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§0. Introduction.
Let f : X → S be a morphism between schemes X and S. We refer to an
S-morphism σ : S′ → X from an S-scheme S′ to X as a quasi-section of f , if
the structure morphism π : S′ → S is surjective. Moreover, for each property
P of morphisms of schemes, we say that σ is a P quasi-section, if π is P. In this
terminology, Rumely’s theorem, which generalized Skolem’s classical problems
and was augmented by the work of Moret-Bailly, can be stated as follows:

Theorem ([Ru1], [Mo2]). Let S be a non-empty, affine, open subscheme of
either the spectrum of the integer ring of an algebraic number field K or a
proper, smooth, geometrically connected curve over a finite field with function
field K. Let X be a scheme and f : X → S a morphism of schemes, such

that X is irreducible, that XK
def
= X ×S Spec(K) is geometrically irreducible

over K, and that f is of finite type and surjective. Then, f admits a finite
quasi-section.

On the other hand, the following is a well-known fact in algebraic geometry:
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Theorem ([EGA4], Corollaire (17.16.3)(ii)). Let f : X → S be a morphism of
schemes (with S arbitrary) which is smooth and surjective. Then, f admits an
étale quasi-section.

In the present paper, we prove, among other things, the following theorem
in positive characteristic, which is a sort of mixture of the above two theorems:

Theorem (0.1). (See (3.1).) Let S be a non-empty, affine, open subscheme of
a proper, smooth, geometrically connected curve over a finite field with function
field K. Let X be a scheme and f : X → S a morphism of schemes, such that
XK is geometrically irreducible over K, and that f is smooth and surjective.
Then, f admits a finite étale quasi-section.

Here, we would like to note that the validity of this theorem is typical of positive
characteristic. For example, it is easy to observe that P1

Z−{0, 1,∞} → Spec(Z)
does not admit a finite étale quasi-section.

In the work of Rumely and Moret-Bailly, they also proved certain refined
versions of the above theorem, which involve local conditions at a finite number
of primes. To state these refined versions, let S and K be as in the theorem of
Rumely and Moret-Bailly. Thus, K is either an algebraic number field or an
algebraic function field of one variable over a finite field. We denote by ΣK the
set of primes of K, and we denote by ΣS the set of closed points of S, which
may be regarded as a subset of ΣK . Moreover, let Σ be a (an automatically
finite) subset of ΣK − ΣS , which is not the whole of ΣK − ΣS . (This last
assumption is referred to as incompleteness hypothesis.) For each v ∈ Σ, let
Kv denote the v-adic completion of K, and assume that a normal algebraic
extension Lv/Kv (possibly of infinite degree) is given. Let X and f : X → S
be as in the theorem of Rumely and Moret-Bailly, and assume that, for each
v ∈ Σ, a non-empty, v-adically open, Gal(Ksep

v /Kv)-stable subset Ωv of X(Lv)
is given.

Theorem ([Ru1], [Mo3]). Notations and assumptions being as above, assume,
moreover, either Lv = Kv ([Ru1]) or Lv is Galois over Kv ([Mo3]). Then,
there exists a finite quasi-section S′ → X of f : X → S, such that, for each

v ∈ Σ, S′
Lv

def
= S′ ×S Spec(Lv) is a direct sum of (a finite number of) copies of

Spec(Lv), and the image of S′
Lv

in X(Lv) = XLv
(Lv) is contained in Ωv.

Remark (0.2). In fact, Moret-Bailly’s version implies Rumely’s version. See
[Mo3], Remarque 1.6 for this. Indeed, Moret-Bailly’s version implies more,
namely, that it suffices to assume that Lv is a normal algebraic extension of
Kv such that Lv ∩ Ksep

v is (v-adically) dense in Lv. (See the proof of [Mo3],
Lemme 1.6.1, case (b).)

Remark (0.3). Here is a brief summary of the history (in the modern termi-
nology) of Skolem’s problems and its generalizations. Skolem [S] proved the
existence of finite quasi-sections for rational varieties. Cantor and Roquette
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[CR] proved it for unirational varieties. (A similar result was slightly later ob-
tained in [EG].) Then, Rumely [Ru1] gave the first proof for arbitrary varieties
(in the case of rings of algebraic integers). (See also [Ro].) Moret-Bailly (and
Szpiro) [Mo2,3] gave an alternative proof of Rumely’s result in stronger forms.
(Another alternative proof was later given in [GPR].) Moret-Bailly also proved
the existence of finite quasi-sections for algebraic stacks ([Mo5]).

We also prove the following refined version in the unramified setting. Unfor-
tunately, in the unramified setting, our version for the present is weaker than
Moret-Bailly’s version (though it is stronger than Rumely’s version). To state
this, let S and K be as in (0.1). Thus, K is an algebraic function field of
one variable over a finite field. We denote by ΣK the set of primes of K, and
we denote by ΣS the set of closed points of S. Moreover, let Σ be a subset of
ΣK−ΣS , which is not the whole of ΣK−ΣS . For each v ∈ Σ, let Kv denote the
v-adic completion of K, and assume that a normal algebraic extension Lv/Kv

is given. Let f : X → S be as in (0.1), and assume that, for each v ∈ Σ, a
non-empty, v-adically open, Gal(Ksep

v /Kv)-stable subset Ωv of X(Lv) is given.

Theorem (0.4). (See (3.1).) Notations and assumptions being as above, as-
sume, moreover, that, for each v ∈ Σ, Lv ∩Ksep

v is dense in Lv, and that the
residue field of Lv is infinite. Then, there exists a finite étale quasi-section
S′ → X of f : X → S, such that, for each v ∈ Σ, S′

Lv
is a direct sum of copies

of Spec(Lv), and the image of S′
Lv

in X(Lv) = XLv
(Lv) is contained in Ωv.

Roughly speaking, the proof of (0.4) goes as follows. Via some reduction
steps, we may assume that X is quasi-projective over S. Then, by means of a
version of arithmetic Bertini theorem, we take hyperplane sections successively
to obtain a suitable quasi-section finally. More precisely, we use the following
unramified version of arithmetic Bertini theorem, which is another main result
of the present paper:

Theorem (0.5). (See (3.2).) Let S, Σ, Lv be as in (0.4). Moreover, let
Y1, . . . , Yr be irreducible, reduced, closed subschemes of Pn

S. For each v ∈ Σ,

let Ω̌v be a non-empty, v-adically open, Gal(Ksep
v /Kv)-stable subset of P̌n

S(Lv).
Then, there exist a connected, finite, étale covering S′ → S such that, for each
v ∈ Σ, S′

Lv
is a direct sum of copies of Spec(Lv), and a hyperplane H ⊂ P

n
S′ ,

such that the following hold: (a) for each i = 1, . . . , r, each geometric point s
of S′ and each irreducible component P of Yi,s, we have P ∩Hs ( P ; (b) for
each i = 1, . . . , r, the scheme-theoretic intersection (Y sm

i )S′ ∩ H (in P
n
S′) is

smooth over S′ (Here, Y sm
i denotes the set of points of Yi at which Yi → S is

smooth. This is an open subset of Yi, and we regard it as an open subscheme of
Yi.); (c) for each i = 1, . . . , r and each irreducible component P of Yi,K (where

we identify the algebraic closure of the function field of S′ with that of S) with
dim(P ) ≥ 2, P ∩HK is irreducible; and (d) for each v ∈ Σ, the image of S′

Lv

in P̌
n(Lv) by the base change to Lv of the classifying morphism [H] : S′ → P̌

n
S

over S is contained in Ω̌v.
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There remain, however, the following non-trivial problems. Firstly, a
Bertini-type theorem is, after all, to find a (quasi-)section in an open subset of
the (dual) projective space, which requires a Rumely-type theorem. Secondly,
in the (most essential) case where X is of relative dimension 1 over S, the
boundary of X (i.e., the closure of X minus X in the projective space) may
admit vertical irreducible components (of dimension 1). Since a hyperplane
intersects non-trivially with every positive-dimensional irreducible component,
the hyperplane section does not yield a finite quasi-section of X (but merely
of the closure of X).

To overcome the first problem, we have to prove a Rumely-type theorem for
projective n-spaces directly. It is not difficult to reduce this problem to the
case n = 1. First, we shall explain the proof of this last case assuming Σ = ∅.
So, we have to construct a finite, étale quasi-section in an open subscheme
X of P

1
S . Moreover, for simplicity, we assume that X is a complement of

the zero locus W of w(T ) ∈ R[T ] in A
1
S = Spec(R[T ]), where R

def
= Γ(S,OS).

(Since X is assumed to be surjectively mapped onto S, w(T ) is primitive.) The
original theorem of Rumely and Moret-Bailly, together with some arguments
from Moret-Bailly’s proof, implies that there exists a monic polynomial g(T ) ∈
R[T ] of positive degree, such that the zero locus of g in A

1
S is contained in

X. Now, if the zero locus of g is étale over S, we are done. In general,
we shall consider the following polynomial: F (T ) = g(T )pm + w(T )pT for
sufficiently large m > 0. Then, F (T ) is a monic polynomial in R[T ], and
its zero locus S′ gives a closed subscheme of A1

S which is finite, flat over S.
Since g(T ) (resp. w(T )) is a unit (resp. zero) on W , F (T ) is a unit on W ,
or, equivalently, S′ is contained in X. Moreover, since F ′(T ) = w(T )p, the
zero locus of F ′ coincides with W , hence is disjoint from the zero locus S′ of F .
This means that S′ is étale over S, as desired. (This argument is inspired by an
argument of Gabber in [G].) Next, assume Σ 6= ∅. Then, to find a finite, étale
quasi-section with prescribed local conditions at Σ, we need to investigate local
behaviors of roots of polynomials like the above F . Since it is easy to reduce
the problem to the case where the above w is v-adically close to 1 (by means
of a coordinate change), we see that it is essential to consider local behaviors
of roots of polynomials in the form of

a1T +

m∑

i=0

aipT
ip

with a1 6= 0. (In the present paper, we refer to a polynomial in this form as a
superseparable polynomial.) As a result of this investigation, we see that we
can take the above F so that, for each v ∈ Σ, every root of F is contained in
the given Ωv. Also, in this investigation, the (hopefully temporary) condition
that the residue field of Lv is infinite for each v ∈ Σ arises.

To overcome the second problem, we take a finite, flat quasi-section with lo-
cal conditions by means of Moret-Bailly’s version of Rumely’s theorem. Then,
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by using this (horizontal) divisor, we construct a (new) quasi-projective em-
bedding of X. Now, in this projective space, we can construct a finite, étale
quasi-section of X as a hyperplane section.

Here is one more ingredient of our proof that we have not yet mentioned:

Theorem (0.6). (See (2.1) and (2.2).) Let S and Σ be as in (0.4). Assume,
moreover, that, for each v ∈ Σ, a finite Galois extension Lv/Kv is given.
Then, there exists a connected, finite, étale, Galois covering S′ → S, such that,
for each v ∈ Σ, S′ ×S Spec(Kv) is isomorphic to a disjoint sum of copies of
Spec(Lv) over Kv.

We use this result in some reduction steps. See §3 for more details.

The author’s original motivation to prove results like (0.1) arises from the
study of coverings of curves in positive characteristic. For example, in the
forthcoming paper, we shall prove the following result as an application of
(0.1):

Theorem (0.7). For each pair of affine, smooth, connected curves X,Y over
Fp, there exists an affine, smooth, connected curve Z over Fp that admits finite,

étale morphisms Z → X and Z → Y over Fp.

In other words, there exists an Fp-scheme H, such that, for every affine,

smooth, connected curve X over Fp, the ‘pro-finite-étale universal covering’ X̃

of X is isomorphic to H over Fp.

For other applications of the above main results, see §4.

Finally, we shall explain the content of each § briefly. In §1, we investigate
the above-mentioned class of polynomials in positive characteristic, namely,
superseparable polynomials. The aim here is to control how a superseparable
polynomial over a complete discrete valuation field in positive characteristic
decomposes. Here, (1.18) is a final result, on which the arguments in §2 and
§3 are based. In §2, we prove the existence of unramified extensions with
prescribed local extensions, such as (0.6) above. The main results are (2.1)
and (2.2). In the former, we treat an arbitrary Dedekind domain in positive
characteristic, while, in the latter, we only treat a curve over a field of positive
characteristic but we can impose (weaker) conditions on all the primes of the
function field. The proofs of both results rely on the results of §1. In §3, we
prove the main results of the present paper, namely, an unramified version of
the theorem of Rumely and Moret-Bailly in positive characteristic (3.1), and an
unramified version of the arithmetic Bertini theorem in positive characteristic
(3.2). In §4, we give several remarks and applications of the main results.
Some of these applications are essentially new features that only arise after our
unramified versions.

Acknowledgment. Professor Kazuya Kato was the advisor of the author’s mas-
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§1. Superseparable polynomials.
Throughout this §, we let K denote a field.

Definition. Let f(T ) be a polynomial in K[T ]. We say that f is supersepa-
rable, if the derivative f ′(T ) of f(T ) falls in K[T ]× = K×.

Lemma (1.1). For each f(T ) ∈ K[T ], the following (a)–(c) are equivalent.
(a) f is superseparable.
(b) The K-morphism A

1
K → A

1
K associated to f is étale everywhere.

(c) f is in the form of

f(T ) =







a1T + a0, if char(K) = 0,

a1T +
m∑

i=0

aipT
ip, if char(K) = p > 0,

where aj ∈ K and a1 6= 0.

Proof. Immediate. �

Remark (1.2). f is separable (i.e., (f, f ′) = 1) if and only if the associated

K-morphism from A
1
upper,K

def
= A

1
K to A

1
lower,K

def
= A

1
K is étale at 0 ∈ A

1
lower,K .

From now on, let p denote a prime number, and we assume that K is of char-
acteristic p and is equipped with a complete discrete valuation v, normalized as
v(K×) = Z. We denote by R, m, k, and t the valuation ring of v, the maximal
ideal of R, the residue field R/m, and a prime element of R, respectively. We
fix an algebraic closure K of K, and we denote again by v the unique valuation
K → Q ∪ {∞} that extends v. Moreover, for each subfield L of K containing
K, we denote by RL, mL, and kL the integral closure of R in L, the maximal
ideal of RL, and the residue field RL/mL, respectively.

Now, consider a superseparable polynomial

(1.3) f(T ) = aT + h(T p),

where a ∈ K×, h ∈ K[T ], and we put m
def
= deg(h). (We put m = 0 if h = 0.)

The aim of this § is to describe how f decomposes and what is the Galois group
associated with f .

Definition. (i) We say that a polynomial g in K[T ] is integral, if all the
coefficients of g belong to RK .
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(ii) Let g be a non-zero polynomial in K[T ]. We denote by roots(g) the set of
roots of g in K. This is a finite subset of K.
(iii) Let g be a separable polynomial in K[T ]. Then, we denote by Kg the

minimal splitting field of g in K, i.e., the subfield of K generated by roots(g)

over K. This is a Galois extension of K, and we put Gg
def
= Gal(Kg/K).

(iii) Let g be a polynomial in K[T ], and α an element of roots(g). Then, we
put

µ(g, α)
def
= max{v(α′ − α) | α′ ∈ roots(g)− {α}}.

Here, we put max ∅ def
= −∞.

The following is a version of Krasner’s lemma.

Lemma (1.4). Let f be a monic, integral, superseparable polynomial in K[T ]
as in (1.3).
(i) For each α ∈ roots(f), we have µ(f, α) ≤ 1

p−1v(a).

(ii) Let ǫ(T ) =

mp
∑

j=0

ǫjT
j be a polynomial in K[T ] (with degree ≤ mp), such that

v(ǫj) >
p

p−1v(a) holds for all j = 0, . . . ,mp. We put f1
def
= f + ǫ. Then, f1 is

separable and we have Kf1 = Kf .

