Unramified Skolem Problems and Unramified Arithmetic Bertini Theorems in Positive Characteristic Dedicated to Professor Kazuya Kato

on the occasion of his fiftieth birthday

Akio Tamagawa

Received: November 9, 2002 Revised: June 18, 2003

Abstract. In this paper, we prove unramified, positive-characteristic versions of theorems of Rumely and Moret-Bailly that generalized Skolem's classical problems, and unramified, positive-characteristic versions of arithmetic Bertini theorems. We also give several applications of these results.

2000 Mathematics Subject Classification: Primary 11G35; Secondary 11G25, 14G15, 14G25, 14H25

Keywords and Phrases: Skolem's problem, arithmetic Bertini theorem, positive characteristic.

§0. INTRODUCTION.

Let $f: X \to S$ be a morphism between schemes X and S. We refer to an S-morphism $\sigma: S' \to X$ from an S-scheme S' to X as a quasi-section of f, if the structure morphism $\pi : S' \to S$ is surjective. Moreover, for each property P of morphisms of schemes, we say that σ is a P quasi-section, if π is P. In this terminology, Rumely's theorem, which generalized Skolem's classical problems and was augmented by the work of Moret-Bailly, can be stated as follows:

THEOREM ($[Rul], [Mo2]$). Let S be a non-empty, affine, open subscheme of either the spectrum of the integer ring of an algebraic number field K or a proper, smooth, geometrically connected curve over a finite field with function field K. Let X be a scheme and $f: X \to S$ a morphism of schemes, such that X is irreducible, that $X_K \stackrel{\text{def}}{=} X \times_S \text{Spec}(K)$ is geometrically irreducible over K , and that f is of finite type and surjective. Then, f admits a finite quasi-section.

On the other hand, the following is a well-known fact in algebraic geometry:

THEOREM ([EGA4], Corollaire (17.16.3)(ii)). Let $f: X \rightarrow S$ be a morphism of schemes (with S arbitrary) which is smooth and surjective. Then, f admits an ´etale quasi-section.

In the present paper, we prove, among other things, the following theorem in positive characteristic, which is a sort of mixture of the above two theorems:

THEOREM (0.1) . (See (3.1) .) Let S be a non-empty, affine, open subscheme of a proper, smooth, geometrically connected curve over a finite field with function field K. Let X be a scheme and $f: X \to S$ a morphism of schemes, such that X_K is geometrically irreducible over K, and that f is smooth and surjective. Then, f admits a finite étale quasi-section.

Here, we would like to note that the validity of this theorem is typical of positive characteristic. For example, it is easy to observe that $\mathbf{P}^1_{\mathbb{Z}}$ - {0, 1, ∞} \rightarrow Spec(\mathbb{Z}) does not admit a finite étale quasi-section.

In the work of Rumely and Moret-Bailly, they also proved certain refined versions of the above theorem, which involve local conditions at a finite number of primes. To state these refined versions, let S and K be as in the theorem of Rumely and Moret-Bailly. Thus, K is either an algebraic number field or an algebraic function field of one variable over a finite field. We denote by Σ_K the set of primes of K, and we denote by Σ_S the set of closed points of S, which may be regarded as a subset of Σ_K . Moreover, let Σ be a (an automatically finite) subset of $\Sigma_K - \Sigma_S$, which is not the whole of $\Sigma_K - \Sigma_S$. (This last assumption is referred to as incompleteness hypothesis.) For each $v \in \Sigma$, let K_v denote the v-adic completion of K , and assume that a normal algebraic extension L_v/K_v (possibly of infinite degree) is given. Let X and $f: X \to S$ be as in the theorem of Rumely and Moret-Bailly, and assume that, for each $v \in \Sigma$, a non-empty, v-adically open, $Gal(K_v^{\text{sep}}/K_v)$ -stable subset Ω_v of $X(L_v)$ is given.

THEOREM ([Ru1], [Mo3]). Notations and assumptions being as above, assume, moreover, either $L_v = K_v$ ([Ru1]) or L_v is Galois over K_v ([Mo3]). Then, there exists a finite quasi-section $S' \to X$ of $f : X \to S$, such that, for each $v \in \Sigma$, $S'_{L_v} \stackrel{\text{def}}{=} S' \times_S \text{Spec}(L_v)$ is a direct sum of (a finite number of) copies of $Spec(L_v)$, and the image of S'_{L_v} in $X(L_v) = X_{L_v}(L_v)$ is contained in Ω_v .

