal to N in F^{N}. To count cells in $\widetilde{W} / \mathrm{GL}_{N}(A)$, one will exhibit an explicit compact subset of $A^{N} \otimes_{\mathbf{Z}} \mathbf{R}$ which, for every $h \in \widetilde{W}$, contains a translate of $M(h)$ by some matrix of $\mathrm{GL}_{N}(A)$ (Proposition 2). The proof of this result relies on several arguments from the geometry of numbers using, among other things, the number field analog of Hermite's constant [4].

The bound on the K-theory of A implies a similar upper bound for the étale cohomology of $\operatorname{Spec}(A[1 / p])$ with coefficients in the positive Tate twists of \mathbf{Z}_{p}, for any (big enough) prime number p.
However, this bound is quite large since it is doubly exponential both in m and, in general, the discriminant of F. We expect the correct answer to be polynomial in the discriminant and exponential in m (see 5.1).
The paper is organized as follows. In Section 1 we prove a few facts on the geometry of numbers for A, including a result about the image of A^{*} by the regulator map (Lemma 3), which was shown to us by H. Lenstra. Using these, we study in Section 2 hermitian lattices over A, and we get a bound on $M(h)$ when h lies in \widetilde{W}. The cell structure of \widetilde{W} is described in Section 3. The main Theorems are proved in Section 4. Finally, we discuss these results in Section 5, where we notice that, because of the Lichtenbaum conjectures, a lower bound for higher regulators of number fields would probably provide much better upper bounds for the étale cohomology of $\operatorname{Spec}(A[1 / p])$. We conclude with the example of $K_{8}(\mathbf{Z})$ and its relation to the Vandiver conjecture.

1 Geometry of algebraic numbers

1.1

Let F be a number field, and A its ring of integers. We denote by $r=[F: \mathbf{Q}]$ the degree of F over \mathbf{Q} and by $D=|\operatorname{disc}(K / \mathbf{Q})|$ the absolute value of the discriminant of F over \mathbf{Q}. Let r_{1} (resp. r_{2}) be the number of real (resp. complex) places of F. We have $r=r_{1}+2 r_{2}$. We let $\Sigma=\operatorname{Hom}(F, \mathbf{C})$ be the set of complex embeddings of F. These notations will be used throughout.
Given a finite set X we let $\#(X)$ denote its cardinal.

1.2

We first need a few facts from the geometry of numbers applied to A and A^{*}. The first one is the following classical result of Minkowski:

Lemma 1. Let L be a rank one torsion-free A-module. There exists a non zero element $x \in L$ such that the submodule spanned by x in L has index

$$
\#(L / A x) \leq C_{1}
$$

where

$$
C_{1}=\frac{r!}{r^{r}} \cdot 4^{r_{2}} \pi^{-r_{2}} \sqrt{D}
$$

in general, and $C_{1}=1$ when A is principal.
Proof. The A-module L is isomorphic to an ideal I in A. According to [7], V $\S 4$, p. 119, Minkowski's first theorem implies that there exists $x \in I$ the norm of which satisfies

$$
|N(x)| \leq C_{1} N(I)
$$

Here $|N(x)|=\#(A / A x)$ and $N(I)=\#(A / I)$, therefore $\#(I / A x) \leq C_{1}$. The case where A is principal is clear. q.e.d.

1.3

The family of complex embeddings $\sigma: F \rightarrow \mathbf{C}, \sigma \in \Sigma$, gives rise to a canonical isomorphism of real vector spaces of dimension r

$$
F \otimes_{\mathbf{Q}} \mathbf{R}=\left(\mathbf{C}^{\Sigma}\right)^{+}
$$

where $(\cdot)^{+}$denotes the subspace invariant under complex conjugation. Given $\alpha \in F$ we shall write sometimes $|\alpha|_{\sigma}$ instead of $|\sigma(\alpha)|$.

Lemma 2. Given any element $x=\left(x_{\sigma}\right) \in F \otimes_{\mathbf{Q}} \mathbf{R}$, there exists $a \in A$ such that

$$
\sum_{\sigma \in \Sigma}\left|x_{\sigma}-\sigma(a)\right| \leq C_{2}
$$

with

$$
C_{2}=\frac{4^{r_{1}} \pi^{r_{2}}}{r^{r-2} r!} \sqrt{D}
$$

in general, and

$$
C_{2}=1 / 2 \quad \text { if } \quad F=\mathbf{Q}
$$

Proof. Define a norm on $F \otimes_{\mathbf{Q}} \mathbf{R}$ by the formula

$$
\|x\|=\sum_{\sigma \in \Sigma}\left|x_{\sigma}\right|
$$

The additive group A is a lattice in $F \otimes_{\mathbf{Q}} \mathbf{R}$, and we let μ_{1}, \ldots, μ_{r} be its successive minima. In particular, there exist $a_{1}, \ldots, a_{r} \in A$ such that $\left\|a_{i}\right\|=\mu_{i}$, $1 \leq i \leq r$, and $\left\{a_{1}, \ldots, a_{r}\right\}$ are linearly independent over \mathbf{Z}. Any $x \in F \otimes_{\mathbf{Q}} \mathbf{R}$ can be written

$$
x=\sum_{i=1}^{r} \lambda_{i} a_{i}, \quad \lambda_{i} \in \mathbf{R}
$$

Let $n_{i} \in \mathbf{Z}$ be such that $\left|n_{i}-\lambda_{i}\right| \leq 1 / 2$, for all $i=1, \ldots, r$, and

$$
a=\sum_{i=1}^{r} n_{i} a_{i}
$$

Clearly

$$
\begin{equation*}
\|x-a\| \leq \sum_{i=1}^{r}\left|\lambda_{i}-n_{i}\right|\left\|a_{i}\right\| \leq \frac{1}{2}\left(\mu_{1}+\cdots+\mu_{r}\right) \leq \frac{r}{2} \mu_{r} \tag{1}
\end{equation*}
$$

On the other hand, we know from the product formula that, given any $a \in$ A - \{0\},

$$
\begin{equation*}
\prod_{\sigma \in \Sigma}|\sigma(a)| \geq 1 \tag{2}
\end{equation*}
$$

By the inequality between arithmetic and geometric means this implies

$$
\|a\|=\sum_{\sigma \in \Sigma}|\sigma(a)| \geq r
$$

hence

$$
\begin{equation*}
\mu_{i} \geq r \quad \text { for all } \quad i=1, \ldots, r \tag{3}
\end{equation*}
$$

Minkowski's second theorem tells us that

$$
\begin{equation*}
\mu_{1} \ldots \mu_{r} \leq 2^{r} W 2^{-r_{2}} \sqrt{D} \tag{4}
\end{equation*}
$$

([7], Lemma 2, p. 115), where W is the euclidean volume of the unit ball for $\|\cdot\|$ in $F \otimes_{\mathbf{Q}} \mathbf{R}$. (Note that the covolume of A is \sqrt{D}.) The volume W is the euclidean volume of those elements $\left(x_{i}, z_{j}\right) \in \mathbf{R}^{r_{1}} \times \mathbf{C}^{r_{2}}$ such that

$$
\sum_{i=1}^{r_{1}}\left|x_{i}\right|+2 \sum_{j=1}^{r_{2}}\left|z_{j}\right| \leq 1
$$

One finds ([7], Lemma 3, p. 117)

$$
\begin{equation*}
W=2^{r_{1}} 4^{-r_{2}}(2 \pi)^{r_{2}} / r! \tag{5}
\end{equation*}
$$

From (3) and (4) we get

$$
\begin{equation*}
\mu_{r} \leq 2^{r} W \sqrt{D} 2^{-r_{2}} r^{-(r-1)} \tag{6}
\end{equation*}
$$

The lemma follows from (1), (5) and (6).

1.4

We also need a multiplicative analog of Lemma 2. Let $R(F)$ be the regulator of F, as defined in [7] V, § 1, p. 109. Let $s=r_{1}+r_{2}-1$.