Proof. (i) Observe the Newton polygon of f(T + α) (which is also a monic,
integral, superseparable polynomial).
(ii) For each α ∈ roots(f), put gα(T ) = f1(T + α), which is an integral poly-
nomial in K[T ]. Then, we have roots(gα) = {β − α | β ∈ roots(f1)}. We have
gα(0) = f1(α) = ǫ(α) and g′α(0) = f ′

1(α) = a+ ǫ′(α), hence v(gα(0)) >
p

p−1v(a)

and v(g′α(0)) = v(a). Thus, by observing the Newton polygon of gα, we see that
there exists a unique β = βα ∈ roots(f1), such that v(β − α) > 1

p−1v(a). The

map roots(f) → roots(f1), α 7→ βα is clearly Gal(Ksep/K)-equivariant. More-
over, this map is injective, since, for each pair α, α′ ∈ roots(f) with α 6= α′,
we have v(α − α′) ≤ 1

p−1v(a) by (i). As ♯(roots(f)) = mp ≥ ♯(roots(f1)), this

map must be a bijection. Thus, we obtain a Gal(Ksep/K)-equivariant bijection

roots(f)
∼→ roots(f1), so that f1 is separable and Kf = Kf1 , as desired. �

Definition. Let m and n be natural numbers.

(i) We put In
def
= {1, . . . , n}.

(ii) We denote by Sn the symmetric group on the finite set In. Moreover,
identifying In with Z/nZ naturally, we define

Bn
def
= {σ ∈ Sn | ∃a ∈ (Z/nZ)×, ∃b ∈ Z/nZ, ∀i ∈ Z/nZ, σ(i) = ai+ b}

and

Cn
def
= {σ ∈ Sn | ∃b ∈ Z/nZ, ∀i ∈ Z/nZ, σ(i) = i+ b}.

Thus, Sn ⊃ Bn ⊲ Cn, and Bn (resp. Cn) can be naturally identified with the
semi-direct product (Z/nZ)× ⋉ (Z/nZ) (resp. the cyclic group Z/nZ).
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(ii) We denote by Sm×n the symmetric group on the finite set Im × In. (Thus,
Sm×n ≃ Smn.) Let pr1 denote the first projection Im × In → Im. We define

Sm⋉n
def
= {σ ∈ Sm×n | ∃σ ∈ Sm, ∀(i, j) ∈ Im × In, pr1(σ((i, j))) = σ(i)}.

Thus, Sm⋉n can be naturally identified with the semi-direct product Sm ⋉
(Sn)

Im . Here, for a group G and a positive integer r, GIr denotes the di-
rect product G× · · · ×G

︸ ︷︷ ︸

r times

. We adopt this slightly unusual notation to save the

notation Gr for {gr | g ∈ G} (for a commutative group G).

The following proposition is a mere exercise in Galois theory over local fields
in positive characteristic, but it is the starting point of our proofs of main results
in later §§.
Proposition (1.5). Let f be a superseparable polynomial as in (1.3) with m ≥
1. Moreover, we assume that (a) h is separable, and (b) we have δ(a, h, α) >
µ(h, α) for all α ∈ roots(h), where

δ(a, h, α)
def
= min

(

v(a)− v(h′(α)) +
1

p
v(α),

p

p− 1
(v(a)− v(h′(α)))

)

.

Then, by choosing a suitable bijection between roots(f) and Im × Ip:
(i) The Galois group Gf can be identified with a subgroup of Sm⋉p (⊂ Sm×p).
(ii) Gf ∩ (Sp)

Im ⊂ (Bp)
Im .

(iii) The group filtration

{1} ⊂ Gf ∩ (Cp)
Im ⊂ Gf ∩ (Sp)

Im ⊂ Gf

corresponds via Galois theory to the field filtration

Kf ⊃ Mf ⊃ Kh ⊃ K,

where Mf is the subfield of K generated by {(−a/h′(α))
1

p−1 | α ∈ roots(h)}
over Kh.

Proof. (i) First, we shall prove the following:

Claim (1.6). (i) For each α ∈ roots(h), put

Fα
def
= {β ∈ roots(f) | v(βp − α) ≥ δ(a, h, α)}.

Then, Fα has cardinality p for each α ∈ roots(h).
(ii) For each β ∈ roots(f), there exists a unique α = αβ ∈ roots(h), such that
Fα ∋ β.

Proof. (i) Observe the Newton polygon of f(T+α1/p) = h(T p+α)+aT+aα1/p

by using δ(a, h, α) > µ(h, α). Then, we see that Fα has cardinality p, as
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desired (and that the subset {β ∈ roots(f) | v(βp − α) = δ(a, h, α)} of Fα has
cardinality ≥ p− 1).
(ii) First, we shall prove the uniqueness. Suppose that there exist α1, α2 ∈
roots(h), α1 6= α2, such that v(βp − αi) ≥ δ(a, h, αi) holds for i = 1, 2. Then,
we have

v(α1 − α2) = v((βp − α2)− (βp − α1)) ≥ min(δ(a, h, α1), δ(a, h, α2)),

while, by assumption, we have

min(δ(a, h, α1), δ(a, h, α2)) > min(µ(h, α1), µ(h, α2)) ≥ v(α1 − α2).

This is absurd.
By this uniqueness and (i), we have

♯(
⋃

α∈roots(h)

Fα) =
∑

α∈roots(h)

♯(Fα) = mp = ♯(roots(f)),

hence
⋃

α∈roots(h)

Fα = roots(f). This implies the existence of α = αβ for each

β ∈ roots(f). �

By (1.6)(ii), we obtain a well-defined map π : roots(f) → roots(h), β 7→ αβ .
By (1.6)(i), π is surjective and each fiber of π has cardinality p. Since π is
Gal(Ksep/K)-equivariant by definition, this implies (1.5)(i). (We may choose
any bijections roots(h) ≃ Im and Fα ≃ Ip (α ∈ roots(h)).)

Note that this construction already shows that the field extension of K
corresponding to the subgroup Gf ∩ (Sp)

Im = Ker(Gf → Sm) coincides with
Kh.

(ii) We shall start with the following. From now on, for each x, x′ ∈ K
×
, we

write x ∼ x′ if x′/x ∈ 1 +mK , or, equivalently, v(x′ − x) > v(x).

Claim (1.7). (i) Let α, α′ ∈ roots(h) and β ∈ Fα. Assume α 6= α′. Then, we
have βp − α′ ∼ α− α′. In particular, we have v(βp − α′) = v(α− α′).
(ii) Let α, α′ ∈ roots(h), β ∈ Fα, and β′ ∈ Fα′ . Assume β 6= β′. Then, we have

v((β′)p − βp) =

{
v(α′ − α) (≤ µ(h, α)), if α 6= α′,
p

p−1 (v(a)− v(h′(α))) (≥ δ(a, h, α)), if α = α′.

Proof. (i) v((βp−α′)−(α−α′)) = v(βp−α) ≥ δ(a, h, α) > µ(h, α) ≥ v(α−α′).
(ii) If α 6= α′, we have v((β′)p − βp) = v(((β′)p −α′)− (βp −α′)) = v(βp −α′),
since v((β′)p−α′) > v(βp−α′) by the definition of Fα′ . (Recall that Fα∩Fα′ = ∅
holds by (1.6)(ii).) Thus, in this case, v((β′)p − βp) = v(α′ − α) holds by (i).

By using this and (i), observe the Newton polygon of f(T + β) = h(T p +
βp)+ aT + aβ and compare it with the Newton polygon of f(T +α1/p). Then,
we can read off the value v(β′ − β) for α = α′. �
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For each α ∈ roots(h), the subgroup Gal(Kf/K(α)) of Gf acts on Fα. In
order to prove (1.5)(ii), it suffices to prove that the image Gal(K(α)(Fα)/K(α))
of this action is contained in Bp (⊂ Sp), after choosing a suitable bijection
Fα ≃ Ip.

Claim (1.8). Let α ∈ roots(h) and β ∈ Fα.
(i) We have K(α)(Fα) = K(α)(β)((−a/h′(α))1/(p−1)).
(ii) Let β′ ∈ Fα, β′ 6= β. Then, we have (β′ − β)p−1 ∼ −a/h′(α). More
precisely, we have

{(β′ − β)mod ∼| β′ ∈ Fα, β
′ 6= β} = {ζ(−a/h′(α))

1
p−1 mod ∼| ζ ∈ F×

p }.

Proof. As in the proof of (1.7)(ii), observe the Newton polygon of f(T + β) =
h(T p + βp) + aT + aβ. Then, observing the coefficients of T 0, T 1, . . . , T p,
we see that K(α)(Fα) = K(α)(β)((−a/h′(βp))1/(p−1)). Now, by (1.7)(i),
we obtain h′(βp) ∼ h′(α), which implies K(α)(β)((−a/h′(βp))1/(p−1)) =
K(α)(β)((−a/h′(α))1/(p−1)). These complete the proof of (i), and also show
(ii). �

Lemma (1.9). Let G be a subgroup of Sp, and, for each i = 1, . . . , p, we denote
by Gi the stabilizer of i in G. Moreover, let φ : G → F×

p be a homomorphism,

such that, for each i = 1, . . . , p, there exists an identification σi : Ip−{i} ∼→F×
p ,

such that σigiσ
−1
i coincides with the φ(gi)-multiplication map on F×

p for each
gi ∈ Gi. Then, we have G ⊂ Bp via a suitable identification Ip ≃ Fp.

Proof. Put N
def
= Ker(φ). Then, N is a normal subgroup of G. By using the

identity φ(gi)· = σigiσ
−1
i , we see that N∩Gi = {1} for all i = 1, . . . , p. Namely,

the action of N on Ip is free. Since ♯(Ip) = p is a prime number, this implies
that either N = {1} or N = Cp (via some identification Ip ≃ Fp). In the latter
case, we obtain G ⊂ Bp, since the normalizer of Cp in Sp coincides with Bp.
So, assume N = {1}. Then, G = G/N is abelian with ♯(G) | p− 1.

Let X be any G-orbit of Ip. Suppose that X is not a one-point set. Then,
there exist i, j ∈ X, i 6= j. Since G is abelian, this implies Gi = Gj . On the

other hand, by the identity φ(gi)· = σigiσ
−1
i , we see that Gi∩Gj = {1}. Thus,

we must have Gi(= Gj) = {1}.
By this consideration, we conclude that Ip is isomorphic as a G-set to a

disjoint union of copies of G and copies of G/G. If a copy of G/G appears,
then this means G = Gi for some i = 1, . . . , p, and, by using the unique
extension of σi to Ip

∼→Fp, we obtain G ⊂ F×
p ⊂ Bp.

On the other hand, if no copy of G/G appears, we must have ♯(G) | p.
As ♯(G) | p − 1 also holds, we conclude G = {1} ⊂ Bp. This completes the
proof. �

By (1.8), we may apply (1.9) to G = Gal(K(α)(Fα)/K(α)) and the Kummer
character φ : G → F×

p defined by (−a/h′(α))1/(p−1), and conclude G ⊂ Bp, as
desired.
(iii) This has been already done in the proofs of (i) and (ii). �
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Corollary (1.10). Let m be an integer ≥ 1. Let R = Runiv be the
completion of the discrete valuation ring Fp[s0, sp, s2p, . . . , s(m−1)p, s1](s1)
(where si’s are algebraically independent indeterminates), i.e., R =
Fp(s0, sp, . . . , s(m−1)p)[[s1]], and K = Kuniv the field of fractions of R.
Consider a superseparable polynomial f(T ) as in (1.3), where a = s1 and

h(T ) =

m∑

i=0

sipT
i (smp

def
= 1). Then:

(i) By choosing a suitable bijection between roots(f) and Im × Ip, the Galois
group Gf can be identified with an extension group of Sm by a subgroup B of
(Bp)

Im . Here, B is an extension of a subgroup E of (Bp)
Im/(Cp)

Im = (F×
p )

Im

by (Cp)
Im , where E = (F×

2 )
Im = {1} if p = 2,

E =







Ker((F×
p )

I2 ։ (F×
p /{±1})I2/∆(F×

p /{±1})), m = 2,

Ker((F×
p )

Im ։ F×
p /(F

×
p )

2), m ≡ 0 (mod 2), m 6= 2,

(F×
p )

Im , m 6≡ 0 (mod 2),

if p ≡ 1 (mod 4), and

E =







Ker((F×
p )

I2 ։ (F×
p /{±1})I2/∆(F×

p /{±1})), m = 2,

Ker((F×
p )

Im ։ F×
p /(F

×
p )

2), m ≡ 0 (mod 4),

(F×
p )

Im , m 6≡ 0 (mod 4), m 6= 2,

if p ≡ 3 (mod 4). Here, for a commutative group G and a positive integer r,
we define subgroups ∆(G) and (GIr )0 of GIr by ∆(G) = {(g, . . . , g) ∈ GIr |
g ∈ G} and (GIr )0 = Ker(GIr → G, (g1, . . . , gr) 7→ g1 · · · gr), respectively,
and, in the case where either p ≡ 1 (mod 4), m ≡ 0 (mod 2), m 6= 2 or
p ≡ 3 (mod 4), m ≡ 0 (mod 4) holds, the surjective homomorphism (F×

p )
Im ։

F×
p /(F

×
p )

2 is the composite of (F×
p )

Im ։ (F×
p /(F

×
p )

2)Im and (F×
p /(F

×
p )

2)Im ։

(F×
p /(F

×
p )

2)Im/((F×
p /(F

×
p )

2)Im)0 = F×
p /(F

×
p )

2. Moreover, the inertia subgroup

of Gf corresponds to ∆(F×
p )⋉ (Fp)

Im .

(ii) kKf
is generated by {(α mod mKf

)1/p | α ∈ roots(h)} ∪
{(h′(α)/h′(α′))

1
p−1 mod mKf

| α, α′ ∈ roots(h)} over k. Moreover, the
algebraic closure F of Fp in kKf

coincides with F2 if p = 2,

F =

{
Fp2 , m = 2,

Fp, m 6= 2,

if p ≡ 1 (mod 4), and

F =

{
Fp2 , m ≡ 2 (mod 4),

Fp, m 6≡ 2 (mod 4),

if p ≡ 3 (mod 4).
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Proof. (i) In order to apply (1.5), we have to check that conditions (a) and
(b) of (1.5) hold. It is easy to see that (a) holds. Next, since Kh =
Fp(α1, . . . , αm)((s1)), where roots(h) = {α1, . . . , αm}, we have µ(h, α) = 0
for each α ∈ roots(h), while δ(a, h, α) = v(s1) = 1. Thus (b) holds, and we
may apply (1.5).

It is easy to see that Kh/K is an unramified Sm-extension. Next we have
Mf = Kh((−s1/h

′(α1))
1/(p−1), . . . , (−s1/h

′(αm))1/(p−1)). Since −1/h′(αi) is
a unit of RKh

and s1 is a prime element of RKh
, the inertia subgroup of

Gal(Mf/Kh) corresponds to ∆(F×
p ), and the maximal unramified subexten-

sion M0,f/Kh in Mf/Kh is Kh((h
′(αi)/h

′(αj))
1/(p−1) | i, j = 1, . . . ,m) =

Kh((h
′(αi)/h

′(α1))
1/(p−1) | i = 2, . . . ,m).

Now, observing the subgroup of K×
h /(K×

h )p−1 generated by the classes of
−a/h′(α) (α ∈ roots) by using the divisor group of (the spectrum of) the
polynomial ring Fp[α1, . . . , αm] over Fp, we obtain the desired description of
E. (We leave the details to the readers.)

Finally, by (1.6)(i), kKf
contains {(α mod mKf

)1/p | α ∈ roots(h)}. Since
kKh

is a purely transcendental extension of Fp generated by α mod mKf
and

kMf
is separable over kKh

, the inseparable degree of the extension kKf
/kMf

is
at least pm. Thus, the ramification index of the extension Kf/Mf is at least
pm. Therefore, Kf/Mf must be totally ramified with degree pm and the Galois
group Gal(Kf/Mf ) must coincide with the whole of (Cp)

Im .
These complete the proof of (i).