Remark (0.2). In fact, Moret-Bailly's version implies Rumely's version. See [Mo3], Remarque 1.6 for this. Indeed, Moret-Bailly's version implies more, namely, that it suffices to assume that L_v is a normal algebraic extension of K_v such that $L_v \cap K_v^{\text{sep}}$ is (v-adically) dense in L_v . (See the proof of [Mo3], Lemme 1.6.1, case (b).)

Remark (0.3). Here is a brief summary of the history (in the modern terminology) of Skolem's problems and its generalizations. Skolem [S] proved the existence of finite quasi-sections for rational varieties. Cantor and Roquette

[CR] proved it for unirational varieties. (A similar result was slightly later obtained in [EG].) Then, Rumely [Ru1] gave the first proof for arbitrary varieties (in the case of rings of algebraic integers). (See also [Ro].) Moret-Bailly (and Szpiro) [Mo2,3] gave an alternative proof of Rumely's result in stronger forms. (Another alternative proof was later given in [GPR].) Moret-Bailly also proved the existence of finite quasi-sections for algebraic stacks ([Mo5]).

We also prove the following refined version in the unramified setting. Unfortunately, in the unramified setting, our version for the present is weaker than Moret-Bailly's version (though it is stronger than Rumely's version). To state this, let S and K be as in (0.1) . Thus, K is an algebraic function field of one variable over a finite field. We denote by Σ_K the set of primes of K, and we denote by Σ_S the set of closed points of S. Moreover, let Σ be a subset of $\Sigma_K - \Sigma_S$, which is not the whole of $\Sigma_K - \Sigma_S$. For each $v \in \Sigma$, let K_v denote the v-adic completion of K, and assume that a normal algebraic extension L_v/K_v is given. Let $f: X \to S$ be as in (0.1), and assume that, for each $v \in \Sigma$, a non-empty, v-adically open, $Gal(K_v^{\text{sep}}/K_v)$ -stable subset Ω_v of $X(L_v)$ is given.

THEOREM (0.4) . (See (3.1) .) Notations and assumptions being as above, assume, moreover, that, for each $v \in \Sigma$, $L_v \cap K_v^{\text{sep}}$ is dense in L_v , and that the residue field of L_v is infinite. Then, there exists a finite étale quasi-section $S' \to X$ of $f: X \to S$, such that, for each $v \in \Sigma$, S'_{L_v} is a direct sum of copies of $Spec(L_v)$, and the image of S'_{L_v} in $X(L_v) = X_{L_v}(L_v)$ is contained in Ω_v .

Roughly speaking, the proof of (0.4) goes as follows. Via some reduction steps, we may assume that X is quasi-projective over S . Then, by means of a version of arithmetic Bertini theorem, we take hyperplane sections successively to obtain a suitable quasi-section finally. More precisely, we use the following unramified version of arithmetic Bertini theorem, which is another main result of the present paper:

THEOREM (0.5) . (See (3.2) .) Let S, Σ , L_v be as in (0.4) . Moreover, let Y_1, \ldots, Y_r be irreducible, reduced, closed subschemes of \mathbf{P}_S^n . For each $v \in \Sigma$, let $\check{\Omega}_v$ be a non-empty, v-adically open, $\mathrm{Gal}(K_v^{\mathrm{sep}}/K_v)$ -stable subset of $\check{\mathbf{P}}_S^n(L_v)$. Then, there exist a connected, finite, étale covering $S' \rightarrow S$ such that, for each $v \in \Sigma$, S'_{L_v} is a direct sum of copies of $Spec(L_v)$, and a hyperplane $H \subset \mathbf{P}_{S'}^n$, such that the following hold: (a) for each $i = 1, \ldots, r$, each geometric point \overline{s} of S' and each irreducible component P of $Y_{i,\overline{s}}$, we have $P \cap H_{\overline{s}} \subsetneq P$; (b) for each $i = 1, ..., r$, the scheme-theoretic intersection $(Y_i^{\text{sm}})_{S'} \cap H$ (in $\mathbf{P}_{S'}^n$) is smooth over S' (Here, Y_i^{sm} denotes the set of points of Y_i at which $Y_i \to S$ is smooth. This is an open subset of Y_i , and we regard it as an open subscheme of Y_i .); (c) for each $i = 1, \ldots, r$ and each irreducible component P of $Y_i \overline{K}$ (where we identify the algebraic closure of the function field of S' with that of S) with $\dim(P) \geq 2$, $P \cap H_{\overline{K}}$ is irreducible; and (d) for each $v \in \Sigma$, the image of S'_{L_v} in $\check{\mathbf{P}}^n(L_v)$ by the base change to L_v of the classifying morphism $[H]:S'\to \check{\mathbf{P}}^n_S$ over S is contained in $\check{\Omega}_v$.