Lemma 3. Let $\left(\lambda_{\sigma}\right), \sigma \in \Sigma$ be a family of positive real numbers such that $\lambda_{\bar{\sigma}}=\lambda_{\sigma}$ when $\bar{\sigma}$ is the complex conjugate of σ. There exists a unit $u \in A^{*}$ such that

$$
\operatorname{Sup}_{\sigma \in \Sigma}\left(\lambda_{\sigma}|u|_{\sigma}\right) \leq C_{3}\left(\prod_{\sigma \in \Sigma} \lambda_{\sigma}\right)^{1 / r}
$$

with

$$
C_{3}=\exp \left(s\left(4 r(\log 3 r)^{3}\right)^{s-1} 2^{r_{2}-1} R(F)\right) .
$$

Proof. We follow an argument of H. Lenstra. Let $H \subset \mathbf{R}^{r_{1}+r_{2}}$ be the s dimensional hyperplane consisting of vectors $\left(x_{1}, \ldots, x_{r_{1}+r_{2}}\right)$ such that $x_{1}+x_{2}+$ $\cdots+x_{r_{1}+r_{2}}=0$. Choose a subset $\left\{\sigma_{1}, \ldots, \sigma_{r_{1}+r_{2}}\right\} \subset \Sigma$ such that $\sigma_{1}, \ldots, \sigma_{r_{1}}$ are the real embeddings of Σ and $\sigma_{i} \neq \bar{\sigma}_{j}$ if $i \neq j$. Given $\lambda=\left(\lambda_{\sigma}\right)_{\sigma \in \Sigma}$ as in the lemma, we let

$$
\rho(\lambda)=\left(\log \left(\lambda_{\sigma_{1}}\right), \ldots, \log \left(\lambda_{\sigma_{r_{1}}}\right), 2 \log \left(\lambda_{\sigma_{r_{1}+1}}\right), \ldots, 2 \log \left(\lambda_{\sigma_{r_{1}+r_{2}}}\right)\right)
$$

If $u \in A^{*}$ is a unit, and $\lambda=\left(|u|_{\sigma}\right)$, we have $\rho(\lambda) \in H$. We get this way a lattice

$$
L=\left\{\rho\left(|u|_{\sigma}\right), u \in A^{*}\right\}
$$

in H.
Define a norm $\|\cdot\|$ on H by the formula

$$
\left\|\left(x_{i}\right)\right\|=\operatorname{Sup}\left(\operatorname{Sup}_{1 \leq i \leq r_{1}}\left|x_{i}\right|, \operatorname{Sup}_{r_{1}+1 \leq i \leq r_{1}+r_{2}}\left|x_{i}\right| / 2\right)
$$

It is enough to show that, for any vector $x \in H$ there exists $a \in L$ such that

$$
\|x-a\| \leq \log \left(C_{3}\right)
$$

According to [14], Cor. 2, p. 84, we have (when $r \geq 2$)

$$
\|a\| \geq \varepsilon
$$

where

$$
\varepsilon=r^{-1}(\log (3 r))^{-3}
$$

for any $a \in L-\{0\}$. Therefore, using Minkowski's second theorem as in the proof of Lemma 2 we get that, for any $x \in H$ there exists $a \in L$ with

$$
\|x-a\| \leq s 2^{s-1} \varepsilon^{1-s} W \operatorname{vol}(H / L)
$$

where W is the euclidean volume of the unit ball for $\|\cdot\|$, where we identify H with \mathbf{R}^{s} by projecting on the first s coordinates. Clearly $W \leq 2^{s+r_{2}-1}$ when, by definition (loc.cit.), $\operatorname{vol}(H / L)$ is equal to $R(F)$. The lemma follows.

1.5

We now give an upper bound for the constant C_{3} of Lemma 3 .
Lemma 4. The following inequality holds

$$
R \leq 11 r^{2} \sqrt{D} \log (D)^{r-1}
$$

Proof. Let κ be the residue at $s=1$ of the zeta function of F. According to [11], Cor. 3, p. 333, we have

$$
\kappa \leq 2^{r+1} D^{a} a^{1-r}
$$

whenever $0<a \leq 1$. Taking $a=\log (D)^{-1}$ we get

$$
\begin{equation*}
\kappa \leq e 2^{r+1} \log (D)^{r-1} \tag{7}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\kappa=2^{r_{1}}(2 \pi)^{r_{2}} \frac{h(F) R(F)}{w(F) \sqrt{D}} \tag{8}
\end{equation*}
$$

where $h(F)$ is the class number of F and $w(F)$ the number of roots of unity in $F([7]$, Prop. 13 , p. 300). Since $h(F) \geq 1$ we get

$$
R(F) \leq w(F) 2^{-\left(r_{1}+r_{2}\right)} \pi^{-r_{2}} e 2^{r+1} \sqrt{D} \log (D)^{r-1}
$$

Since the degree over \mathbf{Q} of $\mathbf{Q}(\sqrt[n]{1})$ is $\varphi(n)$, where φ is the Euler function, we must have

$$
\varphi(w(F)) \leq r
$$

When $n=p^{t}$ is an odd prime power we have

$$
\varphi\left(p^{t}\right)=(p-1) p^{t-1} \geq p^{t / 2}
$$

Therefore

$$
w(F) \leq 2 r^{2}
$$

Since

$$
2^{-\left(r_{1}+r_{2}\right)} \pi^{-r_{2}} 2^{r}=\left(\frac{2}{\pi}\right)^{r_{2}} \leq 1
$$

and $4 e \leq 11$, the lemma follows.

2 Hermitian lattices

2.1

An hermitian lattice $\bar{M}=(M, h)$ is a torsion free A-module M of finite rank, equipped with an hermitian scalar product h on $M \otimes_{\mathbf{Z}} \mathbf{C}$ which is invariant under complex conjugation. In other words, if we let $M_{\sigma}=M \otimes_{A} \mathbf{C}$ be the complex vector space obtained from M by extension of scalars via $\sigma \in \Sigma, h$ is given by a collection of hermitian scalar products h_{σ} on $M_{\sigma}, \sigma \in \Sigma$, such that $h_{\bar{\sigma}}(x, y)=h_{\sigma}(x, y)$ whenever x and y are in M.
We shall also write

$$
h_{\sigma}(x)=h_{\sigma}(x, x)
$$

and

$$
\|x\|_{\sigma}=\sqrt{h_{\sigma}(x)} .
$$

Lemma 5. Let \bar{M} be an hermitian lattice of rank N. Assume that M contains N vectors e_{1}, \ldots, e_{N} which are F-linearly independent in $M \otimes_{A} F$ and such that

$$
\left\|e_{i}\right\| \leq 1
$$

for all $i=1, \ldots, N$. Then there exist a direct sum decomposition

$$
M=L_{1} \oplus \cdots \oplus L_{N}
$$

where each L_{i} has rank one and contains a vector f_{i} such that

$$
\#\left(L_{i} / A f_{i}\right) \leq C_{1}
$$

and

$$
\left\|f_{i}\right\| \leq(i-1) C_{1} C_{2}+C_{1}^{1 / r} C_{3}
$$

Here C_{1}, C_{2}, C_{3} are the constants defined in Lemmas 1, 2, 3 respectively.
Proof. We proceed by induction on N. When $N=1$, Lemma 1 tells us that $L_{1}=M$ contains x_{1} such that

$$
\#\left(L_{1} / A x_{1}\right) \leq C_{1}
$$

Let us write

$$
x_{1}=\alpha e_{1}
$$

with $\alpha \in F^{*}$. Using Lemma 3, we can choose $u \in A^{*}$ such that

$$
\operatorname{Sup}_{\sigma \in \Sigma}|u \alpha|_{\sigma} \leq C_{3}\left(\prod_{\sigma}|\alpha|_{\sigma}\right)^{1 / r}=C_{3} N(\alpha)^{1 / r} \leq C_{3} C_{1}^{1 / r}
$$

The lemma follows with $f_{1}=u x_{1}$.
Assume now that $N \geq 2$, and let $L_{1}=M \cap F e_{1}$ in $M \otimes_{A} F$. As above, we choose $f_{1}=a_{11} e_{1}$ in L_{1} with $\left[L_{1}: A f_{1}\right] \leq C_{1}$ and

$$
\operatorname{Sup}_{\sigma \in \Sigma}\left|a_{11}\right|_{\sigma} \leq C_{3} C_{1}^{1 / r}
$$

The quotient $M^{\prime}=L / L_{1}$ is torsion free of rank $N-1$. We equip M^{\prime} with the quotient metric induced by h, we let $p: M \rightarrow M^{\prime}$ be the projection, and $e_{i}^{\prime}=p\left(e_{i}\right), i=2, \ldots, N$. Clearly

$$
\left\|e_{i}^{\prime}\right\| \leq 1
$$

for all $i=2, \ldots, N$.