(ii) The above proof shows that kKh
= k(α mod mKh

| α ∈ roots(h)), and that
kKf

contains the field k′Kf
generated by {(α mod mKf

)1/p | α ∈ roots(h)} ∪
{(h′(α)/h′(α′))

1
p−1 mod mKf

| α, α′ ∈ roots(h)} over kKh
(or, equivalently,

over k, as α = (α1/p)p). Moreover, we can check [kKf
: kKh

] = [k′Kf
: kKh

],

which implies kKf
= k′Kf

, as desired.

Finally, kKh
is a purely transcendental extension of Fp generated by

{α mod mKh
| α ∈ roots(h)}. Moreover, observing the subgroup of

(KhFp)
×/((KhFp)

×)p−1 generated by the classes of −a/h′(α) (α ∈ roots(h)) by

using the divisor group of (the spectrum of) the polynomial ring Fp[α1, . . . , αm]

over Fp, and comparing the result with the above description of the subgroup
of K×

h /(K×
h )p−1 generated by the classes of −a/h′(α) (α ∈ roots(h)), we see

that the algebraic closure of Fp in kKh
is as described in the assertion. Since

kKf
/kMf

is purely inseparable, this completes the proof. �

So far, we have only investigated superseparable polynomials over complete
discrete valuation fields. Here, we shall introduce the following global situation
and study superseparable polynomials in a moduli-theoretic fashion. We put

Amp
upper

def
= Spec(Fp[t1, . . . , tmp]) ≃ A

mp
Fp

and

Amp
lower

def
= Spec(Fp[s0, . . . , smp−1]) ≃ A

mp
Fp

.
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Moreover, consider the morphism E : Amp
upper → Amp

lower, defined by

mp
∏

i=1

(T − ti) =

mp
∑

i=0

siT
i,

where smp
def
= 1. Namely, for i = 0, . . . ,mp − 1, si is (−1)mp−i times the

(mp − i)-th elementary symmetric polynomial in t1, . . . , tmp. It is well-known
that E is finite flat of degree (mp)!, and that, if we delete the discriminant
locus Dlower from Amp

lower and the union Dupper of weak diagonals from Amp
upper,

E gives a finite, étale, Galois covering with Galois group Smp.

Let Am+1
lower be the closed subscheme of Amp

lower defined by si = 0 for all i with

p ∤ i and i 6= 1. We define a divisor Am
lower of Am+1

lower by s1 = 0. Observe
that Am

lower coincides with the non-étale locus of E|Am+1

lower

, and that we have

Am
lower = Am+1

lower ∩ Dlower set-theoretically. We also have Am+1
lower ≃ A

m+1
Fp

and

Am
lower ≃ A

m
Fp

naturally.

Now, we have the following diagram:

Amp
upper −Dupper

E→ Amp
lower −Dlower

↑ c.i. � ↑ c.i.

Um → Am+1
lower −Am

lower

where � means a fiber product diagram,
c.i.→ means a closed immersion, and

Um
def
= Amp

upper ×Amp

lower
(Am+1

lower −Am
lower).

We shall apply this moduli-theoretic situation to the study of supersepa-
rable polynomials over a (an arbitrary) complete discrete valuation field K
of characteristic p > 0. From now, for each finite subset S of K, we put

φS(T )
def
=
∏

α∈S

(T − α).

Proposition (1.11). Let m be an integer ≥ 1. Assume that there exists a
finite subset S of K with cardinality m, such that φS satisfies

(1.12) φ′
S(γ)/φ

′
S(γ

′) ∈ (K×)p−1 for all γ, γ′ ∈ S.

Then, there exists a monic, superseparable polynomial f(T ) ∈ K[T ] with
deg(f) = mp, such that f is completely splittable in K.

Proof. We consider the above moduli-theoretic situation E : Amp
upper → Amp

lower

and Am
lower

c.i.→ Am+1
lower

c.i.→ Amp
lower. We have to show that U

def
= Um admits a K-

rational point. Recall that E induces a finite, étale (not necessarily connected)
Smp-Galois covering U → Am+1

lower−Am
lower. However, first we need to investigate

the non-étale loci of E.
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We put Am
upper

def
= Spec(Fp[u1, . . . , um]) ≃ A

m
Fp
, and define a morphism D :

Am
upper → Amp

upper by

(u1, . . . , um) 7→ (u1, . . . , u1
︸ ︷︷ ︸

p times

, . . . , um, . . . , um
︸ ︷︷ ︸

p times

),

which is clearly a closed immersion. It is easy to see that E◦D : Am
upper → Amp

lower

factors through Am
lower

c.i.→ Amp
lower. More explicitly, E ◦ D induces a morphism

Am
upper → Am

lower, (u1, . . . , um) 7→ ((v1)
p, . . . , (vm)p), where vi is (−1)m−i times

the (m− i)-th elementary symmetric polynomial in u1, . . . , um.
Now, we obtain the following diagram:

Amp
upper

E→ Amp
lower

↑ c.i. � ↑ c.i.

X̃ → X → Am+1
lower

↑ c.i. � ↑ c.i. � ↑ c.i.

Z ′ → Z → Am
lower

↑ c.i. ↑ c.i.

W̃ → W → Am
upper.

Here, X
def
= Amp

upper ×Amp

lower
Am+1

lower, X̃ denotes the normalization of X in U ,

Z
def
= X ×Am+1

lower

Am
lower, Z

′ def
= X̃ ×X Z, W denotes an irreducible component of

X̃×XAm
upper (regarded as a reduced closed subscheme of X̃) that is surjectively

mapped onto Am
upper, and W̃ is the normalization of the integral scheme W .

Now, we are in the situation of (1.10). More explicitly, in the notation of
(1.10), Kuniv is just the field of fractions of the completed local ring of Am+1

lower

at the generic point of Am
lower, kKuniv = Fp(A

m
lower), and kKuniv

f
= Fp(W ). More-

over, we see that Fp(A
m
upper) = Kuniv

h ((α1)
1/p, . . . , (αm)1/p). Thus, (1.10)(ii)

implies that Fp(W ) is generated by {(h′(α)/h′(α′))1/(p−1) | α, α′ ∈ roots(h)}
over Fp(A

m
upper). Note that ui = α

1/p
i holds for each i = 1, . . . ,m. So, if we put

S
def
= {u1, . . . , um}, we have φ′

S(ui)
p = h′(αi), hence

(
(h′(αi)/h

′(αj))
1/(p−1)

(φ′
S(ui)/φ′

S(uj))

)p−1

= φ′
S(ui)/φ

′
S(uj).

Thus, we see that Fp(W ) is generated by {(φ′
S(ui)/φ

′
S(uj))

1/(p−1) | i, j =
1, . . . ,m} over Fp(A

m
upper).
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Let V be the complement of the union of weak diagonals defined by ui−uj =

0 for i, j = 1, . . . ,m, i 6= j in Am
upper. Since W̃ coincides with the integral

closure of Am
upper in Fp(W ), we now see that W̃V

def
= W̃ ×Am

upper
V is finite étale

covering generated by {(φ′
S(ui)/φ

′
S(uj))

1/(p−1) | i, j = 1, . . . ,m} over V .
Now, take a finite set S as in our assumption, and put S = roots(φS) =

{γ1, . . . , γm}. Then, x = (γ1, . . . , γm) gives an element of V (K) ⊂ Am
upper(K).

Moreover, condition (1.12), together with the above description of W̃V , implies

that the fiber of W̃V → V at x consists of K-rational points. In particular, we
have W̃V (K) 6= ∅. Note that W̃V is smooth over Fp, as being étale over Am

upper.

Or, equivalently, W̃V is contained in the smooth locus W̃ sm of W̃ . Now, as
K is large, we conclude that W̃ (K) is Zariski dense in W̃ . (See [Pop] for the
definition and properties of large fields.) Accordingly, W (K) is dense in W , a
fortiori.

On the other hand, since X̃ is normal (and Fp is perfect), the complement

of X̃sm is of codimension ≥ 2 in X̃. It follows from this that W ∩ X̃sm is
non-empty (and open in W ). Moreover, since W is integral (and Fp is perfect),

we have W sm is also non-empty and open, hence so is W ′ def
= W sm ∩ X̃sm. As

we have already seen, W (K) is dense in W . Accordingly, we have W ′(K) 6= ∅,
hence, a fortiori, X̃sm(K) 6= ∅. As K is large, this implies that there exists a

connected (or, equivalently, irreducible) component Y of X̃, such that Y (K)
is dense in Y . Now, observe that Y → Am+1

lower is (finite and) surjective. From

this, YU
def
= Y ×X U = Y ∩U (where the last intersection is taken in X̃) is non-

empty (and open in Y ). Thus, YU (K) is non-empty, hence, a fortiori, U(K) is
non-empty. This completes the proof. �

Lemma (1.13). Let m be an integer ≥ 1. Assume that (K,m) satisfies:

(1.14)
At least one of the following holds:
K ⊃ Fp2 ; p = 2; m ≡ ǫ (mod p+ 1) for some ǫ ∈ {0,±1}.

Then, there exists a finite subset S of K with cardinality m, such that φS

satisfies (1.12).

Proof. Let s denote any element of m ∩ (K×)p−1 (e.g., s = tp−1).
Firstly, assume that either K ⊃ Fp2 or p = 2 holds. In this case, we take

any integers i1, . . . , im with i1 < · · · < im and put S
def
= {sik | k = 1, . . . ,m}.

Then, ♯(S) = m clearly holds. Now, for γ = sik ∈ S, we have

φ′
S(γ) =

k−1∏

j=1

(sik − sij )

m∏

j=k+1

(sik − sij )

= (−1)k−1si1+···+ik−1+(m−k)ik
∏

j 6=k

(1− s|ik−ij |).

Note that we have −1, s ∈ (K×)p−1 and 1 + m ⊂ (K×)p−1. (For −1, use the
assumption that either K ⊃ Fp2 or p = 2 holds.) Thus, (1.12) holds.
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Secondly, assume m ≡ ǫ (mod p + 1) with ǫ ∈ {0,±1}. We may put m =
(p + 1)n + ǫ. Moreover, we take any integers i1, j1, i2, j2, . . . , in, jn, in+1 with
i1 < j1 < i2 < j2 < · · · < in < jn < in+1. Now, we put Sǫ = {sik | k ∈
Iǫ} ∪ {sjk + csjk+1 | k = 1, . . . , n, c ∈ Fp}, where

Iǫ =







{2, . . . , n}, ǫ = −1,

{1, . . . , n}, ǫ = 0,

{1, . . . , n+ 1}, ǫ = 1.

Then, by using s ∈ (K×)p−1, 1 + m ⊂ (K×)p−1, and the fact
∏

j∈F
×
p

j = −1,

we can elementarily check that φ′
Sǫ
(γ) ∈ (K×)p−1 (resp. φ′

Sǫ
(γ) ∈ −(K×)p−1)

holds for each γ ∈ Sǫ, if ǫ = 0, 1 (resp. ǫ = −1). Thus, (1.12) holds. �

Definition. Let f(T ) = a1T+

m∑

i=0

aipT
ip be a superseparable polynomial (over

some field of characteristic p).
(i) We say that f is of special type, if amp = a1 = 1, a0 = 0 holds.

(ii) We put def(f)
def
= sup{r > 0 | aj = 0 for all j with mp > j > mp− r} and

call it the defect of f . (Thus, we have 0 < def(f) ≤ mp− 1, unless m = 0.)

Corollary (1.15). Let m be a positive integer.
(i) Assume that (K,m) satisfies (1.14). Then, there exists a monic, integral,
superseparable polynomial f(T ) ∈ K[T ] with f(0) = 0 and deg(f) = mp, such
that f is completely splittable in K.
(ii) Assume that (K,m) satisfies one of the following: K ⊃ Fp2 and (p−1,m−
1) = (p + 1,m + 1) = 1; p = 2; m ≡ ǫ (mod p + 1) for some ǫ ∈ {0,±1} and
(p−1,m−1) = 1. Then, there exists a superseparable polynomial f(T ) ∈ K[T ]
of special type with deg(f) = mp, such that f is completely splittable in K.

Proof. (i) By (1.11) and (1.13), there exists a monic superseparable polynomial
f(T ) ∈ K[T ] with deg(f) = mp, such that f is completely splittable in K.

Replacing f(T ) by fc(T )
def
= cmpf(c−1T ) with c ∈ K×, v(c) ≫ 0, we may

assume that f is integral. (Observe that roots(fc) = c roots(f).) Finally,
replacing f(T ) by f(T + α), where α ∈ roots(f), we may assume f(0) = 0.
(ii) We have K ⊃ Fq((t)) with q = p2 (resp. q = p), if K ⊃ Fp2 (resp.
either p = 2 or m ≡ ǫ (mod p + 1) with ǫ ∈ {0,±1}). Thus, it suffices to
prove the assertion in the case K = Fq((t)). So, from now on, we assume that
K = Fq((t)).

By (1.11) and (1.13), there exists a monic, superseparable polynomial
f1(T ) ∈ K[T ] with deg(f1) = mp, such that f1 is completely splittable in
K. Replacing f1(T ) by f1(T + α), where α ∈ roots(f1), we may assume

that f1(0) = 0. Moreover, we may put f1(T ) = a1(t)T +
m∑

i=0

aip(t)T
ip, where
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aip(t) ∈ K = Fq((t)), a1(t) ∈ K× = Fq((t))
×, and amp(t) = 1, a0(t) = 0. Next,

we put f2(T )
def
= a1(t

mp−1)T +
m∑

i=1

aip(t
mp−1)T ip. Then, f2(T ) is completely

splittable in Fq((t)) ⊃ Fq((t
mp−1)).

Put a1(t) = ctr + · · · , where c ∈ F×
q , r ∈ Z, and · · · ’ means the higher

order terms. Then, we have a1(t
mp−1) = ctr(mp−1) + · · · . Here, observe that

(p−1,m−1) = (p+1,m+1) = 1 (resp. (p−1,m−1) = 1) is equivalent to saying
(q − 1,mp − 1) = 1, for q = p2 (resp. q = p). So, we have F×

q = (F×
q )

mp−1.

By using this fact (and the fact that 1 +m ⊂ (K×)mp−1 as p ∤ mp− 1), we see
that a1(t

mp−1) ∈ (K×)mp−1. So, write a1(t
mp−1) = b(t)mp−1. Now, it is easy

to check that f(T )
def
= b(t)−mpf2(b(t)T ) satisfies the desired conditions. This

completes the proof. �

Corollary (1.16). (i) There exists a positive integer m1 (which depends only
on p), such that, for each positive integer m with m1 | m, there exists a monic,
integral, superseparable polynomial f in K[T ] with f(0) = 0 and deg(f) = mp,
such that f is completely splittable in K.
(ii) There exists a positive integer m2 (which depends only on p), such that, for
each positive integer m with m2 | m, there exists a superseparable polynomial
f in K[T ] of special type and with deg(f) = mp, such that f is completely
splittable in K.

Proof. (i) (resp. (ii)) is a direct corollary of (1.15)(i) (resp. (ii)). We can take,
for example, m1 = p+ 1 (resp. m2 = (p+ 1)(p− 1)). �

Lemma (1.17). Let F be a field of characteristic p, and L a Galois extension
of F . Let A be an Fp[Gal(L/F )]-submodule of L with dimFp

(A) = r < ∞, and

put φA(T )
def
=
∏

α∈A

(T − α). Then:

(i) φA(T ) is a monic superseparable polynomial in F [T ].
(ii) FφA

= F (A).
(iii) deg(φA) = pr and def(φA) ≥ pr − pr−1.

(iv) φ′
A(T ) =

∏

α∈A−{0}

α.

(v) If, moreover, F = K and A ⊂ RL, then φA is integral.

Proof. (i) By definition, φA is monic and separable. It is well-known that
φA is an additive polynomial, hence a superseparable polynomial. Since A is
Gal(L/F )-stable, φA(T ) ∈ F [T ].
(ii) Clear.
(iii) The first assertion is clear. The second assertion follows from the fact that
φA is an additive polynomial.
(iv) Since φA is monic and superseparable, we obtain

φ′
A(T ) = φ′

A(0) =
∏

α∈A−{0}

(−α) =
∏

α∈A−{0}

α,
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as desired.
(v) Clear. �

The following corollary is a final result of this §, of which (i) (resp. (ii)) will
play a key role in §2 (resp. §3). Note that one of the main differences between
(i) and (ii) consists in the fact that, in (ii), the defect of the superseparable
polynomial is estimated from below.