There remain, however, the following non-trivial problems. Firstly, a Bertini-type theorem is, after all, to find a (quasi-)section in an open subset of the (dual) projective space, which requires a Rumely-type theorem. Secondly, in the (most essential) case where X is of relative dimension 1 over S , the boundary of X (i.e., the closure of X minus X in the projective space) may admit vertical irreducible components (of dimension 1). Since a hyperplane intersects non-trivially with every positive-dimensional irreducible component, the hyperplane section does not yield a finite quasi-section of X (but merely of the closure of X).

To overcome the first problem, we have to prove a Rumely-type theorem for projective n-spaces directly. It is not difficult to reduce this problem to the case $n = 1$. First, we shall explain the proof of this last case assuming $\Sigma = \emptyset$. So, we have to construct a finite, étale quasi-section in an open subscheme X of \mathbf{P}_S^1 . Moreover, for simplicity, we assume that X is a complement of the zero locus W of $w(T) \in R[T]$ in $\mathbf{A}_{S}^{1} = \text{Spec}(R[T])$, where $R \stackrel{\text{def}}{=} \Gamma(S, \mathcal{O}_{S})$. (Since X is assumed to be surjectively mapped onto $S, w(T)$ is primitive.) The original theorem of Rumely and Moret-Bailly, together with some arguments from Moret-Bailly's proof, implies that there exists a monic polynomial $g(T) \in$ $R[T]$ of positive degree, such that the zero locus of g in A_S^1 is contained in X. Now, if the zero locus of g is étale over S , we are done. In general, we shall consider the following polynomial: $F(T) = g(T)^{pm} + w(T)^{p}T$ for sufficiently large $m > 0$. Then, $F(T)$ is a monic polynomial in $R[T]$, and its zero locus S' gives a closed subscheme of \mathbf{A}_S^1 which is finite, flat over S. Since $g(T)$ (resp. $w(T)$) is a unit (resp. zero) on W, $F(T)$ is a unit on W, or, equivalently, S' is contained in X. Moreover, since $F'(T) = w(T)^p$, the zero locus of F' coincides with W, hence is disjoint from the zero locus S' of F. This means that S' is étale over S , as desired. (This argument is inspired by an argument of Gabber in [G].) Next, assume $\Sigma \neq \emptyset$. Then, to find a finite, étale quasi-section with prescribed local conditions at Σ , we need to investigate local behaviors of roots of polynomials like the above F . Since it is easy to reduce the problem to the case where the above w is v-adically close to 1 (by means of a coordinate change), we see that it is essential to consider local behaviors of roots of polynomials in the form of

$$
a_1T + \sum_{i=0}^{m} a_{ip}T^{ip}
$$

with $a_1 \neq 0$. (In the present paper, we refer to a polynomial in this form as a superseparable polynomial.) As a result of this investigation, we see that we can take the above F so that, for each $v \in \Sigma$, every root of F is contained in the given Ω_v . Also, in this investigation, the (hopefully temporary) condition that the residue field of L_v is infinite for each $v \in \Sigma$ arises.

To overcome the second problem, we take a finite, flat quasi-section with local conditions by means of Moret-Bailly's version of Rumely's theorem. Then,

by using this (horizontal) divisor, we construct a (new) quasi-projective embedding of X . Now, in this projective space, we can construct a finite, étale quasi-section of X as a hyperplane section.

Here is one more ingredient of our proof that we have not yet mentioned:

THEOREM (0.6) . (See (2.1) and (2.2) .) Let S and Σ be as in (0.4) . Assume, moreover, that, for each $v \in \Sigma$, a finite Galois extension L_v/K_v is given. Then, there exists a connected, finite, étale, Galois covering $S' \to S$, such that, for each $v \in \Sigma$, $S' \times_S \text{Spec}(K_v)$ is isomorphic to a disjoint sum of copies of $Spec(L_v)$ over K_v .

We use this result in some reduction steps. See §3 for more details.