We assume by induction that M^{\prime} can be written

$$
M^{\prime}=L_{2}^{\prime} \oplus \cdots \oplus L_{N}^{\prime}
$$

and that L_{i}^{\prime} contains a vector f_{i}^{\prime} such that

$$
n_{i}=\#\left(L_{i}^{\prime} / A f_{i}^{\prime}\right) \leq C_{1}
$$

with

$$
\begin{equation*}
f_{i}^{\prime}=\sum_{2 \leq j \leq i} a_{i j} e_{j}^{\prime} \tag{9}
\end{equation*}
$$

$a_{i j} \in F$, and, for all $\sigma \in \Sigma$,

$$
\left|a_{i j}\right|_{\sigma} \leq C_{1} C_{2} \quad \text { if } 2 \leq j<i \leq N
$$

and

$$
\left|a_{i i}\right|_{\sigma} \leq C_{1}^{1 / r} C_{3}, 2 \leq i \leq N
$$

Let $s: M^{\prime} \rightarrow M$ be any section of the projection p. From (9) it follows that there exists $\mu_{i} \in F$ such that

$$
s\left(f_{i}^{\prime}\right)-\sum_{2 \leq j<i} a_{i j} e_{j}=\mu_{i} e_{1}
$$

Applying Lemma 2, we can choose $b_{i} \in A$ such that

$$
\sum_{\sigma \in \Sigma}\left|\frac{\mu_{i}}{n_{i}}-b_{i}\right|_{\sigma} \leq C_{2}
$$

Define $t: M^{\prime} \rightarrow M$ by the formulae

$$
t(x)=s(x)-a(x) b_{i} e_{1}
$$

whenever $x \in L_{i}^{\prime}$, hence

$$
n_{i} x=a(x) f_{i}^{\prime}
$$

for some $a(x) \in A, 2 \leq i \leq N$. If we take $f_{i}=t\left(f_{i}^{\prime}\right)$, we get

$$
f_{i}=s\left(f_{i}^{\prime}\right)-n_{i} b_{i} e_{1}=\sum_{2 \leq j<i} a_{i j} e_{j}+\left(\mu_{i}-n_{i} b_{i}\right) e_{1}
$$

and, for all $\sigma \in \Sigma$,

$$
\left|\mu_{i}-n_{i} b_{i}\right|_{\sigma} \leq n_{i} C_{2} \leq C_{1} C_{2}
$$

We define $a_{i 1}=\mu_{i}-n_{i} b_{i}$ and $L_{i}=t\left(L_{i}^{\prime}\right)$. Then

$$
M=L_{1} \oplus \cdots \oplus L_{N}
$$

satisfies our induction hypothesis:

$$
\begin{gathered}
\#\left(L_{i} / A f_{i}\right) \leq C_{1} \\
f_{i}=\sum_{1 \leq j \leq i} a_{i j} e_{j} \\
\left|a_{i j}\right|_{\sigma} \leq C_{1} C_{2} \quad \text { when } j<i
\end{gathered}
$$

and

$$
\left|a_{i i}\right|_{\sigma} \leq C_{1}^{1 / r} C_{3}, \quad \text { for all } \sigma \in \Sigma, i=1, \ldots, N
$$

Since

$$
\left\|e_{i}\right\| \leq 1 \quad \text { for all } i=1, \ldots, N
$$

this implies

$$
\left\|f_{i}\right\| \leq(i-1) C_{1} C_{2}+C_{1}^{1 / r} C_{3}
$$

q.e.d.

2.2

Lemma 6. Let $I \subset A$ be a nontrivial ideal. There exists a set of representatives $\mathcal{R} \subset A$ of A modulo I such that, for any x in \mathcal{R},

$$
\sum_{\sigma \in \Sigma}|x|_{\sigma} \leq C_{2}\left(\frac{r+3}{4}\right) N(I)
$$

where $N(I)=\#(A / I)$ and C_{2} is the constant in Lemma 2.
Proof. According to the proof of Lemma 2, the \mathbf{Z}-module A contains a basis of r elements e_{1}, \ldots, e_{r} such that

$$
\sum_{\sigma}\left|e_{i}\right|_{\sigma} \leq \mu_{r} \leq \frac{2}{r} C_{2}
$$

Therefore, by Lemma 5 applied to the field \mathbf{Q}, in which case $C_{1}=C_{3}=1$ and $C_{2}=1 / 2$, there exists a basis $\left(f_{i}\right)$ of A over \mathbf{Z} such that,

$$
\sum_{\sigma \in \Sigma}\left|f_{i}\right|_{\sigma} \leq \frac{2}{r} C_{2}\left(\frac{i-1}{2}+1\right)
$$

Since the integer $n=N(I)$ belongs to I, the map $A / I \rightarrow A / n A$ is injective and we can choose \mathcal{R} among those

$$
x=\sum_{i=1}^{r} x_{i} f_{i}
$$

such that $x_{i} \in \mathbf{Z}$ and $\left|x_{i}\right| \leq n / 2$. In that case, if $x \in \mathcal{R}$, we have

$$
\sum_{\sigma \in \Sigma}|x|_{\sigma} \leq \frac{n}{2} \sum_{\sigma, i}\left|f_{i}\right|_{\sigma} \leq n C_{2} \frac{r+3}{4}
$$

q.e.d.
2.3

Lemma 7. Let \bar{M} be an hermitian lattice and assume that $M=L_{1} \oplus L_{2}$ is the direct sum of two lattices of rank one. Let $f_{i} \in L_{i}$ be a non zero vector, and $n_{i}=\#\left(L_{i} / A f_{i}\right), i=1,2$. Then there exists a vector $e_{1} \in M$, and an isomorphism

$$
\psi: A e_{1} \oplus L \rightarrow M
$$

such that L contains a vector e_{2} with

$$
\begin{gathered}
\#\left(L / A e_{2}\right) \leq n_{1} n_{2} \\
\left\|e_{1}\right\| \leq n_{2} C_{2}\left\|f_{1}\right\|+\left(1+C_{2}^{2} \frac{r+3}{4} n_{1}^{r}\right)\left\|f_{2}\right\|
\end{gathered}
$$

and

$$
\left\|\psi\left(e_{2}\right)\right\| \leq n_{2}\left\|f_{1}\right\|+C_{2} \frac{r+3}{4} n_{1}^{r}\left\|f_{2}\right\|
$$

Proof. The algebraic content of this lemma is [9], Lemma 1.7, p. 12. To control the norms in this proof we first define an isomorphism

$$
u_{i}: L_{i} \rightarrow I_{i}
$$

where I_{i} is an ideal of A. If $x \in L_{i}, u_{i}(x) \in A$ is the unique element such that

$$
n_{i} x=u_{i}(x) f_{i}, \quad i=1,2 .
$$

In particular $n_{i}=u_{i}\left(f_{i}\right)$.
Next, we choose an ideal J_{1} in the class of I_{1} which is prime to I_{2}. According to [9], proof of Lemma 1.8, we can choose

$$
J_{1}=\frac{x_{0}}{a_{0}} I_{1}
$$

where a_{0} is any element of $I_{1}-\{0\}$ and x_{0} belongs to a set of representatives of A modulo $I_{1} J$, where $I_{1} J=a_{0} A$.
According to Lemma 6 we can assume that

$$
\sum_{\sigma \in \Sigma}\left|x_{0}\right|_{\sigma} \leq C_{2}\left(\frac{r+3}{4}\right) N\left(I_{1} J\right)=C_{2}\left(\frac{r+3}{4}\right) N\left(a_{0}\right)
$$

The composite isomorphism

$$
v_{1}: L_{1} \rightarrow J_{1} \rightarrow I_{1}
$$

maps f_{1} to $n_{1} x_{0} / a_{0}$. We choose $a_{0}=n_{1}$, hence $v_{1}\left(f_{1}\right)=x_{0}$ and

$$
\sum_{\sigma \in \Sigma}\left|x_{0}\right|_{\sigma} \leq C_{2}\left(\frac{r+3}{4}\right) n_{1}^{r}
$$

The direct sum of the inverses of v_{1} and u_{2} is an isomorphism

$$
\varphi: J_{1} \oplus I_{2} \xrightarrow{\sim} L_{1} \oplus L_{2}=M
$$

Since J_{1} and I_{2} are prime to each other we have an exact sequence (as in [9] loc.cit.)

$$
0 \longrightarrow J_{1} I_{2} \longrightarrow J_{1} \oplus I_{2} \xrightarrow{p} A \longrightarrow 0
$$

where p is the sum in A. Let

$$
s: A \longrightarrow J_{1} \oplus I_{2}
$$

be any section of p and let $\alpha \in J_{1}$ be such that

$$
s(1)=(\alpha, 1-\alpha)
$$

Let $\alpha=\lambda n_{2} x_{0}$ with $\lambda \in F$. Applying Lemma 2 , we choose $a \in A$ such that

$$
\sum_{\sigma \in \Sigma}|\lambda-a|_{\sigma} \leq C_{2}
$$

Since $n_{2} x_{0}$ lies in $J_{1} I_{2}$ the element

$$
\beta=\alpha-a n_{2} x_{0}=(\lambda-a) n_{2} x_{0}
$$

lies in J_{1}, and $1-\beta$ lies in I_{2}. Since

$$
\beta=v_{1}\left((\lambda-a) n_{2} f_{1}\right)
$$

and

$$
1-\beta=u_{2}\left(\frac{1}{n_{2}}-(\lambda-a) x_{0} f_{2}\right)
$$

we get

$$
\begin{aligned}
\|\varphi(\beta, 1-\beta)\| & \leq\left\|(\lambda-a) n_{2} f_{1}\right\|+\left\|\left(\frac{1}{n_{2}}-(\lambda-a) x_{0}\right) f_{2}\right\| \\
& \leq n_{2} C_{2}\left\|f_{1}\right\|+\left(1+C_{2}^{2}\left(\frac{r+3}{4}\right) n_{1}^{r}\right)\left\|f_{2}\right\|
\end{aligned}
$$