Corollary (1.18). (i) Let L be a finite Galois extension of K. Then, there
exists a positive integer mL/K , such that, for each positive integer m with
mL/K | m, there exists a superseparable polynomial f(T ) ∈ K[T ] of special
type with deg(f) = mp and Kf = L.
(ii) We have:

∀n: positive integer,

∃mn: positive integer (depending only on p and n),

∀m: positive integer with mK,n | m,

∃c = cK,n,m: positive real number,

∀L: (possibly infinite) Galois extension of K,

∀A: finite Fp[Gal(L/K)]-submodule of RL with A ∩mL = {0},
∀r: integer > dimFp

(A),

∀ν: integer,

∃δ: positive integer with δ ≤ cmpr+1/♯(A) and δ ≡ ν (mod n),

∀a ∈ K× with v(a) = δ,

∃f(T ): monic, integral, superseparable polynomial in K[T ],

s.t. deg(f) = mpr+1, def(f) ≥ (p− 1)pr, f ′(T ) = a and Kf = K(A) ⊂ L.

Proof. (i) Since L/K is finite, we see that there exists a finite Fp[Gal(L/K)]-

submodule A0 6= {0} of L, such that L = K(A0). We put q
def
= ♯(A0), which is a

power of p. Then, by (1.17), φ1
def
= φA0

is a monic, superseparable polynomial

in K[T ] with deg(φ1) = q, φ1(0) = 0, and φ′
1(T ) = a0

def
=
∏

α∈A0−{0} α,

and L = Kφ1
. On the other hand, take m2 as in (1.16)(ii). Now, we put

mL/K
def
= q(q − 1)m2.

Let m be any positive integer divisible by mL/K , and put n
def
= m/mL/K .

Then, by (1.16)(ii), there exists a superseparable polynomial f1(T ) ∈ K[T ] of
special type and with degree n(q− 1)m2p, such that f1 is completely splittable
in K.

For each b ∈ K×, we put fb(T )
def
= bn(q−1)m2pf1(b

−1T ) (resp. φb(T )
def
=

bqφ1(b
−1T )), so that fb (resp. φb) is a monic, superseparable polynomial with

deg(fb) = n(q − 1)m2p (resp. deg(φb) = q), fb(0) = 0 (resp. φb(0) = 0), and
f ′
b(T ) = bn(q−1)m2p−1 (resp. φ′

b(T ) = bq−1a0).
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Now, by (1.4)(ii), every polynomial in L[T ] with degree q which is sufficiently
close to φb(T ) (b ∈ K×) is completely splittable in L. By using this, we

see that Fb,b′
def
= fb′ ◦ φb ∈ K[T ] satisfies KFb,b′

= L for all b′ ∈ K× with

v(b′) ≥ C(b), where C(b) denotes a constant depending on b. Observe that Fb,b′

is a monic, superseparable polynomial with deg(Fb,b′) = n(q−1)m2p×q = mp,

Fb,b′(0) = 0, and F ′
b,b′(T ) = (b′)n(q−1)m2p−1bq−1a0.

Now, take b = a−nm2p
0 and b′ = a0d

mp−1 for any d ∈ K× with v(d) suffi-

ciently large, then f(T )
def
= D−mpFb,b′(DT ) with D

def
= dn(q−1)m2p−1 satisfies

all the desired properties.
(ii) Let m1 be as in (1.16)(i), and choose any common multiple mn > 1 of m1,
p− 1, and n.

Let m be any positive integer with mn | m. Then, by (1.16)(i), there exists a
monic, integral, superseparable polynomial f1(T ) ∈ K[T ] with deg(f1) = mp,

f1(0) = 0, and Kf1 = K. Now, put f ′
1(T ) = a1 ∈ R and c

def
= max( v(a1)

m , np
p−1 ).

Let L be any Galois extension of K, A any finite Fp[Gal(L/K)]-submodule

of RL with A ∩ mL = {0}, and r any integer > r0
def
= dimFp

(A). Let ν be any
integer. We define µ to be the unique integer with 0 < µ ≤ n, such that µ ≡

v(a1)− (r−r0)−ν (mod n). We put δ
def
= v(a1)+µ(mp−1)+

r−r0∑

j=1

(mpj+1−1).

Then, we have

δ ≤ v(a1) +

r−r0∑

j=0

nmpj+1

= m

(
v(a1)

m
+

np

p− 1
(pr−r0+1 − 1)

)

≤ m(c+ c(pr−r0+1 − 1))

= cmpr+1/♯(A)

and
δ ≡ v(a1)− µ− (r − r0) ≡ ν (mod n),

as desired.
Let a be any element of K× with v(a) = δ. For j = 0, . . . , r − r0, we shall

inductively define a monic, integral, superseparable polynomial f2,j(T ) with

deg(f2,j) = mpj+1, f2,j(0) = 0, f2,j(T ) ≡ Tmpj+1

(mod m), and Kf2,j = K, as

follows. First, for j = 0, we put g0(T )
def
= f1(T ) and f2,0(T )

def
= tµmpg0(t

−µT ).

Next, for j with 0 < j < r−r0, we put gj
def
= f2,j−1◦φFp

, where φFp
(T ) = T p−T ,

and f2,j(T )
def
= tmpj+1

gj(t
−1T ). Finally, for j = r− r0, let u and u′ be elements

of R×, which we shall fix later, and we put gr−r0
def
= f2,r−r0−1 ◦ φuFp

, where

φuFp
(T ) = T p − up−1T , and f2,r−r0(T )

def
= (u′t)mpr−r0+1

gr−r0((u
′t)−1T ).
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We can check inductively that f2,j(T ) is a monic, integral, superseparable

polynomial with deg(f2,j) = mpj+1, f2,j(0) = 0, f2,j(T ) ≡ Tmpj+1

(mod m),

and Kf2,j = K. Moreover, since f ′
2,0 = tµ(mp−1)a1, f

′
2,j = (−tmpj+1−1)f ′

2,j−1

(0 < j < r − r0), and f ′
2,r−r0 = (−up−1)(u′t)mpr−r0+1−1, we obtain

f ′
2,r−r0 = up−1(u′)mpr−r0+1−1(−1)r−r0a1t

µ(mp−1)+
∑

r−r0

j=1
(mpj+1−1)

= up−1(u′)mpr−r0+1−1(−1)r−r0(a1/t
v(a1))tδ.

So, put u′ = (−1)r−r0(a1/t
v(a1))(tδ/a)w, where w

def
=

∏

α∈A−{0}

α ∈ R×, and u =

(u′)−
m

p−1
pr−r0+1

, then we have f ′
2,r−r0(T ) = aw−1. Now, we put f2

def
= f2,r−r0 .

Finally, put f
def
= f2 ◦ φA. Then, f is a monic, integral, su-

perseparable polynomial in K[T ] with deg(f) = deg(f2) deg(φA) =
mpr−r0+1♯(A) = mpr+1, f ′ = f ′

2φ
′
A = (aw−1)w = a, and

Kf = K(A) ⊂ L. Finally, by the above construction, we see that
f is in the form of (a superseparable polynomial with degree mp) ◦
(an additive polynomial with degree pr). As m ≥ mK,n > 1 and r > r0 ≥ 0,
this implies def(f) ≥ pr+1 − pr. This completes the proof. �

Remark (1.19). So far, we have assumed that K is a complete discrete valua-
tion field (of characteristic p). However, this assumption is superfluous. More
specifically, (1.4), (1.5), (1.11), (1.13), (1.15), (1.16), and (1.18) remain valid if
we replace this assumption by the weaker assumption that K is henselian (of
characteristic p), and (1.10) remains valid if we replace the phrase ‘completion’
by ‘henselization’. Indeed, the proof of the henselian case is just similar to the
complete case.

Moreover, among these, (1.11), (1.13), (1.15) (except that we need to delete
the phrase ‘integral’ in (i)), (1.16) (except that we need to delete the phrase
‘integral’ in (i)), and (1.18)(i) remain valid, if we only assume that K is a large
field (of characteristic p) in the sense of [Pop]. (In particular, we do not have
to assume that K is equipped with a discrete valuation.) Indeed, we see that
these statements can be formulated in terms of the existence of K-rational
points of K-varieties. The validity of the complete case implies that these
varieties admit K((t))-rational points. Now, the large case follows directly
from one of the equivalent definitions of large fields (see [Pop], Proposition 1.1,
(5)).

§2. Unramified extensions with prescribed local extensions.
In this §, we use the following new notation. Let C be a noetherian, normal,
integral, separated Fp-scheme of dimension 1. We denote by K the rational

function field of C, and fix an algebraic closure K of K. We denote by Ksep

and G = GK the separable closure of K in K and the absolute Galois group
Gal(Ksep/K) of K, respectively. Let ΣC be the set of closed points of C. For
each v ∈ ΣC , we denote by Rv the completion of the local ring OC,v. This is
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a complete discrete valuation ring. We denote by Kv, mv and kv the field of
fractions of Rv, the maximal ideal of Rv and the residue field Rv/mv of Rv,
respectively. We fix an algebraic closure Kv of Kv, and denote by Ksep

v and
Gv = GKv

the separable closure of of Kv in Kv and the absolute Galois group
Gal(Ksep

v /Kv), respectively.

Definition. We refer to a tuple C = (C,Σ, {Lv}v∈Σ) as a base scheme data,
if C is as above, Σ is a (possibly empty) finite subset of ΣC ; and, for each
v ∈ Σ, Lv is a (possibly infinite) normal subextension of Kv over Kv, such
that Lv ∩ Ksep

v is v-adically dense in Lv. (For example, this last condition is
satisfied if either Lv/Kv is Galois or Lv = Kv.)

If, moreover, C is a normal, geometrically integral curve over a field k of
characteristic p, we refer to C as a base curve data over k.

For a base scheme data C = (C,Σ, {Lv}v∈Σ), we put B = BC
def
= C − Σ.

If, moreover, B is affine, then we put R = RC
def
= Γ(B,OB), so that R is a

Dedekind domain and that B = Spec(R).
We say that a base scheme data C = (C,Σ, {Lv}v∈Σ) is finite, if Lv is a finite

extension of Kv for each v ∈ Σ. (In this case, Lv is automatically Galois over
Kv.)

Definition. Let C = (C,Σ, {Lv}v∈Σ) be a base scheme data. Let K ′ be an
extension of K contained in K. Then, we say that K ′ is C-distinguished (resp.
C-admissible), if the integral closure C ′ of C in K ′ is étale over B; and, for
each v ∈ Σ and each embedding ι : K →֒ Kv over K, we have ι(K ′)Kv = Lv

(resp. ι(K ′)Kv ⊂ Lv).

Theorem (2.1). Let C = (C,Σ, {Lv}v∈Σ) be a finite base scheme data, and
assume that C is affine. Then, there exists a C-distinguished finite Galois
extension K ′/K.

Proof. For each v ∈ Σ, take a positive integer mLv/Kv
as in (1.18)(i), and let m

be any common multiple of mLv/Kv
(v ∈ Σ). Then, for each v ∈ Σ, there exists

a superseparable polynomial fv(T ) ∈ Kv[T ] of special type and with degree
mp, such that Lv = (Kv)fv .

Now, observe that R is dense in
∏

v∈Σ Kv. (This follows essentially from
the Chinese Remainder Theorem for the Dedekind domain Γ(C,OC).) From
this, we can take a superseparable polynomial f(T ) ∈ R[T ] of special type and
with degree mp, which is arbitrarily close to fv for each v ∈ Σ. Then, we have
(Kv)f = (Kv)fv = Lv. Or, equivalently, Kf ⊗K Kv is isomorphic to a direct
product of copies of Lv over Kv. On the other hand, for each v ∈ ΣC − Σ,
f mod mv is a separable polynomial over kv, since f is of special type. From

this, we see that Kf is unramified at v. Thus, K ′ def
= Kf satisfies all the desired

properties. �

Definition. Let F be a field. We denote by F sep and GF a separable closure
of F and the absolute Galois group Gal(F sep/F ) of F , respectively. For each
prime number l, we define F (l) to be the union of finite Galois extensions F ′ of
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F in F sep with Gal(F ′/F ) ≃ (Z/lZ)n for some n. Thus, F (l) corresponds via

Galois theory to the closed subgroup GF (l)
def
= [GF , GF ](GF )l of GF (which

coincides with the kernel of GF ։ Gab
F /(Gab

F )l).

Definition. Let C = (C,Σ, {Lv}v∈Σ) be a base scheme data and Σ∞ a subset
of Σ. Let K ′ be an extension of K contained in K. Then, we say that K ′ is
nearly C-distinguished (resp. nearly C-admissible) with respect to Σ∞, if the
integral closure C ′ of C in K is étale over B; for each v ∈ Σ − Σ∞ and each
embedding ι : K →֒ Kv over K, we have ι(K ′)Kv = Lv (resp. ι(K ′)Kv ⊂ Lv);
and, for each v ∈ Σ∞ and each embedding ι : K →֒ Kv over K, we have
Lv ⊂ ι(K ′)Kv ⊂ Lv(p) (resp. ι(K

′)Kv ⊂ Lv(p)).

Theorem (2.2). Let k be a field of characteristic p, and C = (C,Σ, {Lv}v∈Σ)
a finite base curve data over k. Let Σ∞ be a subset of Σ, and assume that
C − Σ∞ is affine. Then, there exists a finite Galois extension K ′/K that is
nearly C-distinguished with respect to Σ∞.

Proof. Let C∗ be the normal, geometrically integral compactification of C, and

put Σ∗ def
= Σ ∪ (ΣC∗ − ΣC) and Σ∗

∞
def
= Σ∞ ∪ (ΣC∗ − ΣC). Moreover, for each

v ∈ ΣC∗ −ΣC , we choose any finite Galois extension Lv of Kv (say, Lv = Kv).
Then, replacing C = (C,Σ, {Lv}v∈Σ) by (C∗,Σ∗, {Lv}v∈Σ∗) and Σ∞ by Σ∗

∞,
we may assume that C is proper over k. In this case, we have Σ∞ 6= ∅, since
C − Σ∞ is affine.

For each v ∈ Σ, take a positive integer mLv/Kv
as in (1.18)(i), and let m

be any common multiple of mLv/Kv
(v ∈ Σ − Σ∞), pmLv/Kv

(v ∈ Σ∞) and
2. Then, for each v ∈ Σ − Σ∞ (resp. v ∈ Σ∞), there exists a superseparable
polynomial fv(T ) ∈ Kv[T ] of special type and with degree mp (resp. m), such
that Lv = (Kv)fv .

Now, let v ∈ Σ−Σ∞. Then, for each polynomial f1,v(T ) ∈ Kv[T ] with degree
mp which is sufficiently close to fv(T ), we have (Kv)f1,v = (Kv)fv = Lv. More
precisely, we can take (sufficiently small) nv ∈ Z and (sufficiently large) mv ∈ Z
with nv < mv, so that every coefficient of fv belongs to m

nv
v , and that, if every

coefficient of f1,v − fv belongs to m
mv
v , then we have (Kv)f1,v = (Kv)fv .