The author's original motivation to prove results like (0.1) arises from the study of coverings of curves in positive characteristic. For example, in the forthcoming paper, we shall prove the following result as an application of $(0.1):$

THEOREM (0.7) . For each pair of affine, smooth, connected curves X, Y over $\overline{\mathbb{F}}_p$, there exists an affine, smooth, connected curve Z over $\overline{\mathbb{F}}_p$ that admits finite, *étale morphisms* $Z \to X$ *and* $Z \to Y$ *over* $\overline{\mathbb{F}}_p$ *.*

In other words, there exists an $\overline{\mathbb{F}}_p$ -scheme H, such that, for every affine, smooth, connected curve X over $\overline{\mathbb{F}}_p$, the 'pro-finite-étale universal covering' \tilde{X} of X is isomorphic to H over $\overline{\mathbb{F}}_p$.

For other applications of the above main results, see §4.

Finally, we shall explain the content of each \S briefly. In \S 1, we investigate the above-mentioned class of polynomials in positive characteristic, namely, superseparable polynomials. The aim here is to control how a superseparable polynomial over a complete discrete valuation field in positive characteristic decomposes. Here, (1.18) is a final result, on which the arguments in §2 and §3 are based. In §2, we prove the existence of unramified extensions with prescribed local extensions, such as (0.6) above. The main results are (2.1) and (2.2). In the former, we treat an arbitrary Dedekind domain in positive characteristic, while, in the latter, we only treat a curve over a field of positive characteristic but we can impose (weaker) conditions on all the primes of the function field. The proofs of both results rely on the results of §1. In §3, we prove the main results of the present paper, namely, an unramified version of the theorem of Rumely and Moret-Bailly in positive characteristic (3.1), and an unramified version of the arithmetic Bertini theorem in positive characteristic (3.2). In §4, we give several remarks and applications of the main results. Some of these applications are essentially new features that only arise after our unramified versions.

Acknowledgment. Professor Kazuya Kato was the advisor of the author's master's thesis [T] at the University of Tokyo (May 1990 – March 1992). The author

would like to express his sincerest gratitude to Professor Kato for having encouraged and stimulated the author constantly since then. Also, the author would like to thank Bjorn Poonen and Pierre Dèbes (resp. Osamu Fujino and Hiromichi Takagi) very much for various helpful information concerning the work of Rumely and Moret-Bailly (resp. [CFHR]). Finally, the author would like to thank one of the referees for a simplification of Step 2 of §3. (See (3.8).)

§1. Superseparable polynomials.

Throughout this \S , we let K denote a field.

DEFINITION. Let $f(T)$ be a polynomial in $K[T]$. We say that f is superseparable, if the derivative $f'(T)$ of $f(T)$ falls in $K[T]^{\times} = K^{\times}$.

LEMMA (1.1). For each $f(T) \in K[T]$, the following (a)–(c) are equivalent. (a) f is superseparable.

(b) The K-morphism $\mathbf{A}^1_K \to \mathbf{A}^1_K$ associated to f is étale everywhere. (c) f is in the form of

$$
f(T) = \begin{cases} a_1 T + a_0, & \text{if char}(K) = 0, \\ a_1 T + \sum_{i=0}^{m} a_{ip} T^{ip}, & \text{if char}(K) = p > 0, \end{cases}
$$

where $a_j \in K$ and $a_1 \neq 0$.

Proof. Immediate. \square

Remark (1.2). f is separable (i.e., $(f, f') = 1$) if and only if the associated K-morphism from $\mathbf{A}^1_{\text{upper},K} \stackrel{\text{def}}{=} \mathbf{A}^1_K$ to $\mathbf{A}^1_{\text{lower},K} \stackrel{\text{def}}{=} \mathbf{A}^1_K$ is étale at $0 \in \mathbf{A}^1_{\text{lower},K}$.

From now on, let p denote a prime number, and we assume that K is of characteristic p and is equipped with a complete discrete valuation v , normalized as $v(K^{\times}) = \mathbb{Z}$. We denote by R, m, k, and t the valuation ring of v, the maximal ideal of R, the residue field R/\mathfrak{m} , and a prime element of R, respectively. We fix an algebraic closure \overline{K} of K, and we denote again by v the unique valuation $\overline{K} \to \mathbb{Q} \cup \{\infty\}$ that extends v. Moreover, for each subfield L of \overline{K} containing K, we denote by R_L , m_L , and k_L the integral closure of R in L, the maximal ideal of R_L , and the residue field R_L/\mathfrak{m}_L , respectively.