We let $e_{1}=\varphi(\beta, 1-\beta)$. On the other hand we define

$$
L=J_{1} I_{2}\left(\simeq L_{1} \otimes L_{2}\right)
$$

and map L to M by the composite map

$$
L \stackrel{i}{\longrightarrow} J_{1} \oplus I_{2} \xrightarrow{\varphi} M
$$

where $i(x)=(x,-x)$. We choose

$$
e_{2}=n_{2} x_{0} \in L
$$

so that $\varphi \circ i\left(e_{2}\right)=\left(n_{2} v_{1}\left(f_{1}\right), x_{0} u_{2}\left(f_{2}\right)\right)$ has norm

$$
\left\|\varphi \circ i\left(e_{2}\right)\right\| \leq n_{2}\left\|f_{1}\right\|+C_{2}\left(\frac{r+3}{4}\right) n_{1}^{r}\left\|f_{2}\right\|
$$

Furthermore we have isomorphisms

$$
L \oplus A \xrightarrow{(i, s)} J_{1} \oplus I_{2} \xrightarrow{\varphi} M
$$

and

$$
\#\left(L / A e_{2}\right)=\#\left(J_{1} I_{2} / A e_{2}\right) \leq \#\left(J_{1} / A x_{0}\right) \times \#\left(I_{2} / A n_{2}\right)=n_{1} n_{2}
$$

q.e.d.

2.4

Proposition 1. Let \bar{M} be a rank N hermitian free A-module such that its unit ball contains a basis of $M \otimes_{A} F$. Then M has a basis $\left(e_{1}, \ldots, e_{N}\right)$ such that

$$
\left\|e_{i}\right\| \leq B_{i}
$$

with $B_{i}=(i-1) C_{2}+C_{3}, i=1, \ldots, N$, when A is principal and

$$
B_{i}=\left(1+C_{1} C_{2}\right)\left(N C_{2}+C_{3}\right)\left(1+C_{2} \frac{r+3}{4}\right)^{\log _{2}(N)+2} C_{1}^{2(r+1) N / i}
$$

in general. Here $\log _{2}(N)$ is the logarithm of N in base 2.
Proof. When A is principal, $C_{1}=1$ and Proposition 1 follows from Lemma 5.

In general Lemma 5 tells us that

$$
M=L_{1} \oplus \cdots \oplus L_{N}
$$

and L_{i} contains a vector f_{i} with $\#\left(L_{i} / A f_{i}\right) \leq C_{1}$ and

$$
\left\|f_{i}\right\| \leq C_{1}\left((i-1) C_{2}+C_{3}\right) \leq C_{1}\left(N C_{2}+C_{3}\right)
$$

Let $k>1$ be an integer and $\lambda>0$ be a real number. We shall prove by induction N that, if M has a decomposition as above with

$$
\#\left(L_{i} / A f_{i}\right) \leq k
$$

and

$$
\left\|f_{i}\right\| \leq k \lambda
$$

then M has a basis $\left(e_{1}, \ldots, e_{N}\right)$ such that

$$
\begin{equation*}
\left\|e_{i}\right\| \leq \lambda\left(\frac{1}{k}+C_{2}\right)\left(1+C_{2} \frac{r+3}{4}\right)^{t} k^{(r+1)\left(1+2+\cdots+2^{t}\right)} \tag{10}
\end{equation*}
$$

for all $i=1, \ldots, N$, where $t \geq 1$ is such that

$$
\frac{N}{2^{t}}<i \leq \frac{N}{2^{t-1}}
$$

The case $N \leq 2$ follows from Lemma 7. If $N>2$, let N^{\prime} be the integral part of $N / 2$. Applying Lemma 7 to every direct sum $L_{i} \oplus L_{N-i}, N / 2<i \leq N$, we get

$$
M=M^{\prime} \oplus\left(\bigoplus_{i=N^{\prime}+1}^{N} A e_{i}\right)
$$

with

$$
\begin{aligned}
\left\|e_{i}\right\| & \leq k \lambda\left(1+C_{2} k+C_{2}^{2} \frac{r+3}{4} k^{r}\right) \\
& \leq \lambda\left(\frac{1}{k}+C_{2}\right)\left(1+C_{2} \frac{r+3}{4}\right) k^{r+1}
\end{aligned}
$$

and M^{\prime} is free, $M^{\prime}=\underset{i=0}{N^{\prime}} L_{i}^{\prime}$, and each L_{i}^{\prime} contains a vector f_{i}^{\prime} such that

$$
\left[L_{i}^{\prime}: A f_{i}^{\prime}\right] \leq k^{2}
$$

and

$$
\left\|f_{i}^{\prime}\right\| \leq \lambda\left(1+C_{2} \frac{r+3}{4}\right) k^{r+1}
$$

By the induction hypothesis, M^{\prime} has a basis $\left(e_{i}\right), 1 \leq i \leq N^{\prime}$, such that
$\left\|e_{i}\right\| \leq\left(1+C_{2} \frac{r+3}{4}\right) k^{(r+1)}\left(\frac{1}{k^{2}}+C_{2}\right)\left(1+C_{2} \frac{r+3}{4}\right)^{t}\left(k^{2}\right)^{(r+1)\left(1+\cdots+2^{t}\right)}$
whenever

$$
\frac{N^{\prime}}{2^{t}}<i \leq \frac{N^{\prime}}{2^{t-1}}
$$

If

$$
\frac{N}{2^{t+1}}<i \leq \frac{N}{2^{t}}
$$

this inequality implies

$$
\left\|e_{i}\right\| \leq \lambda\left(\frac{1}{k}+C_{2}\right)\left(1+C_{2} \frac{r+3}{4}\right)^{t+1} k^{(r+1)\left(1+\cdots+2^{t+1}\right)}
$$

Therefore M satisfies the induction hypothesis (10).
Since

$$
1+2+\cdots+2^{t}=2^{t+1}-1 \leq \frac{2 N}{i}
$$

and $t \leq \log _{2}(N)+1$, Proposition 1 follows by taking $k=C_{1}$ and

$$
\lambda=C_{1}\left(N C_{2}+C_{3}\right)
$$

in (10).
q.e.d.
2.5

Let \bar{M} be a rank N hermitian free A-module. We let

$$
m(h)=\operatorname{Inf}\{h(x), x \in M-\{0\}\}
$$

be the minimum value of h on $M-\{0\}$ and

$$
M(h)=\{x \in M / h(x)=m(h)\}
$$

be the (finite) set of minimal vectors of M. Let ω_{N} be the standard volume of the unit ball in \mathbf{R}^{N}.

Proposition 2. Let $\bar{M}=(M, h)$ be as above. Assume that $m(h)=1$ and that $M(h)$ spans the F-vector space $M \otimes_{A} F$. Then M has a basis f_{1}, \ldots, f_{N} such that any $x \in M(h)$ is of the form

$$
x=\sum_{i=1}^{N} y_{i} f_{i}
$$

with

$$
\begin{gathered}
\sum_{\sigma \in \Sigma}\left|y_{i}\right|_{\sigma}^{2} \leq T_{i} \\
T_{i}=r^{r N} C_{3}^{2 r N+2} \gamma^{N} \prod_{j \neq i} B_{j}^{2}
\end{gathered}
$$

and

$$
\gamma=4^{r_{1}+r_{2}} \omega_{N}^{-2 r_{1} / N} \omega_{2 N}^{-2 r_{2} / N} D
$$