On the other hand, let v ∈ Σ∞. Then, similarly as above, we can take
(sufficiently small) nv ∈ Z and (sufficiently large) mv ∈ Z with nv < mv,
so that every coefficient of fv belongs to m

nv
v , and that, for each polynomial

f1,v(T ) ∈ Kv[T ] with degree m, if every coefficient of f1,v − fv belongs to m
mv
v ,

then we have (Kv)f1,v = (Kv)fv . Moreover, replacing nv and mv if necessary,
we may assume that, for each monic polynomial f1,v(T ) ∈ Kv[T ] with degree m
whose constant term is 0, if every coefficient of f1,v−fv belongs to mmv

v , then we

have (Kv)f1,v = (Kv)fv and there exists a bijection ι : roots(fv)
∼→ roots(f1,v),

such that, for each α ∈ roots(fv), v(ια) = v(α), µ(f1,v, ι(α)) = µ(fv, α), and
f ′
1,v(ι(α)) ∼ f ′

v(α) = 1. (For the notations µ(−,−) and ∼, see §1.) Now, we
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let dv denote the minimal non-negative integer satisfying

µ(fv, α) < min

(

dv − v(f ′
v(α)) +

1

p
v(α),

p

p− 1
(dv − v(f ′

v(α)))

)

= min

(

dv +
1

p
v(α),

p

p− 1
dv

)

for all α ∈ roots(fv).

Lemma (2.3). Let P1, . . . , Pr be distinct closed points of C, and, for each
i = 1, . . . , r, let ai and bi be integers with ai ≥ bi. If b1[kP1

: k] + · · · +
br[kPr

: k] > 2pa(C)− 2, then the natural map Γ(C,OC(a1P1 + · · ·+ arPr)) →
m

−a1

P1
/m−b1

P1
⊕· · ·⊕m

−ar

Pr
/m−br

Pr
is surjective. Here, pa(C) denotes the arithmetic

genus of C.

Proof. This follows from [CFHR], Theorem 1.1. �

We fix a sufficiently large integer N satisfying

(2.4)

(

p(p− 1)
∑

v∈Σ∞

[kv : k]

)

N −
∑

v∈Σ

[kv : k]mv > 2pa(C)− 2

and

(2.5) (mp− 1)(p− 1)N ≥ max{dv | v ∈ Σ∞}(≥ 0),

and, for each v ∈ Σ∞, choose any ev ∈ Kv with v(ev) = N .
Now, put

gv(T )
def
=

{

fv(T ), v ∈ Σ− Σ∞,

e
−mp(p−1)
v fv(−e

p(p−1)
v T p) + T, v ∈ Σ∞.

Then, gv(T ) is a superseparable polynomial in Kv[T ] of special type and with
degree mp. (For v ∈ Σ∞, use the assumption that 2 | m.) So, by (2.3) and
(2.4), we see that there exists a superseparable polynomial g(T ) ∈ R[T ] of
special type and with degree mp, such that every coefficient of g(T ) − gv(T )

belongs to m
mv
v (resp. m

−p(p−1)N+mv
v ) for v ∈ Σ− Σ∞ (resp. v ∈ Σ∞).

We put K ′ def
= Kg. Just as in the proof of (2.1), K ′ satisfies the de-

sired property for v ∈ Σ − Σ∞ and v ∈ ΣC − Σ. So, we shall observe

what happens at v ∈ Σ∞. We put gev (T )
def
= e

mp(p−1)
v g(−e

−(p−1)
v T ). Or,

writing g(T ) = T + k(T p), we have gev (T )
def
= −e

(mp−1)(p−1)
v T + kv(T

p),

where kv(T )
def
= e

mp(p−1)
v k(−e

−(p−1)p
v T p). By the choice of g, every coeffi-

cient of g(T ) − gv(T ) belongs to m
−p(p−1)N+mv
v , hence every coefficient of

gev (T )−(fv(T
p)−e

(mp−1)(p−1)
v T ) belongs to e

p(p−1)
v m

−p(p−1)N+mv
v = m

mv
v . Or,

equivalently, every coefficient of kv−fv belongs tom
mv
v . Thus, we may apply the
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preceding argument to f1,v = kv. Since, moreover, v(−e
(mp−1)(p−1)
v ) = (mp −

1)(p − 1)N ≥ dv by (2.5), we may apply (1.5) to gev (T ) = −e
(mp−1)(p−1)
v T +

kv(T
p). Then, firstly, we have (Kv)gev ⊃ (Kv)kv

= (Kv)fv = Lv. Secondly,

for each α1 ∈ roots(kv), (−(−e
(mp−1)(p−1)
v )/k′v(α1)) ∼ (emp−1

v )p−1 belongs to
((Kv)

×
kv
)p−1. Thus, we have Mgev

= (Kv)kv
. Thirdly, since Gal((Kv)gev /Mgev

)

is a subgroup of (Cp)
Im , we have (Kv)gev ⊂ Mgev

(p). Combining these, we ob-

tain Lv ⊂ (Kv)gev ⊂ Lv(p). Finally, since roots(gev ) = −ep−1
v roots(g), we have

(Kv)gev = (Kv)g. Thus, K ′ = Kg satisfies the desired property at v ∈ Σ∞.
This completes the proof. �

§3. Main results.
In this §, we use the following notation. Let k be an (a possibly infinite) alge-
braic extension of Fp and C a smooth, geometrically connected (or, equivalently,
normal, geometrically integral) curve over k. In particular, C is a noetherian,
normal, integral, separated Fp-scheme of dimension 1, and we use the notations
introduced at the beginning of §2 for this C. Among other things, see §2 for
the definition of base curve data.

Definition. (i) We refer to a tuple S = (C, f : X → B, {Ωv}v∈Σ) as a
(smooth) Skolem data, if C = (C,Σ, {Lv}v∈Σ) is a base curve data; B = BC ;
f : X → B is a smooth, surjective morphism whose generic fiber XK is geo-
metrically irreducible; and, for each v ∈ Σ, Ωv is a non-empty, v-adically open,
Gv-stable subset of X(Lv). (Observe that X is automatically irreducible.)
(ii) We refer to a tuple B = (C, Y1, . . . , Yr ⊂ P(E), {Ω̌v}v∈Σ) as a Bertini data,
if C = (C,Σ, {Lv}v∈Σ) is a base curve data; E is a locally free sheaf of finite
rank 6= 0 on B; r ≥ 0; Yi is an irreducible, reduced, closed subscheme of P(E);
and, for each v ∈ Σ, Ω̌v is a non-empty, v-adically open, Gv-stable subset of

P(Ě)(Lv), where Ě def
= HomOB

(E ,OB).
For a Bertini data B = (C, Y1, . . . , Yr ⊂ P(E), {Ω̌v}v∈Σ), we define Y sm

i

(i = 1, . . . , r) to be the set of points of Yi at which Yi → B is smooth. This is
an (a possibly empty) open subset of Yi, and we regard it as an open subscheme
of Yi.

Definition. (i) Let S = (C, f : X → B, {Ωv}v∈Σ) be a Skolem data with
C = (C,Σ, {Lv}v∈Σ). Then, an S-admissible quasi-section is a B-morphism
s : B′ → X, where B′ is the integral closure of B in a finite, C-admissible

extension K ′ of K, such that, for each v ∈ Σ, the image of B′
Lv

def
= B′ ×B Lv

in XLv

def
= X ×B Lv is contained in Ωv (⊂ X(Lv) = XLv

(Lv)).
(ii) Let B = (C, Y1, . . . , Yr ⊂ P(E), {Ω̌v}v∈Σ) be a Bertini data with C =
(C,Σ, {Lv}v∈Σ). Then, a B-admissible quasi-hyperplane is a hyperplane H
in P(E)B′ , where B′ is the integral closure of B in a finite, C-admissible ex-
tension K ′ of K, such that (a) for each i = 1, . . . , r, each geometric point b
of B′ and each irreducible component P of Yi,b, we have P ∩Hb ( P ; (b) for

each i = 1, . . . , r, the scheme-theoretic intersection (Y sm
i )B′ ∩ H (in P(E)B′)

is smooth over B′; (c) for each i = 1, . . . , r and each irreducible component P
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of Yi,K with dim(P ) ≥ 2, P ∩ HK is irreducible; and (d) for each v ∈ Σ, the

image of B′
Lv

in P(Ě)Lv
by the base change to Lv of the classifying morphism

[H] : B′ → P(Ě) over B is contained in Ω̌v (⊂ P(Ě)(Lv) = P(Ě)Lv
(Lv)).

Definition. Let C = (C,Σ, {Lv}v∈Σ) be a base curve data over k.
(i) We denote by RLv

, mLv
, and kLv

the integral closure of Rv in Lv, the
maximal ideal of RLv

, and the residue field RLv
/mLv

, respectively.
(ii) We say that C satisfies condition (RI), if [kLv

: Fp] = ∞ for all v ∈ Σ.
(Here, ‘RI’ means ‘residually infinite’.)

Now, the following are the main results of the present paper.

Theorem (3.1). Let S = (C, f : X → B, {Ωv}v∈Σ) be a Skolem data with
C = (C,Σ, {Lv}v∈Σ), and assume that C is affine and that (RI) holds. Then,
there exists an S-admissible quasi-section.

Theorem (3.2). Let B = (C, Y1, . . . , Yr ⊂ P(E), {Ω̌v}v∈Σ) be a Bertini data
with C = (C,Σ, {Lv}v∈Σ), and assume that C is affine and that (RI) holds.
Then, there exists a B-admissible quasi-hyperplane.

The aim of the rest of this § is to prove these theorems, together and step by
step. From now on, we put C = (C,Σ, {Lv}v∈Σ), S = (C, f : X → B, {Ωv}v∈Σ),
and B = (C, Y1, . . . , Yr ⊂ P(E), {Ω̌v}v∈Σ), and assume always that C is affine
and that (RI) holds.

Definition. We say that a Skolem data S = (C, f : X → B, {Ωv}v∈Σ) is
essentially rational, if Ωv ∩X(Kv) 6= ∅ for each v ∈ Σ.

Step 1. Assume that S is essentially rational, and that X is an open subscheme
of P1

B . Then, there exists an S-admissible quasi-section.

Proof. We put W
def
= P

1
B − X. By shrinking X if necessary, we may assume

that W is purely of codimension 1 in P
1
B and that W contains the infinity

section ∞B of P1
B . Next, we put R̃

def
= Γ(C,OC), which is a Dedekind domain

contained in R = Γ(B,OB), such that C = Spec(R̃).
Since Pic(C) is a torsion group (cf. [Mo2], 1.9), there exists n > 0, such

that (mv ∩ R̃)n is a principal ideal of R̃ for each v ∈ Σ. In particular, there

exists ̟ ∈ R̃, such that (
∏

v∈Σ(mv ∩ R̃))n = R̟̃. On the other hand, since

A
1(R) is dense in

∏

v∈Σ P
1(Kv), there exists x ∈ A

1(R)(= R), such that
x ∈ Ωv ∩X(Kv) for each v ∈ Σ. (Here, we have used the assumption that S is
essentially rational.) Since Ωv is v-adically open in X(Lv), there exists lv ≥ 0,
such that x + (mvRLv

)lv ⊂ Ωv. Finally, take a sufficiently large integer M ,
such that nM ≥ lv for each v ∈ Σ and that nM > v(ω− x) for each v ∈ Σ and
each ω ∈ W (Kv)− {∞}.

Now, let S denote the coordinate ofA1
B that we are using. Since̟ ∈ R× and

x ∈ R, the coordinate change S → T
def
= (S−x)/̟M gives an automorphism of

P
1
B that fixes the infinity section ∞B . (More sophisticatedly, this corresponds

to a certain blowing-up(-and-down) process in the fibers of P1
C → C at Σ.)
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From now, we shall use this new coordinate T . Then, by the choice of (̟,x,M),
we have RLv

= A
1(RLv

) ⊂ Ωv for each v ∈ Σ and v(ω) < 0 for each v ∈ Σ and
ω ∈ W (Kv)− {∞}.

We define W̃ to be the closure ofW inP
1
C , which contains the infinity section

∞C of P1
C . By the above choice of coordinate, we have W̃ ∩ P

1
kv

⊂ ∞kv
for

each v ∈ Σ. From now, we regard W̃ as a reduced closed subscheme (or, as a

divisor) of P1
C . By [Mo2], Théorème 1.3, Pic(W̃ ) is a torsion group. So, let

s0 be the order of the class of the line bundle OP
1
C
(1)|W̃ on W̃ . On the other

hand, let e be the degree of W̃ over C. Now, choose a positive integer s which
is divisible by s0 and greater than e − 2. As in [Mo2], proof of Théorème 1.7,

Étape VIII, consider the exact sequence

0 → OP
1
C
(s)(−W̃ ) → OP

1
C
(s) → OP

1
C
(s)|W̃ → 0,

which induces the following long exact sequence:

· · · → H0(P1
C ,OP

1
C
(s)) → H0(W̃ ,OP

1
C
(s)|W̃ )

→ H1(P1
C ,OP

1
C
(s)(−W̃ )) → · · · .

Since s0 | s, we have OP
1
C
(s)|W̃ ≃ OW̃ , so that there exists an element

g0 ∈ H0(W̃ ,OP
1
C
(s)|W̃ ) which generates OP

1
C
(s)|W̃ . On the other hand,

since s > e − 2, we see that H1(P1
C ,OP

1
C
(s)(−W̃ )) (which is the dual of

H0(P1
C ,OP

1
C
(−2 − s)(W̃ ))) vanishes. Thus, there exists an element g ∈

H0(P1
C ,OP

1
C
(s)) that maps to g0. Then, we have Supp(g) ∩ W̃ = ∅. In

particular, we have Supp(g) ∩∞C = ∅.
We may identify H0(P1

C ,OP
1
C
(s)) with the set of polynomials in R̃[T ] with

degree ≤ s. Then, since Supp(g)∩∞C = ∅, we see that g is strictly of degree s

and that the coefficient u of T s in g = g(T ) is an element of R̃×. So, replacing
g by u−1g (and g0 by u−1g0), we may assume that g is monic.

Next, since Pic(A1
C) = Pic(C) is a torsion group, there exists an ele-

ment w(T ) ∈ R̃[T ], such that the zero locus of w(T ) in A
1
C coincides (set-

theoretically) with W̃ ∩A
1
C . Recall that, for each v ∈ Σ and each root ω of w

in Kv, we have v(ω) < 0. From this fact (and the fact that W̃ ∩A
1
kv

( A
1
kv
),

we see that w(0) is a unit in Rv and that w(T ) ≡ w(0) (mod mv). Moreover,
since k×v is a torsion group, we may assume that w(0) ≡ 1 (mod mv) for each
v ∈ Σ, replacing w by a suitable power. Now, we define d to be the degree of
w.

First, assume Σ 6= ∅, and we shall apply (1.18)(ii) carefully. Let n be as in
the beginning of the proof. Then, there exists a positive integer mn. We choose
a positive integer m to be a common multiple of mn and s. For this m, we

obtain a positive real number cKv,n,m. We put cm
def
= max{cKv,n,m | v ∈ Σ}.

We putD
def
= d

p−1 and E
def
= p

p−1cmmp. We take a positive integer t, such that

pt > D. Next, since we are assuming the condition (RI) that kLv
is an infinite
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algebraic extension of Fp, there exists a finite subfield of kLv
with arbitrarily

large cardinality. So, we may take a finite subfield Fv of kLv
, such that prv

def
=

♯(Fv) > Ept. Since Rv is complete, Fv admits a canonical lifting in RLv
, to

which we refer again as Fv. Now, take a positive integer r > max{rv(v ∈ Σ), t}.
Applying (1.18)(ii) to L = Lv, A = Fv, r as above, and ν = 0, we see that

there exists a positive integer δv, such that δv ≤ cmmpr+1/♯(Fv) = cmmpr−rv+1

and that δv ≡ 0 (mod n). Since δv is divisible by n, a
def
=
∏

v∈Σ(mv ∩ R̃)δv is

a principal ideal of R̃. So, let a ∈ R̃ be a generator of a. Then, v(a) =
δv for each v ∈ Σ. Now, the conclusion of (1.18)(ii) is that there exists a
monic, integral, superseparable polynomial fv(T ) ∈ Kv[T ], such that deg(fv) =
mpr+1, def(fv) ≥ (p−1)pr, f ′

v(T ) = a and (Kv)fv = KvFv ⊂ Lv. Moreover, by
using (1.4)(ii) and the Chinese Remainder Theorem (for the Dedekind domain

R̃), we may assume that fv(T ) ∈ R̃[T ] and fv(T ) does not depend on v. So,

put f(T )
def
= fv(T ) for some (or, equivalently, all) v ∈ Σ, then, f is monic,

superseparable polynomial in R̃[T ], such that deg(f) = mpr+1, def(f) ≥ (p −
1)pr, f ′(T ) = a and (Kv)f = KvFv ⊂ Lv for each v ∈ Σ.