Now, consider a superseparable polynomial

$$
(1.3) \t\t f(T) = aT + h(Tp),
$$

where $a \in K^{\times}$, $h \in K[T]$, and we put $m \stackrel{\text{def}}{=} \deg(h)$. (We put $m = 0$ if $h = 0$.) The aim of this \S is to describe how f decomposes and what is the Galois group associated with f.

DEFINITION. (i) We say that a polynomial g in $\overline{K}[T]$ is integral, if all the coefficients of g belong to $R_{\overline{K}}$.

(ii) Let g be a non-zero polynomial in $\overline{K}[T]$. We denote by roots(g) the set of roots of g in \overline{K} . This is a finite subset of \overline{K} .

(iii) Let g be a separable polynomial in $K[T]$. Then, we denote by K_g the minimal splitting field of g in \overline{K} , i.e., the subfield of \overline{K} generated by roots(g) over K. This is a Galois extension of K, and we put $G_g \stackrel{\text{def}}{=} \text{Gal}(K_g/K)$.

(iii) Let g be a polynomial in $\overline{K}[T]$, and α an element of roots(g). Then, we put

$$
\mu(g,\alpha) \stackrel{\text{def}}{=} \max \{ v(\alpha' - \alpha) \mid \alpha' \in \text{roots}(g) - \{\alpha\} \}.
$$

Here, we put $\max \emptyset \stackrel{\text{def}}{=} -\infty$.

The following is a version of Krasner's lemma.

LEMMA (1.4). Let f be a monic, integral, superseparable polynomial in $K[T]$ as in (1.3).

(i) For each
$$
\alpha \in \text{roots}(f)
$$
, we have $\mu(f, \alpha) \leq \frac{1}{p-1}v(a)$.

(i) For each $\alpha \in \text{roots}(f)$, we have $\mu(f, \alpha) \leq \frac{1}{p-1}v(a)$.

(ii) Let $\epsilon(T) = \sum_{i=1}^{mp} \epsilon_i T^i$ be a polynomial in K[T] (with degree $\leq mp$), such that $j=0$

 $v(\epsilon_j) > \frac{p}{p-1}v(a)$ holds for all $j = 0, \ldots, mp$. We put $f_1 \stackrel{\text{def}}{=} f + \epsilon$. Then, f_1 is separable and we have $K_{f_1} = K_f$.

Proof. (i) Observe the Newton polygon of $f(T + \alpha)$ (which is also a monic, integral, superseparable polynomial).

(ii) For each $\alpha \in \text{roots}(f)$, put $g_{\alpha}(T) = f_1(T + \alpha)$, which is an integral polynomial in $\overline{K}[T]$. Then, we have $\text{roots}(g_{\alpha}) = \{\beta - \alpha \mid \beta \in \text{roots}(f_1)\}.$ We have $g_{\alpha}(0) = f_1(\alpha) = \epsilon(\alpha)$ and $g'_{\alpha}(0) = f'_1(\alpha) = a + \epsilon'(\alpha)$, hence $v(g_{\alpha}(0)) > \frac{p}{p-1}v(a)$ and $v(g'_{\alpha}(0)) = v(a)$. Thus, by observing the Newton polygon of g_{α} , we see that there exists a unique $\beta = \beta_{\alpha} \in \text{roots}(f_1)$, such that $v(\beta - \alpha) > \frac{1}{p-1}v(a)$. The map roots $(f) \to \text{roots}(f_1), \alpha \mapsto \beta_\alpha$ is clearly Gal(K^{sep}/K)-equivariant. Moreover, this map is injective, since, for each pair $\alpha, \alpha' \in \text{roots}(f)$ with $\alpha \neq \alpha'$, we have $v(\alpha - \alpha') \leq \frac{1}{p-1}v(a)$ by (i). As $\sharp(\text{roots}(f)) = mp \geq \sharp(\text{roots}(f_1)),$ this map must be a bijection. Thus, we obtain a $Gal(K^{\text{sep}}/K)$ -equivariant bijection roots (f) $\stackrel{\sim}{\to}$ roots (f_1) , so that f_1 is separable and $K_f = K_{f_1}$, as desired. \Box

DEFINITION. Let m and n be natural numbers. (i) We put $I_n \stackrel{\text{def}}{=} \{1, \ldots, n\}.$