Proof. From Proposition 1 we know that M has a basis $\left(e_{1}, \ldots, e_{N}\right)$ with $\left\|e_{i}\right\| \leq B_{i}$. Let $x \in M(h)$ be a minimal vector and $\left(x_{i}\right)$ its coordinates in the basis (e_{i}).
Fix $i \in\{1, \ldots, N\}$ and $\sigma \in \Sigma$. Consider the square matrix

$$
H_{i}=\left(h_{\sigma}\left(v_{k}, v_{\ell}\right)\right),
$$

where $v_{k}=e_{k}$ if $k \neq i$ and $v_{i}=x$. Furthermore, let

$$
H_{\sigma}=\left(h_{\sigma}\left(e_{k}, e_{\ell}\right)\right)
$$

Since

$$
\left|x_{i}\right|_{\sigma}^{2}=\operatorname{det}\left(H_{i}\right) \operatorname{det}\left(H_{\sigma}\right)^{-1}
$$

the Hadamard inequality implies

$$
\left|x_{i}\right|_{\sigma}^{2} \leq h_{\sigma}(x) \prod_{j \neq i} h_{\sigma}\left(e_{j}\right) \operatorname{det}\left(H_{\sigma}\right)^{-1} .
$$

For any unit $u \in A^{*}$ we can replace e_{i} by $u^{-1} e_{i}$, and x_{i} by $y_{i}=u x_{i}$. We then have

$$
\begin{equation*}
\sum_{\sigma \in \Sigma}\left|y_{i}\right|_{\sigma}^{2} \leq \sum_{\sigma \in \Sigma} h_{\sigma}(x) \prod_{j \neq i} h_{\sigma}\left(e_{j}\right)|u|_{\sigma}^{2} \operatorname{det}\left(H_{\sigma}\right)^{-1} \tag{11}
\end{equation*}
$$

Applying Lemma 3 to $\lambda_{\sigma}=\operatorname{det}\left(H_{\sigma}\right)^{-1 / 2}$ we find u such that, for all $\sigma \in \Sigma$,

$$
\begin{equation*}
|u|_{\sigma}^{2} \operatorname{det}\left(H_{\sigma}\right)^{-1} \leq C_{3}^{2} \prod_{\sigma \in \Sigma} \operatorname{det}\left(H_{\sigma}\right)^{-1} \tag{12}
\end{equation*}
$$

Since $\sum_{\sigma} h_{\sigma}(x)=1$ and $h_{\sigma}\left(e_{j}\right) \leq\left\|e_{j}\right\|^{2} \leq B_{j}^{2}$, we deduce from (11) and (12) that

$$
\begin{equation*}
\sum_{\sigma \in \Sigma}\left|y_{i}\right|_{\sigma}^{2} \leq C_{3}^{2} \cdot \prod_{j \neq i} B_{j}^{2} \cdot \prod_{\sigma \in \Sigma} \operatorname{det}\left(H_{\sigma}\right)^{-1} \tag{13}
\end{equation*}
$$

According to Icaza [4], Theorem 1, there exists $z \in L$ such that

$$
\prod_{\sigma \in \Sigma} h_{\sigma}(z) \leq \gamma \prod_{\sigma \in \Sigma} \operatorname{det}\left(H_{\sigma}\right)^{1 / N}
$$

with

$$
\gamma=4^{r_{1}+r_{2}} \omega_{N}^{-2 r_{1} / N} \omega_{2 N}^{-2 r_{2} / N} D
$$

Using Lemma 3 again and the fact that $m(h)=1$, we find $v \in A^{*}$ such that

$$
\begin{aligned}
1 & \leq h(v z) \leq r C_{3}^{2} \prod_{\sigma \in \Sigma} h_{\sigma}(z)^{1 / r} \\
& \leq r C_{3}^{2} \gamma^{1 / r} \prod_{\sigma \in \Sigma} \operatorname{det}\left(H_{\sigma}\right)^{1 / r N}
\end{aligned}
$$

From this it follows that

$$
\begin{equation*}
\prod_{\sigma \in \Sigma} \operatorname{det}\left(H_{\sigma}\right)^{-1} \leq\left(r C_{3}^{2}\right)^{r N} \gamma^{N} \tag{14}
\end{equation*}
$$

and Proposition 2 follows from (13) and (14).
2.6

To count the number of vectors in $M(h)$ using Proposition 2 we shall apply the following lemma :

Lemma 8. The number of elements a in A such that

$$
\sum_{\sigma \in \Sigma}|a|_{\sigma}^{2} \leq T
$$

is at most

$$
B(T)=\operatorname{Sup}\left(T^{r / 2} 2^{r+3}, 1\right) .
$$

Proof. When $r_{2}>0$, this follows from [7], V § 1, Theorem 0, p. 102, by noticing that one can take $C_{3}=2^{r+3}$ in loc.cit. When $r_{2}=0$, the argument is similar.

3 Reduction theory

3.1

Fix an integer $N \geq 2$. Let

$$
\Gamma=\mathrm{GL}_{N}(A)
$$

and

$$
G=\mathrm{GL}_{N}\left(F \otimes_{\mathbf{Q}} \mathbf{R}\right)
$$

On the standard lattice $L_{0}=A^{N}$ consider the hermitian metric h_{0} defined by

$$
h_{0}(x, y)=\sum_{\sigma \in \Sigma} \sum_{i=1}^{N} x_{i \sigma} \overline{y_{i \sigma}}
$$

for all vectors $x=\left(x_{i \sigma}\right)$ and $y=\left(y_{i \sigma}\right)$ in $L_{0} \otimes_{\mathbf{Z}} \mathbf{C}=\left(\mathbf{C}^{N}\right)^{\Sigma}$. Any $g \in G$ defines an hermitian metric $h=g\left(h_{0}\right)$ on L_{0} by the formula

$$
g\left(h_{0}\right)(x, y)=h_{0}(g(x), g(y))
$$

Let K be the stabilizer of h_{0} and G and $X=K \backslash G$. We can view each $h \in X$ as a metric on L_{0}.
Following Ash [1], we say that a finite subset $M \subset L_{0}$ is well-rounded when it spans the F-vector space $L_{0} \otimes_{A} F$. We let $\widetilde{W} \subset X$ be the space of metrics h such that $m(h)=1$ and $M(h)$ is well-rounded. Given a well-rounded set $M \subset L_{0}$ we let $C(M) \subset \widetilde{W}$ be the set of metrics h such that

- $h(x)=1$ for all $x \in M$
- $h(x)>1$ for all $x \in L_{0}-(M \cup\{0\})$.

As explained in [1], proof of (iv), pp. 466-467, $C(M)$ is either empty or topologically a cell, and the family of closed cells $\overline{C(M)}$ gives a Γ-invariant cellular decomposition of \widetilde{W}, such that

$$
\overline{C(M)}=\coprod_{M^{\prime} \supset M} C\left(M^{\prime}\right)
$$

Furthermore \widetilde{W} / Γ is compact, of dimension $\operatorname{dim}(X)-N$.
3.2

Proposition 3. i) For any integer $k \geq 0$, the number of cells of codimension k in \widetilde{W} is at most

$$
c(k, N)=\binom{a(N)}{N+k}
$$

where

$$
a(N)=2^{N(r+3)}\left(\prod_{i=1}^{N} T_{i}\right)^{r / 2}
$$

and T_{i} is as in Proposition 2.
ii) Given a cell in \widetilde{W}, its number of codimension one faces is at most a $(N)^{N+1}$.

Proof. Let Φ be the set of vectors $x=\left(x_{i}\right)$ in A^{N} such that, for all $i=$ $1, \ldots, N$,

$$
\sum_{\sigma \in \Sigma}\left|x_{i}\right|_{\sigma}^{2} \leq T_{i}
$$

Given $h \in \widetilde{W}$, Proposition 2 says that we can find a basis $\left(f_{i}\right)$ of L_{0} such that any x in $M(h)$ has its coordinates $\left(x_{i}\right)$ bounded as above. If $\gamma \in \Gamma$ is the matrix mapping the standard basis of A^{N} to $\left(f_{i}\right)$, this means that $M(\gamma(h))=$ $\gamma^{-1}(M(h))$ is contained in Φ.
Let $\overline{C(M)}$ be a nonempty closed cell of codimension k in \widetilde{W}. For any $x \in L_{0}$, the equation $h(x)=1$ defines a real affine hyperplane in the set of $N \times N$ hermitian matrices with coefficients in $\left(F \otimes_{\mathbf{Q}} \mathbf{C}\right)^{+}$. The equations $h(x)=1$, $x \in M$, may not be linearly independent, but, since $\overline{C(M)}$ has codimension k, M has at least $N+k$ elements. And since $M \subset M(h)$ for some $h \in \widetilde{W}$, there exists $\gamma \in \Gamma$ such that $\gamma^{-1}(M)$ is contained in Φ. Therefore, modulo the action of Γ, there are at most $\binom{\operatorname{card}(\Phi)}{N+k}$ cells $\overline{C(M)}$ of codimension k. From Lemma 7 we know that

$$
\operatorname{card}(\Phi) \leq a(N)
$$

therefore i) follows.
To prove ii), consider a cell $\overline{C(M)}$ and a codimension one face $\overline{C\left(M^{\prime}\right)}$ of $\overline{C(M)}$. We can write $M^{\prime}=M \cup\{x\}$ for some vector x and there exists $\gamma \in \Gamma$ such that $\gamma\left(M^{\prime}\right) \subset \Phi$. Since M is well-rounded, the matrix γ is entirely determined by the set of vectors $\gamma(M)$, i.e. there are at most $\operatorname{card}(\Phi)^{N}$ matrices γ such that $\gamma(M) \subset \Phi$. Since $\gamma(x) \in \Phi$, there are at most $\operatorname{card}(\Phi)^{N+1}$ vectors x as above.
q.e.d.
3.3