Next, assume Σ = ∅. In this case, we define m to be any multiple of s, put

D
def
= d

p−1 , take a positive integer t with pt > D and a positive integer r with

r > t, and let a be any element of R̃×. Now, we choose a monic superseparable
polynomial f(T ) ∈ R̃[T ] = R[T ], such that deg(f) = mpr+1, def(f) ≥ (p−1)pr,

and f ′(T ) = a. (For example, put f(T ) = Tmpr+1

+ aT .)
Finally, we put

F (T )
def
= g(T )

m
s
pr+1

+ w(T )p
r−t

(f(T )− g(T )
m
s
pr+1

) ∈ R̃[T ].

Claim (3.3). F is monic of degree mpr+1.

Proof. f is monic with deg(f) = mpr+1 and def(f) ≥ (p− 1)pr. On the other

hand, since g is monic of degree s, g
m
s is monic of degree m, hence g

m
s
pr+1

is
monic of degree mpr+1 and with ‘defect’ ≥ pr+1 ≥ (p − 1)pr. From these, we

see that f − g
m
s
pr+1

has degree ≤ mpr+1 − (p− 1)pr. Thus,

deg(wpr−t

(f − g
m
s
pr+1

)) ≤ pr−td+mpr+1 − (p− 1)pr

< prdD−1 +mpr+1 − (p− 1)pr = mpr+1.

Since g
m
s
pr+1

is monic of degree mpr+1 as we have already seen, we conclude
that F is monic of degree mpr+1. �

Claim (3.4). For each v ∈ Σ, any root α of F in Kv is contained in RLv
.

Proof. Since w(T ) ≡ 1 (mod mv), we have w(T )p
r−t ≡ 1 (mod m

pr−t

v ). Thus,

F (T ) ≡ g(T )
m
s
pr+1

+ (f(T )− g(T )
m
s
pr+1

) = f(T ) (mod m
pr−t

v ).
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Now, since pr−t > Epr−rv = p
p−1cmmpr−rv+1 ≥ p

p−1δv, we have (Kv)F =

(Kv)f ⊂ Lv by (1.4)(ii). This implies α ∈ Lv. Since F (T ) is a monic polynomial

in R̃[T ] ⊂ Rv[T ], we have α ∈ RLv
, as desired. �

Let Z̃ be the zero locus of F (T ) in A
1
C . By (3.3), Z̃ is closed in P

1
C . We

put Z
def
= Z̃ ∩P

1
B .

Claim (3.5). (i) Z ⊂ X.

(ii) Z is finite étale over B.

Proof. (i) On (W ∩A
1
B)

red, we have F (T ) ≡ g(T )
m
s
pr+1

. Now, since the zero
locus of g in A

1
B is disjoint from W ∩A

1
B , so is that of F , as desired.

(ii) By (3.3), Z = Spec(R[T ]/(F (T ))) is finite (and flat) over R. Since F ′ =

wpr−t

f ′ = wpr−t

a and a ∈ R×, the zero locus of F ′ in A
1
B is (set-theoretically)

contained in W . This, together with (i), implies that the zero loci of F and F ′

are disjoint from each other, as desired. �

Take an irreducible (or, equivalently, connected) component B′ of Z. By
(3.5), we have a natural immersion B′ →֒ X over B, which we regard as a
finite étale quasi-section of X → B. Since RLv

⊂ Ωv, (3.4) implies that this
quasi-section is S-admissible. This completes the proof. �

Step 1 is the main step, and, roughly speaking, the rest of proof is only
concerning how to reduce general cases to Step 1.

Step 2. Assume that S is essentially rational, and that X is an open subscheme
of Pn

B for some n ≥ 0. Then, there exists an S-admissible quasi-section.

Proof. If n = 0, we must have X = B, and the assertion clearly holds. So,
assume n ≥ 1.

Let A be a commutative ring. We define P
n(A)0 to be (An+1 − 0)(A)/A×,

where 0 denotes the section (0, . . . , 0), regarded as a closed subscheme of An+1.
We define P

n(A)00 to be ∪n
i=0Ui(A), where Ui(≃ A

n) is the standard open
subset of Pn. Then, we have P

n(A)00 ⊂ P
n(A)0 ⊂ P

n(A). If Pic(A) = {0}
(resp. A is a local ring), then we have P

n(A)0 = P
n(A) (resp. P

n(A)00 =
P

n(A)0 = P
n(A)). If A is a Dedekind domain, we see that P

n(A)0 forms a
GLn+1(A)-orbit.

Now, observe that Pn(R)00 ∩X(K) is dense in
∏

v∈Σ P
n(Kv). (X(R) may

be empty, though.) So, there exists x ∈ P
n(R)0 ∩ X(K), such that x ∈

Ωv ∩X(Kv) for each v ∈ Σ. (Note that S is essentially rational.) By changing
the coordinates via the GLn+1(R)-action, we may assume x = [1 : 0 : · · · : 0]
(∈ U0).

Let e1, . . . , en−1 be positive integers, and consider the B-morphism
ie1,...,en−1

: A1
B → U0 = A

n
B , t 7→ (te1 , . . . , ten−1 , t). It is easy to see that

ie1,...,en−1
is a closed immersion.

Claim (3.6). For some choice of e1, . . . , en−1, (ie1,...,en−1
)−1(X) surjects onto B.
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Proof. Denote by T1, . . . , Tn the coordinates of U0 = A
n
B . Then, there exist

a finite number of polynomials f1, . . . , fr ∈ R[T1, . . . , Tn], such that the closed
subset An

B−X of An
B coincides with the common zero locus of f1, . . . , fr. Since

A
n
B ∩X surjects onto B (as X surjects onto B), we see that, for each b ∈ B,

there exists i = ib ∈ {1, . . . , r}, such that the image of fi in kb[T1, . . . , Tr] is
non-zero.

Lemma (3.7). Let S be a finite subset of Zn. Then, there exist positive integers
e1, . . . , en−1, such that the map S → Z, (k1, . . . , kn) 7→ e1k1+ · · ·+en−1kn−1+
kn is injective.

Proof. Put T
def
= {s − s′ | s, s′ ∈ S, s 6= s′}. This is a finite subset of Zn

that does not contain 0 = (0, . . . , 0). For each t = (l1, . . . , ln) ∈ T , consider
the linear subspace Wt of An

Q defined by l1x1 + . . . lnxn = 0. On the other
hand, consider the hyperplane H = {(x1, . . . , xn) | xn = 1} of An

Q. As H 6⊂
Wt, H ′ def

= H − ∪t∈TWt is a non-empty open subset of H. Since the set
{(e1, . . . , en−1, 1) | e1, . . . , en−1 ∈ Z>0} is Zariski dense in H (as Z>0 is an
infinite set), it must intersect non-trivially with H ′. Take (e1, . . . , en−1, 1) in
this intersection, then e1, . . . , en−1 satisfies the desired property. �

We define S to be the set of elements (k1, . . . , kn) ∈ (Z≥0)
n such that the

coefficient of T k1

1 · · ·T kn
n in fi is non-zero for some i = 1, . . . , r. Applying (3.7)

to this S, we obtain e1, . . . , en−1 ∈ Z>0. Then, we see that, for each b ∈ B,
there exists i = ib ∈ {1, . . . , r}, such that the image of fi(T

e1 , . . . , T en−1 , T )
in kb[T ] is non-zero. This means that (ie1,...,en−1

)−1(X) surjects onto B, as
desired. �

Take e1, . . . , en−1 as in (3.6), and put S ′ def
= (C, (ie1,...,en−1

)−1(X) →
B, {(ie1,...,en−1

(Lv))
−1(Ωv)}), where ie1,...,en−1

(Lv) denotes the map A
1(Lv) →

U0(Lv) = A
n(Lv) induced by ie1,...,en−1

. Then, S ′ is an essentially rational
Skolem data. (Observe that 0 ∈ A

1(K) lies in (ie1,...,en−1
(Lv))

−1(Ωv).)
Now, by Step 1, there exists an S ′-admissible quasi-section. By composing

this quasi-section with ie1,...,en−1
, we obtain an S-admissible quasi-section. This

completes the proof. �

Remark (3.8). The above argument that involves rational curves with higher
degree was communicated to the author by a referee. The author’s original
argument, which is slightly more complicated, uses lines over finite extensions.

Step 3. Assume that X is an open subscheme of Pn
B for some n ≥ 0. Then,

there exists an S-admissible quasi-section.

Proof. For each v ∈ Σ, P
n(Lv ∩ Ksep

v ) is v-adically dense in P
n(Lv). Ac-

cordingly, we have Ωv ∩ P
n(Lv ∩ Ksep

v ) 6= ∅. So, there exists a finite Galois
subextension Mv/Kv of Lv/Kv, such that Ωv∩X(Mv) is non-empty. Now, put

C1 def
= (C,Σ, {Mv}v∈Σ), which is a finite base curve data. By (2.1), there exists

a C1-distinguished finite Galois extension K ′ of K. We define C ′ (resp. B′) to
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be the integral closure of C (resp. B) in K ′, and put Σ′ def
= C ′ − B′, which is

the inverse image of Σ in C ′. Let v′ be an element of Σ′ and v the image of

v′ in Σ. Then, we have (K ′)v′ = Mv ⊂ Lv. So, put C′ def
= (C ′,Σ′, {Lv}v′∈Σ′)

and S ′ def
= (C′, XB′ → B′, {Ωv}v′∈Σ′). Then, C′ is a base curve data (over the

algebraic closure of k in K ′) such that C ′ is affine and that (RI) holds, and
S ′ is an essentially rational Skolem data such that XB′ is an open subscheme
of Pn

B′ . So, by Step 2, there exists an S ′-admissible quasi-section B′′ → XB′ .
Now, the composite of this morphism and the natural projection XB′ → X
gives an S-admissible quasi-section. This completes the proof. �

Step 4. Assume that E ≃ On+1
B , where n + 1 is the rank of E . Then, there

exists a B-admissible quasi-hyperplane.

Proof. For simplicity, we put P = P(E) and P̌ = P(Ě). Let I denote the
incidence subscheme of P ×B P̌, and let p and p̌ be the natural projections
P ×B P̌ → P and P × P̌ → P̌, respectively. Both p|I and p̌|I are P

N−1-
bundles, hence, a fortiori, smooth.

Let i = 1, . . . , r. Since Yi is an integral scheme and B is a smooth curve,
the morphism Yi → B is either flat over B or flat over bi for some closed point
bi ∈ B. We shall refer to the former (resp. latter) case as case 1 (resp. 2).

In case 1, let Ỹi be the normalization of Yi and Bi the integral closure of B in
Ỹi. Then, since the generic fiber of Ỹi → Bi is geometrically irreducible, there
exists a non-empty open subset B′

i of Bi, such that each fiber of Ỹi×Bi
B′

i → B′
i

is geometrically irreducible ([EGA4], Théorème (9.7.7)). We denote by Σi the
image of Bi −B′

i in B, which is a finite set. We define Ui,1 to be the image of

(Ỹi ×Bi
P̌Bi

minus the inverse image of IBi
) in P̌Bi

, which is an open subset
of P̌Bi

, and define Ui,2 to be the complement in P̌ of the image of P̌Bi
− Ui,1,

which is an open subset of P̌. Moreover, for each b ∈ Σi, fix a geometric
point b on b. Then, for each irreducible component P of Yi,b, we put UP,1 the

image of (P ×b P̌b minus the inverse image of Ib) in P̌b, and define TP,2 to

be the image of P̌b − UP,1 in P̌b, which is a closed subset of P̌b. Now, put

Ui
def
= Ui,2 − ∪b∈Σi

∪P TP,2, which is an open subset of P̌. In case 2, for each

irreducible component P of Yi,bi
, we define a closed subset TP,2 of P̌bi just as

above, and put Ui
def
= P̌− ∪PTP,2.

Now, we put U
def
= ∩r

i=1Ui. Let b be a geometric point on B, then, we see
that a point of Ub corresponds to a hyperplane Hb of Pb that satisfies condition
(a) in the definition of B-admissible quasi-hyperplane. In particular, Ub is a
non-empty open subset of P̌b for each b ∈ B.

Next, for each i = 1, . . . , r, let ((p|I)−1(Y sm
i ))non-sm be the set of points of

(p|I)−1(Y sm
i ) at which (p|I)−1(Y sm

i ) → P̌ is not smooth. This is a closed subset
of (p|I)−1(Y sm

i ). Let Zi be the image of ((p|I)−1(Y sm
i ))non-sm in P̌. Chevalley’s

theorem implies that Zi is a constructible subset of P̌, and the usual Bertini
theorem implies that, for each b ∈ B, P̌b−Zi contains a non-empty open subset
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of P̌b. From these, we observe that Vi
def
= P̌− Zi satisfies that, for each b ∈ B,

(Vi)b is a non-empty open subset of P̌b. We put V
def
= ∩r

i=1Vi. Then, for each
b ∈ B, Vb is a non-empty open subset of P̌b.

Next, let P be an irreducible component of Yi,K with dim(P ) ≥ 2. Then, by

a version of Bertini theorem ([J], Théorème 6.11, 3), there exists a non-empty
open subset WP,1 of P̌K , such that, for each hyperplane HK corresponding to
a point of WP,1, P ∩ HK is irreducible. We define W1 to be the intersection
of WP,1 for irreducible components P of Yi,K with dim(P ) ≥ 2, which is a

non-empty open subset of P̌K , and T2 the image of P̌K −W1 in P̌K , which is

a proper closed subset of P̌K . Moreover, we denote by T 2 the closure of T2 in
P̌. We see that (T 2)b is a proper closed subset of P̌b for each b ∈ B. Now, we
put W = P̌− T 2. Then, for each b ∈ B, Wb is a non-empty open subset of Pb.

Now, we put X̌
def
= U∩V ∩W . This is an open subset of P̌ that is surjectively

mapped onto B. Put S ′ def
= (C, X̌ → B, {Ω̌v∩X̌(Lv)}v∈Σ). Then, S ′ is a Skolem

data.
So, by Step 3 and the assumption that E ≃ On+1

B , there exists an S ′-

admissible quasi-section B′ → X̌. By the choice of S ′, this section corresponds
to a hyperplane H of PB′ , which satisfies all the conditions (a)–(d) in the
definition of B-admissible quasi-hyperplane. This completes the proof. �

Step 5. Assume that X is quasi-projective of relative dimension 1 over B.
Then, there exists an S-admissible quasi-section.

Proof. By assumption, we may assume that X is a subscheme of Pn
B for some

n ≥ 1. We define X1 to be the closure of X in P
n
B , regarded as a reduced

scheme. X1 is a projective flat integral curve over B, and X is an open sub-
scheme of X1. It is well-known that, after normalizations and blowing-ups
outside X, X1 can be desingularized. Namely, there exists a birational pro-
jective morphism π : X2 → X1, where X2 is a regular, integral scheme, such
that π−1(X)

∼→X. Since XK is irreducible, so is (X2)K . Hence, by [EGA4],
Théorème (9.7.7), there exists a non-empty open subset B1 of B, such that each
fiber of XB1

→ B1 is geometrically irreducible, and, in particular, irreducible.

We put Σ1
def
= B −B1, which is a finite set.

Now, we introduce a new base curve data C1 def
= (C,Σ ∪ Σ1, {Lv}v∈Σ ∪

{Kur
v }v∈Σ1

), where Kur
v denotes the maximal unramified extension of the com-

plete discrete valuation field Kv. Note that C1 satisfies (RI) and that C is
affine. Moreover, we put S1 = {C1, XB1

→ B1, {Ωv}v∈Σ ∪ {X(RKur
v
)}v∈Σ1

}.
Since X → B is smooth surjective, we see that X(RKur

v
) is non-empty. Thus,

S1 becomes a Skolem data. Now, suppose that there exists an S1-admissible
quasi-section B′

1 → XB1
. Then, firstly, the integral closure B′ of B in B′

1

is finite étale over B. Secondly, as X2 → B is proper, B′
1 → XB1

extends
to B′ → X2. Now, since B′

1 → XB1
is S1-admissible, we see that the im-

age of B′ → X2 must be contained in X. Thus, we obtain an S-admissible
quasi-section B′ → X.
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So, replacing S by S1, we may assume that each fiber of X2 → B is geomet-

rically irreducible. Now, we put X
def
= X2.