(ii) We denote by S_n the symmetric group on the finite set I_n . Moreover, identifying I_n with $\mathbb{Z}/n\mathbb{Z}$ naturally, we define

$$
B_n \stackrel{\text{def}}{=} \{ \sigma \in S_n \mid \exists a \in (\mathbb{Z}/n\mathbb{Z})^\times, \exists b \in \mathbb{Z}/n\mathbb{Z}, \ \forall i \in \mathbb{Z}/n\mathbb{Z}, \ \sigma(i) = ai + b \}
$$

and

$$
C_n \stackrel{\text{def}}{=} \{ \sigma \in S_n \mid \exists b \in \mathbb{Z}/n\mathbb{Z}, \ \forall i \in \mathbb{Z}/n\mathbb{Z}, \ \sigma(i) = i + b \}.
$$

Thus, $S_n \supset B_n \supset C_n$, and B_n (resp. C_n) can be naturally identified with the semi-direct product $(\mathbb{Z}/n\mathbb{Z})^{\times} \ltimes (\mathbb{Z}/n\mathbb{Z})$ (resp. the cyclic group $\mathbb{Z}/n\mathbb{Z}$).

(ii) We denote by $S_{m \times n}$ the symmetric group on the finite set $I_m \times I_n$. (Thus, $S_{m \times n} \simeq S_{mn}$.) Let pr₁ denote the first projection $I_m \times I_n \to I_m$. We define

$$
S_{m \times n} \stackrel{\text{def}}{=} \{ \sigma \in S_{m \times n} \mid \exists \overline{\sigma} \in S_m, \ \forall (i, j) \in I_m \times I_n, \ \mathrm{pr}_1(\sigma((i, j))) = \overline{\sigma}(i) \}.
$$

Thus, $S_{m \times n}$ can be naturally identified with the semi-direct product $S_m \ltimes$ $(S_n)^{I_m}$. Here, for a group G and a positive integer r, G^{I_r} denotes the direct product $G \times \cdots \times G$. We adopt this slightly unusual notation to save the r times

notation G^r for $\{g^r \mid g \in G\}$ (for a commutative group G).

The following proposition is a mere exercise in Galois theory over local fields in positive characteristic, but it is the starting point of our proofs of main results in later §§.

PROPOSITION (1.5). Let f be a superseparable polynomial as in (1.3) with $m \geq$ 1. Moreover, we assume that (a) h is separable, and (b) we have $\delta(a, h, \alpha)$ $\mu(h, \alpha)$ for all $\alpha \in \text{roots}(h)$, where

$$
\delta(a, h, \alpha) \stackrel{\text{def}}{=} \min \left(v(a) - v(h'(\alpha)) + \frac{1}{p} v(\alpha), \frac{p}{p-1} (v(a) - v(h'(\alpha))) \right).
$$

Then, by choosing a suitable bijection between roots(f) and $I_m \times I_p$: (i) The Galois group G_f can be identified with a subgroup of $S_{m \times p}$ ($\subset S_{m \times p}$). (ii) $G_f \cap (S_p)^{I_m} \subset (B_p)^{I_m}$. (iii) The group filtration

$$
\{1\} \subset G_f \cap (C_p)^{I_m} \subset G_f \cap (S_p)^{I_m} \subset G_f
$$

corresponds via Galois theory to the field filtration

 $K_f \supset M_f \supset K_h \supset K$,

where M_f is the subfield of \overline{K} generated by $\{(-a/h'(\alpha))^\frac{1}{p-1} \mid \alpha \in \text{roots}(h)\}\$ over K_h .

Proof. (i) First, we shall prove the following:

Claim (1.6). (i) For each $\alpha \in \text{roots}(h)$, put

$$
F_{\alpha} \stackrel{\text{def}}{=} \{ \beta \in \text{roots}(f) \mid v(\beta^{p} - \alpha) \ge \delta(a, h, \alpha) \}.
$$

Then, F_{α} has cardinality p for each $\alpha \in \text{roots}(h)$.

(ii) For each $\beta \in \text{roots}(f)$, there exists a unique $\alpha = \alpha_{\beta} \in \text{roots}(h)$, such that $F_{\alpha} \ni \beta$.