Lemma 9. Let $\gamma \in \Gamma-\{1\}$ and p be a prime number such that $\gamma^{p}=1$. Then

$$
p \leq 1+\operatorname{Sup}(r, N)
$$

Proof. Since γ is non trivial we have $P(\gamma)=0$ where P is the cyclotomic polynomial

$$
P(x)=X^{p-1}+X^{p-2}+\cdots+1
$$

If F does not contain the p-th roots of one, P is irreducible, and therefore it divides the characteristic polynomial of the matrix γ over F, hence $p-1 \leq N$. Otherwise, F contains $Q\left(\mu_{p}\right)$, which is of degree $p-1$, therefore $p-1 \leq r$.

4 The main results

4.1

For any integer $n>0$ and any finite abelian $\operatorname{group} A$ we let $\operatorname{card}_{n}(A)$ be the largest divisor of the integer $\#(A)$ such that no prime $p \leq n$ divides $\operatorname{card}_{n}(A)$. Let $N \geq 2$ be an integer. We keep the notation of $\S 3$ and we let

$$
\widetilde{w}=\operatorname{dim}(X)-N=r_{1} \frac{N(N+1)}{2}+r_{2} N^{2}-N
$$

be the dimension of \widetilde{W}. For any $k \leq \widetilde{w}$ we define

$$
h(k, N)=a(N)^{(N+1) c(\widetilde{w}-k-1, N)},
$$

where $c(\cdot, N)$ and $a(N)$ are defined in Proposition 3.

ThEOREM 1. The torsion subgroup of the homology of $\mathrm{GL}_{N}(A)$ is bounded as follows

$$
\operatorname{card}_{1+\sup (r, N)} H_{k}\left(\mathrm{GL}_{N}(A), \mathbf{Z}\right)_{\text {tors }} \leq h(k, N)
$$

Proof. We know from [1] that \widetilde{W} is contractible and the stabilizer of any $h \in$ \widetilde{W} is finite. From Lemma 9 it follows that, modulo $\mathcal{S}_{1+\sup (r, N)}$, the homology of $\Gamma=\mathrm{GL}_{N}(A)$ is the homology of a complex $(C ., \partial)$, where C_{k} is the free abelian group generated by a set of Γ-representatives of those k-dimensional cells c in \widetilde{W} such that the stabilizer of c does not change its orientation ([2], VII). According to Proposition 3, the rank of C_{k} is at most $c(\widetilde{w}-k, N)$ and any cell of \widetilde{W} has at most $a(N)^{N+1}$ faces. Theorem 1 then follows from a general result of Gabber ([13], Proposition 3 and equation (18)).
4.2

For any integer $m \geq 1$ let

$$
k(m)=h(m, 2 m+1) .
$$

Denote by $K_{m}(A)$ the m-th algebraic K-group of A.

Theorem 2. The following inequality holds

$$
\operatorname{card}_{\sup (r+1,2 m+2)} K_{m}(A)_{\mathrm{tors}} \leq k(m)
$$

Proof. As in [13], Theorem 2, we consider the Hurewicz map

$$
H: K_{m}(A) \rightarrow H_{m}(\mathrm{GL}(A), \mathbf{Z})
$$

the kernel of which lies in $\mathcal{S}_{n}, n \leq(m+1) / 2$. Since, according to Maazen and Van der Kallen,

$$
H_{m}(\mathrm{GL}(A), \mathbf{Z})=H_{m}\left(\mathrm{GL}_{N}(A), \mathbf{Z}\right)
$$

when $N \geq 2 m+1$, Theorem 2 is a consequence of Theorem 1 .

4.3

Let p be an odd prime and $n \geq 2$ an integer. For any $\nu \geq 1$ denote by $\mathbf{Z} / p^{\nu}(n)$ the étale sheaf $\mu_{p^{\nu}}^{\otimes n}$ on $\operatorname{Spec}(A[1 / p])$, and let

$$
H^{2}\left(\operatorname{Spec}(A[1 / p]), \mathbf{Z}_{p}(n)\right)=\varliminf_{\nu}^{\varliminf_{\nu}} H^{2}\left(\operatorname{Spec}(A[1 / p]), \mathbf{Z}_{p^{\nu}}(n)\right) .
$$

From [12], we know that this group is finite and zero for almost all p.
Theorem 3. The following inequality holds

$$
\prod_{\substack{p \geq 4 n-1 \\ p \geq r+2}} \operatorname{card} H^{2}\left(\operatorname{Spec}(A[1 / p]), \mathbf{Z}_{p}(n)\right) \leq k(2 n-2)
$$

Proof. According to [12], the cokernel of the Chern class

$$
c_{n, 2}: K_{2 n-2}(A) \rightarrow H^{2}\left(\operatorname{Spec}(A[1 / p]), \mathbf{Z}_{p}(n)\right)
$$

lies in \mathcal{S}_{n+1} for all p. Furthermore, Borel proved that $K_{2 m-2}(A)$ is finite. Therefore Theorem 3 follows from Theorem 2.
4.4

By Lemmas 1 to 7 and Propositions 1 to 3 , the constant $k(m)$ is explicitly bounded in terms of m, r and D. We shall now simplify this upper bound.

Proposition 4. i) $\log \log k(m) \leq 220 m^{4} \log (m) r^{4 r} \sqrt{D} \log (D)^{r-1}$
ii) If F has class number one,

$$
\log \log k(m) \leq 210 m^{4} \log (m) r^{4 r} \sqrt{D} \log (D)^{r-1}
$$

iii) If $F=\mathbf{Q}(\sqrt{-D})$ is imaginary quadratic

$$
\log \log k(m) \leq 1120 m^{4} \log (m) \log (D)
$$

if furthermore F has class number one

$$
\log \log k(m) \leq 510 m^{4} \log (m) \log (D)
$$

iv) When $F=\mathbf{Q}$ and $m \geq 9$

$$
\log \log k(m) \leq 8 m^{4} \log (m)
$$

furthermore

$$
\log \log k(7) \leq 40545
$$

and

$$
\log \log k(8) \leq 70130
$$

Proof. By definition

$$
k(m)=h(m, 2 m+1)=a(N)^{(N+1) c(\widetilde{w}-m-1, N)}
$$

with $N=2 m+1$ and

$$
c(\widetilde{w}-m-1, N)=\binom{a(N)}{N+\widetilde{w}-m-1}
$$

Since

$$
\begin{aligned}
N+\widetilde{w}-m-1 & =r_{1} \frac{N(N+1)}{2}+r_{2} N^{2}-m-1 \\
& \leq 2 r m^{2}+3 r m+r-2 m-1
\end{aligned}
$$

and since $a(2 m+1)$ is very big, we get

$$
\begin{align*}
\log \log k(m) & \leq\left(2 r m^{2}+3 r m+r-2 m-1\right) \log a(2 m+1) \\
& +\log (2 m+2)+\log \log a(2 m+1) \\
& \leq r\left(2 m^{2}+3 m+1\right) \log a(2 m+1) \tag{15}
\end{align*}
$$

From Proposition 3 and Proposition 2 we get

$$
\begin{equation*}
a(N)=2^{N(r+3)}\left(\prod_{i=1}^{N} T_{i}\right)^{r / 2} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{i=1}^{N} T_{i}=\left(r^{r N} \gamma^{N} C_{3}^{2 r N+2}\right)^{N} \prod_{i=1}^{N} B_{i}^{N-1} \tag{17}
\end{equation*}
$$

According to Proposition 1

$$
\begin{equation*}
\prod_{i=1}^{N} B_{i}=\left[\left(1+C_{1} C_{2}\right)\left(N C_{2}+C_{3}\right)\left(1+C_{2} \frac{r+3}{4}\right)^{\log _{2}(N)+2}\right]^{N} \cdot C_{1}^{2(r+1) N H_{N}} \tag{18}
\end{equation*}
$$

where

$$
H_{N}=\sum_{i=1}^{N} \frac{1}{i} \leq 1+\log (N)
$$

Assume $s \neq 0$. Then the upper bound C_{3}^{*} we get from Lemmas 3 and 4 for C_{3} is much bigger than C_{2}. Therefore

$$
\begin{equation*}
\log \left(N C_{2}+C_{3}\right) \leq \log (N)+\log \left(C_{3}^{*}\right) \tag{19}
\end{equation*}
$$