Lemma (3.9). Let F be a field and X a projective, geometrically integral F -
scheme of dimension 1. We denote by X ′ the normalization of XF , so that we
have a natural morphism π : X ′ → X. Then, there exists a natural number N ,
such that each invertible sheaf L on X with deg(L) ≥ N is very ample, where

deg(L)
def
= deg(π∗(L)).

Proof. This follows from [CFHR], Theorem 1.1. (We may take N = 2pa(X) +
1.) �

Now, take a natural numberN forXK as in (3.9). We shall choose horizontal
divisors Y1, Y2, . . . of X inductively, as follows. Firstly, by [Mo3], Théorème
1.3, there exists a horizontal divisor Y1 of X, such that Y1 is contained in X and
that, for each v ∈ Σ, Y1 ×B Spec(Lv) is a disjoint union of copies of Spec(Lv)
and is contained in Ωv. Next, assume that we have defined Y1, . . . , Yr. Then,
again by [Mo3], Théorème 1.3, there exists a horizontal divisor Yr+1 of X, such
that Yr+1 is contained in X −∪r

i=1Yi and that, for each v ∈ Σ, Y ×B Spec(Lv)
is a disjoint union of copies of Spec(Lv) and is contained in Ωv − ∪r

i=1Yi(Lv).
By construction, Y1, Y2, . . . are disjoint from one another. Now, take n so large

that deg(Y1,K+· · ·+Yn,K) ≥ N , and we put Y
def
= Y1+· · ·+Yn. (Note that each

Yi defines an invertible sheaf on X, since it lies in the smooth locus.) Then,
by (3.9), YK is very ample. On the other hand, since each fiber of X → B is
geometrically irreducible, Y itself is ample (cf. [Mo2], Proposition 4.3), hence
there exists a natural number m such that mY is very ample. So, consider an
embedding X →֒ P

n
B with respect to the very ample divisor mY .

We put D
def
= X −X. Let E1, . . . , Eh be the irreducible components of D,

which must be either an isolated point or a horizontal divisor, as X → B is
surjective and each fiber of X → B is irreducible. Next, for each v ∈ Σ, we
define Ω̌′

v to be the subset of P̌n(Lv) consisting of points corresponding to Lv-
rational hyperplanes H such that XLv

∩ H is a disjoint union of Lv-rational
points in Ωv (whose cardinality must coincide with deg(mYK)). It is easy to
show that Ω̌′

v is a v-adically open subset of P̌(Lv). Moreover, by using the fact
that (not only mYK but also) YK is very ample and that YLv

is a disjoint union
of Lv-rational points in Ωv, we see that Ω̌′

v is non-empty.

Now, we put B′ def
= (C, X,E1, . . . , Eh ⊂ P

n
B , {Ω̌′

v}v∈Σ), which becomes a

Bertini data. As P
n
B = P(On+1

B ), we may apply Step 4 to this Bertini data
B′, to conclude that there exists a B′-admissible quasi-hyperplane H ⊂ P

n
B′ .

By condition (a), we see that XB′ ∩ H is finite (as proper and quasi-finite)
over B, and that Ei,B′ ∩H = ∅ for each i = 1, . . . , h, hence DB′ ∩H = ∅, or,
equivalently, XB′ ∩H = XB′ ∩H. By condition (b), we see that XB′ ∩H is
smooth over B′. From these, XB′ ∩ H is finite étale over B′, hence over B.
Moreover, by condition (d), each component of (XB′ ∩H)Lv

is a disjoint union
of Lv-rational point in Ωv. Thus, any connected component of XB′ ∩H gives
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an S-admissible quasi-section. This completes the proof. �

Step 6. Assume that X is quasi-projective over B. Then, there exists an S-
admissible quasi-section.

Proof. We shall prove this by using induction on the relative dimension d of
X over B. If d = 0, this is clear. If d = 1, this is just the content of Step 5.
So, assume d > 1. Since X is quasi-projective, we may choose an embedding

X →֒ P
n
B . We denote byX the closure ofX in P

n
B , and putW

def
= X−X. Next,

for each v ∈ Σ, we define Ω̌′
v to be the subset of P̌n(Lv) consisting of points

corresponding to Lv-rational hyperplanes that meet transversally with a point
of Ωv. Then, it is easy to see that Ω̌′

v is a non-empty, v-adically open, Gv-stable

subset of P̌n(Lv). Thus, B′ def
= (C, X,W ⊂ P

n
B , {Ω̌′

v}v∈Σ) becomes a Bertini
data, and, by Step 4, there exists a B′-admissible quasi-hyperplane H ⊂ P

n
B′ ,

where B′ is the integral closure of B in some finite C-admissible extension K ′ of
K. By conditions (a) and (b) in the definition of B′-admissibility, we see that

X ′
B′

def
= XB′ ∩H is smooth, surjective over B′. By condition (c), X ′

B′ ×B′ K ′

is irreducible. Moreover, by condition (d), Ω′
v

def
= Ωv ∩H(Lv) is non-empty.

Now, we define C ′ (resp. B′) to be the integral closure of C (resp. B) in

K ′, and put Σ′ def
= C ′ − B′, which is the inverse image of Σ in C ′. Let v′ be

an element of Σ′ and v the image of v′ in Σ. Then, we have (K ′)v′ ⊂ Lv. So,

put C′ def
= (C ′,Σ′, {Lv}v′∈Σ′) and S ′ def

= (C′, X ′
B′ → B′, {Ω′

v}v′∈Σ′). Then, C′ is
a base curve data (over the algebraic closure of k in K ′) such that C ′ is affine
and that (RI) holds, and S ′ is a Skolem data such that the relative dimension
of XB′ over B′ is d− 1. Thus, by the assumption of induction, there exists an
S ′-admissible quasi-section B′′ → X ′

B′ . Composing this quasi-section with the
natural map X ′

B′ → X, we obtain an S-admissible quasi-section, as desired.
This completes the proof. �

Step 7. There exists an S-admissible quasi-section. Namely, (3.1) holds.

Proof. Let X ′ be a non-empty affine open subset of X, and let B′ denote the

image of X ′ in B, which is a non-empty open subset of B. Put Σ′ def
= B − B′.

Then, S ′ def
= (C′, X ′ → B′, {Ωv ∩ X ′(Lv)}v∈Σ ∪ {X ′(Kur

v ) ∩ X(RKur
v
)}v∈Σ′),

where C′ def
= (C,Σ ∪ Σ′, {Lv}v∈Σ ∪ {Kur

v }v∈Σ′), becomes a Skolem data. Now,
just as in the proof of Step 5, an S ′-admissible quasi-section (whose existence
is assured by Step 6) induces an S-admissible quasi-section. This completes
the proof. �

Step 8. There exists a B-admissible quasi-hyperplane. Namely, (3.2) holds.

Proof. This is just similar to the proof of Step 4, except that we use Step 7
instead of Step 3. �
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§4. Some remarks and applications.

4.1. On condition (RI).
It is desirable to remove the disgusting condition (RI) in the main results (3.1)
and (3.2). The main (and the only) technical difficulty in doing so appears in
Step 1 of §3. More specifically, recall that we have applied (1.18)(ii) in Step
1. However, to apply (1.18)(ii), we need a finite submodule A of RLv

with
A ∩mLv

= {0} and with ♯(A) sufficiently large, which requires the infiniteness
of the residue field of Lv. In fact, it is possible to modify (1.18)(ii) to include
the case where A ∩ mLv

= {0} does not hold, but then we cannot expect the
valuation δ of a is sufficiently small compared to deg(f), and the proof of (3.4)
fails when we try to apply (1.4)(ii).

4.2. On the incompleteness hypothesis.
In the main results (3.1) and (3.2), we have assumed the incompleteness hy-
pothesis that the base curve C is affine. It is impossible to remove this condition
entirely, but it is desirable to be able to control the objects at the points at
infinity, even in some weaker sense. In this direction, we have a capacity-
theoretic approach due to Rumely ([Ru1], [Ru2]) and another approach via
small codimension arguments due to Moret-Bailly ([Mo5]). The author hopes
for the following third approach (though it is only applicable to positive char-
acteristic). More precisely, let C = (C,Σ, {Lv}v∈Σ) be a base curve data over
an algebraic extension k of Fp (with C not necessarily affine), and Σ∞ a non-
empty subset of Σ. Then, even if C is proper over k, we might expect that the
following version of (3.1) and (3.2) hold.

For (3.1), let S = (C, f : X → B, {Ωv}v∈Σ−Σ∞
∪{X(Lv)}v∈Σ∞

) be a Skolem
data. (Thus, for v ∈ Σ∞, we just assume X(Lv) 6= ∅.) Then, we might
expect that there exists a quasi-section s : B′ → X of f : X → B which
is nearly S-admissible with respect to Σ∞ in the following sense: K ′ is a
finite extension of K which is nearly C-admissible with respect to Σ∞; B′

is the integral closure of B in K ′; and for each v ∈ Σ − Σ∞, the image of

B′
Lv

def
= B′×BLv in XLv

def
= X×BLv is contained in Ωv (⊂ X(Lv) = XLv

(Lv)).
(For v ∈ Σ∞, the image of B′

Lv(p)
in XLv(p) is automatically contained in

X(Lv(p)) = XLv(p)(Lv(p)), and we do not impose any more condition.)

For (3.2), let B = (C, Y1, . . . , Yr ⊂ P(E), {Ω̌v}v∈Σ−Σ∞
∪ {P(Ě)(Lv)}v∈Σ∞

)
be a Bertini data. Then, we might expect that there exists a quasi-hyperplane
H ⊂ P(E)B′ which is nearly B-admissible with respect to Σ∞ in the following
sense: K ′ is a finite extension of K which is nearly C-admissible with respect to
Σ∞; B′ is the integral closure of B in K ′; (a), (b), (c) as in the definition of B-
admissibility; and (d) as in the definition of B-admissibility only for v ∈ Σ−Σ∞.
(For v ∈ Σ∞, the image of B′

Lv(p)
in P(Ě)Lv(p) is automatically contained in

P(Ě)(Lv(p)) = P(Ě)Lv(p)(Lv(p)), and we do not impose any more condition.)

We might consider (2.2) as a weak evidence for this expectation.
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4.3. Hopeful generalizations (mild).
Firstly, it should be possible to generalize the main results (3.1) and (3.2) to
the case of algebraic spaces or even algebraic stacks, along the lines of [Mo5].

Secondly, it should be possible to prove qualitative versions of (3.1) and
(3.2), in terms of heights (cf. [U], and [A1,2]) and/or degrees (cf. [Mi], [E1,2]).
(See also [Poo].)

Thirdly, it is desirable to be able to prove that, in (3.1), we can choose an S-
admissible quasi-section B′ → X which is a closed immersion (cf., e.g., [Mo2],
Définition 1.4.), and, similarly, that, in (3.2), we can choose a B-admissible
quasi-hyperplane H ⊂ P(E)B′ such that the classifying morphism [H] : B′ →
P(Ě) is a closed immersion. This third possible generalization was suggested
to the author by the referee. Indeed, this generalization is possible in Steps 1
and 2 of §3. (For Step 2, this is possible by means of the simplification of the
proof due to him or her. See (3.8).)

4.4. Hopeful generalizations (ambitious).
As we have mentioned in the Introduction, word-for-word translations of the
main results (3.1) and (3.2) to the number field case, namely, to the case where
C in the base scheme data is (an open subscheme of) the spectrum of the integer
ring of an algebraic number field are false. However, it is very interesting (at
least to the author) to ask if we might hope for any (modified) unramified
versions of (3.1) and (3.2) also in the number field case.

Also, it might be interesting to investigate what happens in the case where
C is a higher-dimensional (affine) scheme, even in positive characteristic. One
of the main obstacles of this direction consists in the fact that the Picard group
of C is no longer a torsion group, and word-for-word translations of (3.1) and
(3.2) to the higher-dimensional case are false. However, there might exist some
reasonable restrictions on the (Skolem or Bertini) data, with which (3.1) and
(3.2) are valid.

4.5. An application to local-global principle and largeness in field theory.

Definition. Let C = (C,Σ, {Lv}v∈Σ) be a base scheme data. Then, we define
KC to be the maximal C-admissible extension of K contained in the algebraic
closure K of K, CC (resp. BC) the integral closure of C (resp. B) in KC , and
ΣC to be the inverse image of Σ in CC . (Thus, ΣC = CC −BC .)

As an application of (3.1), we obtain the following local-global principle in
field theory (cf. [Mo4]).

Theorem (4.1). Let C = (C,Σ, {Lv}v∈Σ) be a base curve data over an alge-
braic extension of Fp, and assume that C is affine and that (RI) holds. Then,
KC satisfies the local-global principle in the sense that, for each smooth, ge-
ometrically connected scheme X over KC, X(KC) 6= ∅ holds if and only if
X((KC)w) 6= ∅ holds for every prime w of KC. Here, (KC)w denotes the alge-
braic closure of Kv in the completion of KC at w, where v is the prime of K
that is below w.
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Proof. The ‘only if’ part is trivial. To prove the ‘if’ part, assume that
X((KC)w) 6= ∅ holds for every prime w of KC . First, replacing X by any
non-empty quasi-compact open subset, we may assume that X is of finite
type over KC . (Observe that the image of X((KC)w) in X is Zariski dense.)
Then, replacing K and C by a suitable finite C-admissible extension and a
suitable base curve data, respectively, we may assume that X comes from a
(smooth, geometrically connected) K-scheme XK . Now, the following (4.2)
implies X(KC) = XK(KC) 6= ∅, as desired. (Put Ωv = XK(Lv).) �

Theorem (4.2). Notations and assumptions being as in (4.1), let XK be a
smooth, geometrically connected K-scheme. Assume that XK(Kur

b ) 6= ∅ holds
for each closed point b ∈ B, and that a non-empty, v-adically open, Gv-stable
subset Ωv of XK(Lv) is given for each v ∈ Σ. Then, there exists a finite C-
admissible extension K ′ of K and sK ∈ XK(K ′), such that, for each v ∈ Σ,

the image by sK ×K Lv of Spec(K ′)×K Lv in XLv

def
= XK ×K Lv is contained

in Ωv (⊂ XK(Lv) = XLv
(Lv)).

Proof. First, assume that there exist a regular, integral scheme X proper, flat
over B and an open immersion XK →֒ XK over K. (We shall refer to such

an X as a regular, relative compactification over B.) Put WK
def
= XK −

XK and denote by W the closure of WK in X. Then, we see easily that
W ∩ XK = WK and that the fiber Wb of W at each closed point b of B has
dimension strictly smaller than the dimension of the whole fiber Xb (which is

automatically equidimensional). On the other hand, let X
sm

denote the set of
points of X at which X → B is smooth. This is an open subset of X. Since
X is regular and X(Kur

b )(⊃ XK(Kur
b )) 6= ∅ for each closed point b ∈ B, we see

that X
sm → B is surjective. From these, we conclude that X

def
= X

sm − W
surjects onto B and that X ×B K = XK holds. Now, applying (3.1) to the

Skolem data S def
= (C, X → B, {Ωv}v∈Σ), we obtain an S-admissible quasi-

section s : B′ → X. Then, sK
def
= s×B K satisfies the desired properties.