We deduce from $(15),(16),(17),(18),(19)$ that

$$
\log \log k(m) \leq X_{1}+X_{2}
$$

with

$$
X_{1}=r\left(2 m^{2}+3 m+1\right) \frac{r}{2}(N(2 r N+2)+N(N-1)) \log \left(C_{3}^{*}\right)
$$

and

$$
\begin{align*}
X_{2} & =r\left(2 m^{2}+3 m+1\right)(N(r+3) \log (2) \\
& +\frac{r}{2} N\left(N \log (\gamma)+(N-1)\left[\log \left(1+C_{1} C_{2}\right)+\log (N)\right.\right. \\
& +\left(\log _{2}(N)+2\right) \log \left(1+C_{2} \frac{r+3}{4}\right) \\
& \left.\left.\left.+2(r+1)(1+\log (N)) \log \left(C_{1}\right)\right]\right)\right) \tag{20}
\end{align*}
$$

Since $s \leq r-1$, Lemma 3 and Lemma 4 imply

$$
\log \left(C_{3}^{*}\right) \leq 11 r^{2}(r-1)\left(4 r(\log 3 r)^{3}\right)^{r-2} 2^{r-1} \sqrt{D} \log (D)^{r-1}
$$

from which it follows that

$$
X_{1} \leq 208 \log (m) m^{4} r^{4 r} \sqrt{D} \log (D)^{r-1}
$$

when $m \geq 2$ and $r \geq 2$.
To evaluate X_{2} first notice that

$$
4 \omega_{N}^{-2 / N} \leq 1+N / 4
$$

by [10], II, (1.5), Remark, hence

$$
\begin{align*}
\log (\gamma) & \leq r_{1} \log \left(1+\frac{N}{4}\right)+2 r_{2} \log \left(1+\frac{N}{2}\right)+\log (D) \\
& \leq r \log (N)+\log (D) \tag{21}
\end{align*}
$$

since $N \geq 5$.
By the Stirling formula and Lemma 1 , if $r \geq 2$,

$$
\begin{align*}
& \log \left(C_{1}\right)=\log (r!)-r \log (r)+r_{2} \log \left(\frac{4}{\pi}\right)+\frac{1}{2} \log (D) \\
& \leq 1+\frac{1}{2} \log (r)+\frac{1}{2} \log (D) \tag{22}\\
& \log \left(1+C_{2} \frac{r+3}{4}\right) \leq \operatorname{Sup}\left(\log \left(C_{2}\right)+\log \left(\frac{r+3}{4}\right)+1, \log (2)\right),
\end{align*}
$$

where

$$
\begin{aligned}
\log \left(C_{2}\right)+\log \left(\frac{r+3}{4}\right) & \leq r \log (4)-(r-2) \log (r)-\log (r!) \\
& +\log \left(\frac{r+3}{4}\right)+\frac{1}{2} \log (D) \\
& \leq 2.4+\frac{1}{2} \log (D)
\end{aligned}
$$

so that

$$
\begin{equation*}
\log \left(1+C_{2} \frac{r+3}{4}\right) \leq 3.4+\frac{1}{2} \log (D) \tag{23}
\end{equation*}
$$

We also have

$$
\log \left(1+C_{1} C_{2}\right) \leq \operatorname{Sup}\left(1+\log \left(C_{1}\right)+\log \left(C_{2}\right), \log (2)\right)
$$

and

$$
\begin{aligned}
\log \left(C_{1}\right)+\log \left(C_{2}\right) & \leq-r \log (r)+r-(r-2) \log (r)+r \log (4)+\log (D) \\
& \leq 3.4+\log (D)
\end{aligned}
$$

so that

$$
\begin{equation*}
\log \left(1+C_{1} C_{2}\right) \leq 4.4+\log (D) \tag{24}
\end{equation*}
$$

From (20), (21), (22), (23), (24) we get

$$
X_{2} \leq a \log (D)+b
$$

with

$$
\begin{aligned}
a & =r\left(2 m^{2}+3 m+1\right)(2 m+1)\left(\frac { r } { 2 } \left((2 m+1)+2 m+m \log _{2}(2 m+1)+m\right.\right. \\
& +2 m(r+1)(1+\log (2 m+1)))) \leq 75 r^{3} m^{4} \log (m)
\end{aligned}
$$

if $r \geq 2$ and $m \geq 2$.
Finally

$$
\begin{aligned}
b & =r\left(2 m^{2}+3 m+1\right)(2 m+1)\left((r+3) \log (2)+\frac{r}{2}(2 m+1) r(\log (r)+\log (2 m+1))\right. \\
& +\frac{r}{2}(2 m)\left(4.4+\log (2 m+1)+3.4\left(\log _{2}(2 m+1)+2\right)\right. \\
& \left.\left.+2(r+1)(1+\log (2 m+1))\left(1+\frac{1}{2} \log (r)\right)\right)\right) \leq 148 r^{4} m^{4} \log (m)
\end{aligned}
$$

when $r \geq 2$ and $m \geq 2$.
Therefore

$$
\begin{aligned}
\log \log k(m) & \leq 208 \log (m) m^{4} r^{4 r} \sqrt{D} \log (D)^{r-1}+75 r^{3} m^{4} \log (m) \log (D) \\
& +148 r^{4} m^{4} \log (m) \leq 220 m^{4} \log (m) r^{4 r} \sqrt{D} \log (D)^{r-1}
\end{aligned}
$$

when m, r and D are at least 2 . This proves i).
If we assume that A is principal, we can take $C_{1}=1$ in Lemma 1 and $B_{i}=$ $(i-1) C_{2}+C_{3}$ in Proposition 1. Since $C_{2}<C_{3}$ we get

$$
\log \left(\prod_{i=1}^{N} B_{i}\right) \leq \log (N!)+N \log \left(C_{3}\right)
$$

and

$$
\log \log k(m) \leq X_{1}+X_{3}
$$

where

$$
\begin{aligned}
X_{3} & =r\left(2 m^{2}+3 m+1\right)\left[(r+3)(2 m+1) \log (2)+\frac{r^{2}}{2}(2 m+1)^{2} \log (r)\right. \\
& \left.+\frac{r}{2}(2 m+1)^{2} \log (\gamma)+\frac{r}{2}(2 m) \log ((2 m+1)!)\right] \\
& \leq 6 m^{4} r^{2} \log (D)+2 r^{4 r} m^{4} \log (m)
\end{aligned}
$$

Therefore

$$
X_{1}+X_{3} \leq 210 m^{4} \log (m) r^{4 r} \sqrt{D} \log (D)^{r-1}
$$

Assume now that $r_{1}+r_{2}=1$. Then $C_{3}=1$ and the term X_{1} disappears from the above computation. Assume first that $F=\mathbf{Q}(\sqrt{-D})$. Since $r_{2}=1$ and $r_{1}=0$ we get

$$
\log \log k(m) \leq\left(4 m^{2}+3 m+1\right) \log a(2 m+1)
$$

Furthermore (18) becomes

$$
\prod_{i=1}^{N} B_{i} \leq\left[\left(1+C_{1} C_{2}\right)\left(1+N C_{2}\right)\left(1+\frac{5}{4} C_{2}\right)^{\log _{2}(N)+2}\right]^{N} \cdot C_{1}^{6 N(1+\log (N))}
$$

Therefore

$$
\begin{aligned}
\log \log k(m) & \leq\left(4 m^{2}+3 m+1\right)\left[5 N \log (2)+2 N^{2} \log (2)\right. \\
& +N^{2} \log (\gamma)+N(N-1)\left[\log \left(1+C_{1} C_{2}\right)\right. \\
& \left.+\log \left(1+N C_{2}\right)+\left(\log _{2}(N)+2\right) \log \left(1+\frac{5}{4} C_{2}\right)\right] \\
& \left.+6 N(1+\log N) \log \left(C_{1}\right)\right]
\end{aligned}
$$

with $N=2 m+1$. We have now

$$
\begin{gathered}
\gamma \leq\left(1+\frac{N}{2}\right)^{2} D \\
C_{1}=\frac{2}{\pi} \sqrt{D} \quad \text { and } \quad C_{2}=\frac{\pi}{2} \sqrt{D}
\end{gathered}
$$

This implies
$\log \log k(m) \leq 597 m^{4} \log (m)+256 m^{4} \log (m) \log (D) \leq 1120 m^{4} \log (m) \log (D)$. If $F=\mathbf{Q}(\sqrt{-D})$ is principal we can take $C_{1}=1$ and $B_{i}=(i-1) C_{2}+1$. We get

$$
\log \log k(m) \leq 510 m^{4} \log (m) \log (D)
$$

Finally, assume that $F=\mathbf{Q}$. Then

$$
B_{i}=\frac{i+1}{2} \quad \text { since } \quad C_{2}=\frac{1}{2}, \quad \text { and } \quad \gamma \leq 1+\frac{N}{4} .
$$

Therefore

$$
\begin{aligned}
\log \log k(m) & \leq\left(2 m^{2}+2 m+1\right) \log a(2 m+1) \\
& \leq\left(2 m^{2}+2 m+1\right)\left[4 N \log (2)+\frac{N^{2}}{2} \log \left(1+\frac{N}{4}\right)\right. \\
& \left.+\frac{N-1}{2} \log \left(\prod_{i=1}^{N} \frac{i+1}{2}\right)\right] \\
& \leq 8 m^{4} \log (m)
\end{aligned}
$$

if $m \geq 9$. We can also estimate $k(7)$ and $k(8)$ from this inequality above. This proves iv).

5 Discussion

5.1

The upper bound in Theorem 2 and Propostition 4 seems much too large. When $m=0$, card $K_{0}(A)_{\text {tors }}$ is the class number $h(F)$, which is bounded as follows:

$$
\begin{equation*}
h(F) \leq \alpha \sqrt{D} \log (D)^{r-1} \tag{25}
\end{equation*}
$$

for some constant $\alpha(r)$ [11], Theorem 4.4, p. 153. Furthermore, when $F=$ Q, $m=2 n-2$ and n is even, the Lichtenbaum conjecture predicts that card $K_{2 n-2}(\mathbf{Z})$ is the order of the numerator of B_{n} / n, where B_{n} is the n-th Bernoulli number. The upper bound

$$
B_{n} \leq n^{!} \approx n^{n}
$$

suggests, since the denominator of B_{n} / n is not very big, that card $K_{m}(\mathbf{Z})_{\text {tors }}$ should be exponential in m. We are thus led to the following:

Conjecture. Fix $r \geq 1$. There exists positive constants α, β, γ such that, for any number field F of degree r on \mathbf{Q},

$$
\operatorname{card} K_{m}(A)_{\text {tors }} \leq \alpha \exp \left(\beta m^{\gamma} \log D\right)
$$

Furthermore, we expect that γ does not depend on r.

5.2

As suggested by A. Chambert-Loir, it is interesting to consider the analog in positive characteristic of the conjecture above. Let X be a smooth connected projective curve of genus g over the finite field with q elements, $\zeta_{X}(s)$ its zeta function and

$$
P(t)=\prod_{i=1}^{2 g}\left(1-\alpha_{i} t\right)
$$

where α_{i} are the roots of Frobenius acting on the fist ℓ-adic cohomology group of X. When $n>1$, it is expected that the finite group $K_{2 n-2}(X)$ has order the numerator of $\zeta_{X}(1-n)$, i.e. $P\left(q^{n-1}\right)$. Since $\left|\alpha_{i}\right|=q^{1 / 2}$ for all $i=1 \cdots 2 g$, we get

$$
P\left(q^{n-1}\right) \leq\left(1+q^{n-1 / 2}\right)^{2 g} \leq q^{2 n g}
$$

In the analogy between number fields and function fields, the genus g is known to be an analog of $\log (D)$. Therefore the bound above is indeed analogous to the conjecture in $\S 5.1$.

5.3

The upper bound for $k(m)$ in Proposition 4 i) is twice exponential in D. One exponential is due to our use of Lemma 3 , where C_{3} is exponential in D. Maybe this can be improved in general, and not only when $s=0$.
The exponential in D occuring in Proposition 4 ii) might be due to our use of the geometry of numbers. Indeed, if one evaluates the class number $h(F)$ by applying naively Minkowski's theorem (Lemma 1), the bound one gets is exponential in D; see however [8], Theorem 6.5., for a better proof.

5.4

One method to prove (25) consists in combining the class number formula (see (7) and (8)) with a lower bound for the regulator $R(F)$. This suggests replacing the arguments of this paper by analytic number theory, to get good upper bounds for étale cohomology.
More precisely, let $n \geq 2$ be an integer, and let $\zeta_{F}(1-n)^{*}$ be the leading coefficient of the Taylor series of $\zeta_{F}(s)$ at $s=1-n$. Lichtenbaum conjectured that

$$
\begin{equation*}
\zeta_{F}(1-n)^{*}= \pm 2^{r_{1}} R_{2 n-1}(F) \frac{\prod_{p} \operatorname{card} H^{2}\left(\operatorname{Spec}(A[1 / p]), \mathbf{Z}_{p}(n)\right)}{\prod_{p} \operatorname{card} H^{1}\left(\operatorname{Spec}(A[1 / p]), \mathbf{Z}_{p}(n)\right)_{\mathrm{tors}}} \tag{26}
\end{equation*}
$$

where $R_{2 n-1}(F)$ is the higher regulator for the group $K_{2 n-1}(F)$. The equality (26) is known up a power of 2 when F is abelian over \mathbf{Q} [5], [6], [3].

The order of the denominator on the right-hand side of (26) is easy to evaluate, as well as $\zeta_{F}(1-n)^{*}$ (since it is related by the functional equation to $\zeta_{F}(n)$).

Problem. Can one find a lower bound for $R_{2 n-1}(F)$?

If such a problem could be solved, the equality (26) is likely to produce a much better upper bound for étale cohomology than Theorem 3. Zagier's conjecture suggests that this problem could be solved if one knew that the values of the n-logarithm on F are \mathbf{Q}-linearly independent.

5.5

To illustrate our discussion, let $F=\mathbf{Q}$ and $n=5$. Then we have

$$
H^{2}\left(\operatorname{Spec}(\mathbf{Z}[1 / p]), \mathbf{Z}_{p}(5)\right) / p=C^{(p-5)}
$$

where C is the class group of $\mathbf{Q}(\sqrt[p]{1})$ modulo p, and $C^{(i)}$ is the eigenspace of C of the i-th power of the Teichmüller character. Vandiver's conjecture predicts
that $C^{(p-5)}=0$ when p is odd. It is true when $p \leq 4.10^{6}$. Theorem 3 and Proposition 4 tell us that

$$
\prod_{p} H^{2}\left(\operatorname{Spec}\left(\mathbf{Z}[1 / p], \mathbf{Z}_{p}(5)\right) \leq k(8) \leq \exp \exp (70130)\right.
$$

If one could find either a better upper bound for the order of $K_{8}(\mathbf{Z})$ or a good lower bound for $R_{9}(\mathbf{Q})$, this would get us closer to the expected vanishing of $C^{(p-5)}$.
Notice that, using knowledge on $K_{4}(\mathbf{Z})$, Kurihara has proved that $C^{(p-3)}=0$.

References

[1] A. Ash, Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones, Math. Ann. 225, no. 1, 6976 (1977).
[2] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87. Springer-Verlag, New York-Berlin, 1982. x+306 pp.
[3] A.Huber, G.Kings, Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, preprint (2001).
[4] M.I. Icaza, Hermite constant and extreme forms for algebraic number fields, J. London Math. Soc. (2) 55, no. 1, 11-22 (1997).
[5] M. Kolster, T. Nguyen Quang Do, V. Fleckinger, Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures, Duke Math. J. (3) 84, 679-717 (1996).
[6] M. Kolster, T. Nguyen Quang Do, V. Fleckinger, Correction to "Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures", Duke Math. J. (3) 90, 641-643 (1997)
[7] S. Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont. 1970 xi+354 pp.
[8] H.W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. AMS 26, no. 2, 211-244 (1992).
[9] J. Milnor, Introduction to algebraic K-theory, Annals of Mathematics Studies, No. 72. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. xiii+184 pp.
[10] J. Milnor and D. Husemoller: Symmetric bilinear forms, Ergebnisse 73, 1973, Springer-Verlag.
[11] W. Narkiewicz, Number theory, Translated from the Polish by S. Kanemitsu. World Scientific Publishing Co., Singapore; distributed by Heyden \& Son, Inc., Philadelphia, PA, 1983. xii+371 pp.
[12] C. Soulé, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55, no. 3, 251-295 (1979).
[13] C. Soulé, Perfect forms and the Vandiver conjecture, J. Reine Angew. Math. 517, 209-221 (1999).
[14] P.Voutier, An effective bound for the height of algebraic numbers, Acta Arith. (1) 74, 81-95 (1996).

Christophe Soulé
CNRS and IHES
35 route de Chartres
91440 Bures-sur-Yvette
France
soule@ihes.fr