In general, the above desingularization result may not be available, but we

can proceed by using induction on d
def
= dim(XK), as follows. The case d = 0 is

trivial. In the case d = 1, the existence of a regular, relative compactification
as above is well-known. So, we may assume d ≥ 2. Replacing XK by a
suitable (say, non-empty and affine) open subset, we may also assume that XK

is quasi-projective over K. (Observe that the image of Ωv in XK is Zariski
dense.) We choose an embedding XK →֒ P

n
K . Then, as in the proof of Step

4 of §3, there exists a non-empty open subset ǓK of the dual projective space
P̌

n
K , such that, for each hyperplane HK that corresponds to a point of ǓK(K),

XK ∩HK is smooth, (geometrically) connected of dimension d− 1. Moreover,

as in the proof of Step 6 of §3, for each v ∈ Σ, we define Ω̌′
v to be the subset

of P̌n(Lv) consisting of points corresponding to Lv-rational hyperplanes that
meet transversally with a point of Ωv. Then, it is easy to see that Ω̌′

v is a non-
empty, v-adically open, Gv-stable subset of P̌n(Lv). Now, since ǓK admits
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a regular, relative compactification P̌
n
B , we may apply the above argument to

(ǓK , {Ω′
v ∩ ǓK(Lv)}v∈Σ) to obtain a suitable quasi-section s′K of ǓK . (Note

also that ǓK(Kur
b ) 6= ∅ holds for each closed point b of B.) Now, as in the proof

of Step 6 of §3, we may reduce the problem to the case d − 1 by cutting (the
base change of) XK with the quasi-hyperplane corresponding to s′K . Thus, the
proof by induction is completed. �

Corollary (4.3). KC is large (in the sense of [Pop]). �

Proof. Immediate from (4.1). (See [Pop], Proposition 3.1.) �

This corollary gives an interesting new example of large fields. Indeed, as
far as the author knows, in all the known examples of large fields which are
algebraic extensions of either number fields K or function fields K over finite
fields, we can control only finitely many primes of K. On the other hand, our
KC is defined by imposing restrictions at almost all primes of K.

In this sense, this corollary may be regarded as the first example of large
fields which are not so large! (See also (4.11) below.)

4.6. An application to principal ideal theorem.
As an application of (3.1), we obtain the following (cf. [Mo1], 3.1):

Theorem (4.4). Let C = (C,Σ, {Lv}v∈Σ) be a base curve data over an alge-
braic extension k of Fp, and assume that C is affine and that (RI) holds. Then,
we have Pic(CC) = {0}. In particular, we have Pic(BC) = {0}.
Proof. Let LC be any invertible sheaf on CC . Then, there exists a finite subex-
tensionK1 ofK

C overK, such that LC = L1⊗OC1
OCC holds for some invertible

sheaf L1 on C1, where C1 is the integral closure of C in K1. We define B1 and
Σ1 to be the integral closure of B inK1 and the inverse image of Σ in C1, respec-

tively, and, for each v1 ∈ Σ1, we put Lv1

def
= Lv, where v is the image of v1 in Σ.

Then, observe that C1 def
= (C1,Σ1, {Lv1

}v1∈Σ1
) becomes a base curve data (over

the algebraic closure of k in K1), such that (C1)
C1 = CC . Now, consider the

Skolem data S1 = (C1, (V(Ľ1)−0C1
)×C1

B1 → B1, {(V(Ľ1)−0C1
)(RLv

)}v1∈Σ1
)

(such that C1 is affine and that (RI) holds), where V(Ľ1) denotes the (geomet-
ric) line bundle on C1 defined by the dual Ľ1 of L1, and 0C1

denotes the zero
section of V(Ľ1). Now, by (3.1), there exists an S1-admissible quasi-section
B′ → (V(Ľ1) − 0C1

) ×C1
B1. By the choice of S1, this quasi-section extends

to a (unique) quasi-section C ′ → V(Ľ1)− 0C1
of V(Ľ1)− 0C1

→ C1, where C ′

is the integral closure of C1 in B′. This implies that L1 admits an everywhere
non-vanishing section over C ′, or, equivalently, L1 becomes trivial after the
base change to C ′. Therefore, LC is trivial, a fortiori. This completes the proof
of the first assertion.

The second assertion follows from the first, as the natural map Pic(CC) →
Pic(BC) is surjective. �

In the case where Σ = ∅, (4.4) directly follows from the principal ideal the-
orem in class field theory. In general, however, there exists an invertible sheaf
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that cannot be trivialized if we only consider abelian C-admissible extensions.
(See (4.11) below.) In this sense, we may regard (4.4) as a new (non-abelian)
type of principal ideal theorem which cannot be covered by class field theory.

4.7. An application to torsors.
More generally than the second assertion of (4.4), we obtain the following:

Theorem (4.5). Let C = (C,Σ, {Lv}v∈Σ) be a base curve data over an alge-
braic extension of Fp, and assume that C is affine and that (RI) holds. Let
GC be a smooth, separated group scheme of finite type over BC, such that
the generic fiber GC

KC is connected. Then, we have Ker(Ȟ1
fpqc(B

C , GC) →
∏

w∈ΣC Ȟ1
fpqc(Spec((K

C)w), G
C))) = {1}.

Proof. By [Ra], Théorème XI, 3.1, each class x of Ȟ1
fpqc(B

C , GC) corresponds

to a representable BC-torsor XC . If, moreover, x belongs to the kernel in
question, XC admits a (KC)w-rational point for each w ∈ ΣC . Since XC is of
finite presentation over BC , it comes from a scheme over a finite (C-admissible)
extension of B. Now, as in the proof of (4.4), we can prove that XC admits a
BC-section, by using (3.1). This completes the proof. �

Note that the second assertion of (4.4) is a special case of (4.5), where
GC = Gm,BC . (The first assertion of (4.4) can also be generalized in a suitable
sense. We leave it to the readers.)

As an interesting corollary of (4.5), we obtain:

Corollary (4.6). Let C be an affine, smooth curve over an algebraic ex-
tension of Fp, and K the function field of C. Let G be a smooth, separated,
commutative group scheme of finite type over C, such that the generic fiber GK

is connected.

Then, we have H1
ét(C,G) = H1(π1(C), G(C̃)), where C̃

def
= BC(= CC) for

the base curve data C def
= (C, ∅, ∅).

Proof. This follows from (4.5), together with the Hochschild-Serre spectral se-
quence. �

4.8. A group-theoretical remark.
Recall that a quasi-p group (for a prime number p) is a finite group that does
not admit a non-trivial quotient group of order prime to p.

Proposition (4.7). Let B be a smooth, geometrically connected curve over a
finite field k of characteristic p. We denote by B∗ the smooth compactification

of B and put Σ
def
= B∗ − B (which we regard as a reduced closed subscheme of

B∗). Then, there exists a natural number N (depending only on the genus g
of B∗ and the cardinality n of Σ(k)), such that, for each finite extension l of

k with ♯(l) ≥ N , there is no non-trivial finite étale covering of Bl
def
= B ×k l at

most tamely ramified over Σl
def
= Σ ×k l in which every point of B(l) = Bl(l)

splits completely.
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Proof. This is a rather well-known application of the Weil bound on the cardi-
nality of rational points over finite fields. More specifically, suppose that l is a
finite extension of k with cardinality q and that B′ is a connected finite étale
covering with degree d of Bl at most tamely ramified over Σl in which every
point of B(l) splits completely. We denote by l′ the integral closure of l in B′,
and define (B′)∗, g′ and n′ for B′ just similarly to B∗, g and n, respectively,
for B. Now, firstly, the tamely ramified condition, together with the Hurwitz’
formula, implies

2g′ − 2 ≤ dgeom(2g − 2) + (dgeom − 1)n ≤ d(2g − 2) + (d− 1)n,

where dgeom
def
= d/[l′ : l]. Secondly, the complete splitting condition, together

with the Weil (lower) bound for Bl, implies that

♯(B′(l)) = d♯(Bl(l)) ≥ d(♯((B′)∗(l))− n) ≥ d(1 + q − 2g
√
q − n).

Thirdly, the Weil (upper) bound for B′ implies

♯(B′(l)) ≤ ♯((B′)∗(l)) ≤ 1 + q + 2g′
√
q.

(Note that this holds (trivially) even if [l′ : l] > 1.) Combining these three
inequalities together, we obtain

d(q − (4g + n− 2)
√
q − (n− 1)) ≤ q − (n− 2)

√
q + 1.

From this, we see that d < 2 (or, equivalently, d = 1) must hold for sufficiently
large q, as desired. �

Proposition (4.8). Let k and B be as in (4.7). Then, there exist finite sets Σ1

and Σ2 of closed points of B, disjoint from each other, such that the following
holds: For each v ∈ Σ1 (resp. v ∈ Σ2), let Lv be any (possibly infinite) pro-p
Galois extension of Kv (resp. Galois extension such that Gal(Lv∩Kur

v /Kv) is a
pro-prime-to-p group) and put C = (B,Σ1∪Σ2, {Lv}v∈Σ1∪Σ2

). Then, for every
C-admissible, finite, Galois extension K ′ of K, Gal(K ′/K) is a quasi-p group
and the constant field of K ′ (i.e., the algebraic closure of k in K ′) coincides
with k.

Proof. Take a natural number N as in (4.7), and choose two finite extensions
l1 and l′1 of k with ♯(l1) ≥ N and ♯(l′1) ≥ N , such that l1 ∩ l′1 = k. We define
Σ1 to be the union of the images of B(l1) and B(l′1) in B. Next, the Weil
bound implies that there exists a natural number N ′, such that, for each finite
extension l of k with ♯(l) ≥ N ′, (B − Σ1)(l) 6= ∅ holds. (Note that B − Σ1 is
geometrically connected over k.) So, we can choose a finite extension l2 of k,
such that (B −Σ1)(l2) 6= ∅ and that [l2 : k] is not divisible by p. We define Σ2

to be any non-empty subset of the image of (B − Σ1)(l2) in B − Σ1. Now, for
each v ∈ Σ1 (resp. v ∈ Σ2), let Lv be any pro-p Galois extension of Kv (resp.
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Galois extension such that Gal(Lv ∩Kur
v /Kv) is a pro-prime-to-p group), and

put C = (B,Σ1 ∪ Σ2, {Lv}v∈Σ1∪Σ2
).

Let K ′ be any C-admissible finite Galois extension of K. We define
Gal(K ′/K)p

′

(resp. Gal(K ′/K)p) to be the maximal quotient group of
Gal(K ′/K) with order prime to p (resp. with order a power of p), and denote by
M1 (resp. M2) the subextension of K ′ over K that corresponds via Galois the-

ory the kernel of the natural surjective map Gal(K ′/K) ։ Gal(K ′/K)p
′

(resp.

Gal(K ′/K) ։ Gal(K ′/K)p). Thus we have Gal(M1/K) = Gal(K ′/K)p
′

(resp.
Gal(M2/K) = Gal(K ′/K)p) .

We shall first prove that Gal(K ′/K) is a quasi-p group, or, equivalently, that
M1 = K holds. As K ′ is C-admissible, so is M1. Since, moreover, Gal(M1/K)
has order prime to p and Gal(Lv/Kv) is pro-p for each v ∈ Σ1, M1/K must split
completely at each v ∈ Σ1. Now, by (4.7), we obtain M1 ⊂ Kl1 ∩Kl′1 = K, as
desired.

Next, we shall prove that the constant field ofK ′ is k. Since the Galois group
over k of a finite extension of k is cyclic (hence nilpotent, a fortiori), we see
that the constant field of K ′ is the compositum of those of M1 and M2. Since
we have already proved M1 = K, it suffices to prove that the constant field of
M2 is k. As K ′ is C-admissible, so is M2. Since, moreover, Gal(M2/K) has
p-power order and Gal(Lv ∩Kur

v /Kv) is pro-prime-to-p for each v ∈ Σ2, M2/K
does not admit a non-trivial residue field extension over Σ2. In particular, the
constant field of M2 is contained in the residue field of each v ∈ Σ2, hence in
l2 by the choice of Σ2. Now, since Gal(M2/K) has p-power order and [l2 : k]
is prime to p, the constant field of M2 must coincide with k, as desired.

This completes the proof. �

Proposition (4.9). Let the notations and the assumptions be as in (2.2),
and assume, moreover, that k is an algebraic extension of Fp. Then, in the
conclusion of (2.2), we may assume that Gal(K ′/K) is a quasi-p group and
that the constant field of K ′ coincides with k.

Proof. We can choose a finite subextension k0 of Fp in k, such that the curve C
and the (reduced) closed subscheme Σ of C descend to C0 and Σ0, respectively.
Replacing k0 by a suitable finite extension (in k), we may assume ♯(Σ) = ♯(Σ0).
Moreover, again replacing k0 by a suitable finite extension, we may assume
that, for each v ∈ Σ, the finite Galois extension Lv/Kv descends to a finite
Galois extension L0,v0

/K0,v0
, where K0 is the function field of C0 and v0 is the

image of v in Σ0. We define Σ0,∞ to be the image of Σ∞ in Σ0. We also put

B0
def
= C0 − Σ0.
Now, take finite sets Σ1 and Σ2 of closed points of B0 as in (4.8), and put

C0 def
= (C0,Σ0 ∪ Σ1 ∪ Σ2, {L0,v0

}v0∈Σ0
∪ {K0,v0

}v0∈Σ1∪Σ2
). Applying (2.2) to

C0 and Σ∞,0, we obtain a finite Galois extension K ′
0 of K0 that is nearly C0-

distinguished with respect to Σ∞,0. By (4.8), Gal(K ′
0/K0) is a quasi-p group

and the constant field of K ′
0 coincides with k0.

Finally, put K ′ def
= K ′

0k. Then, we easily see that K ′ is a finite Galois
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extension of K = K0k that is nearly C-distinguished with respect to Σ∞, that
Gal(K ′/K) is a quasi-p group (as Gal(K ′/K)

∼→Gal(K ′
0/K0)) and that the

constant field of K ′ coincides with k. This completes the proof. �

Proposition (4.10). In (3.1) and (3.2), we may choose B′ such that K ′ is
a finite Galois extension of K with quasi-p Galois group and that the constant
field of K ′ coincides with k.

Proof. The proof of this fact goes rather similarly as that of (4.9). The main
difference between them consists in the fact that, in the proof of (4.9), we
can use the trivial extension K0,v0

/K0,v0
for each v ∈ Σ1 ∪ Σ2, while, in the

proof of (4.10), this is impossible, since we have to require that condition (RI)
also holds for the (enlarged) base curve data. Here, however, we may take
K0,v0

Fp(p
∞)/K0,v0

(resp. K0,v0
Fp(p

′)/K0,v0
) for v0 ∈ Σ1 (resp. v0 ∈ Σ2)

instead of K0,v0
/K0,v0

, where Fp(p
∞) (resp. Fp(p

′)) denotes the maximal pro-
p (resp. pro-prime-to-p) extension of Fp. Details are left to the readers. �

Remark (4.11). The group-theoretical results of this subsection are also appli-
cable to other results in this section.

For example, (4.8) implies that, for some base curve data C, the field KC

that appears in (4.1) and (4.3) satisfies the following property: Gal(KC/K) is
pro-quasi-p in the sense that its maximal pro-prime-to-p quotient is trivial.

A similar remark is also applicable to (4.4). Namely, for some base curve
data C, Gal(KC/K)(= Aut(BC/B)) is pro-quasi-p. In particular, the abelian-
ization Gal(KC/K)ab of Gal(KC/K) is a pro-p group, or, equivalently, every
finite abelian C-admissible extension of K has p-power degree. Accordingly,
if, moreover, we start with C such that Pic(C) admits a non-trivial torsion
element [L] whose order is prime to p, then L cannot be trivialized over any
finite abelian C-admissible extension, while it can be trivialized over some finite
(necessarily non-abelian) C-admissible extension by (4.4).
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[Mo5] , Problèmes de Skolem sur les champs algébriques, Compositio
Math. 125 (2001), 1–30.

[Poo] B. Poonen, Bertini theorems over finite fields, Ann. of Math. (to ap-
pear).

[Pop] F. Pop, Embedding problems over large fields, Ann. of Math. (2) 144
(1996), 1–34.

[Ra] M. Raynaud, Faisceaux amples sur les schémas en groupes et les
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