Proof. (i) Observe the Newton polygon of $f(T + \alpha^{1/p}) = h(T^p + \alpha) + aT + a\alpha^{1/p}$ by using $\delta(a, h, \alpha) > \mu(h, \alpha)$. Then, we see that F_{α} has cardinality p, as

desired (and that the subset $\{\beta \in \text{roots}(f) \mid v(\beta^p - \alpha) = \delta(a, h, \alpha)\}\$ of F_α has cardinality $\geq p-1$).

(ii) First, we shall prove the uniqueness. Suppose that there exist $\alpha_1, \alpha_2 \in$ roots(*h*), $\alpha_1 \neq \alpha_2$, such that $v(\beta^p - \alpha_i) \geq \delta(a, h, \alpha_i)$ holds for $i = 1, 2$. Then, we have

$$
v(\alpha_1 - \alpha_2) = v((\beta^p - \alpha_2) - (\beta^p - \alpha_1)) \ge \min(\delta(a, h, \alpha_1), \delta(a, h, \alpha_2)),
$$

while, by assumption, we have

$$
\min(\delta(a, h, \alpha_1), \delta(a, h, \alpha_2)) > \min(\mu(h, \alpha_1), \mu(h, \alpha_2)) \ge v(\alpha_1 - \alpha_2).
$$

This is absurd.

By this uniqueness and (i), we have

$$
\sharp(\bigcup_{\alpha \in \text{roots}(h)} F_{\alpha}) = \sum_{\alpha \in \text{roots}(h)} \sharp(F_{\alpha}) = mp = \sharp(\text{roots}(f)),
$$

hence $\alpha \in \text{roots}(h)$ \bigcup $F_{\alpha} = \text{roots}(f)$. This implies the existence of $\alpha = \alpha_{\beta}$ for each $\beta \in \text{roots}(f). \quad \Box$

By (1.6)(ii), we obtain a well-defined map $\pi : \text{roots}(f) \to \text{roots}(h)$, $\beta \mapsto \alpha_{\beta}$. By (1.6)(i), π is surjective and each fiber of π has cardinality p. Since π is $Gal(K^{sep}/K)$ -equivariant by definition, this implies $(1.5)(i)$. (We may choose any bijections $\text{roots}(h) \simeq I_m$ and $F_\alpha \simeq I_p$ $(\alpha \in \text{roots}(h))$.)

Note that this construction already shows that the field extension of K corresponding to the subgroup $G_f \cap (S_p)^{I_m} = \text{Ker}(G_f \to S_m)$ coincides with K_h .

(ii) We shall start with the following. From now on, for each $x, x' \in \overline{K}^{\times}$, we write $x \sim x'$ if $x'/x \in 1 + \mathfrak{m}_{\overline{K}}$, or, equivalently, $v(x'-x) > v(x)$.

Claim (1.7). (i) Let $\alpha, \alpha' \in \text{roots}(h)$ and $\beta \in F_\alpha$. Assume $\alpha \neq \alpha'$. Then, we have $\beta^p - \alpha' \sim \alpha - \alpha'$. In particular, we have $v(\beta^p - \alpha') = v(\alpha - \alpha')$.

(ii) Let $\alpha, \alpha' \in \text{roots}(h), \beta \in F_\alpha$, and $\beta' \in F_{\alpha'}$. Assume $\beta \neq \beta'$. Then, we have

$$
v((\beta')^p - \beta^p) = \begin{cases} v(\alpha' - \alpha) \ (\leq \mu(h, \alpha)), & \text{if } \alpha \neq \alpha', \\ \frac{p}{p-1}(v(a) - v(h'(\alpha))) \ (\geq \delta(a, h, \alpha)), & \text{if } \alpha = \alpha'. \end{cases}
$$

Proof. (i) $v((\beta^p - \alpha') - (\alpha - \alpha')) = v(\beta^p - \alpha) \ge \delta(a, h, \alpha) > \mu(h, \alpha) \ge v(\alpha - \alpha').$ (ii) If $\alpha \neq \alpha'$, we have $v((\beta')^p - \beta^p) = v(((\beta')^p - \alpha') - (\beta^p - \alpha')) = v(\beta^p - \alpha')$, since $v((\beta')^p - \alpha') > v(\beta^p - \alpha')$ by the definition of $F_{\alpha'}$. (Recall that $F_{\alpha} \cap F_{\alpha'} = \emptyset$ holds by (1.6)(ii).) Thus, in this case, $v((\beta')^p - \beta^p) = v(\alpha' - \alpha)$ holds by (i).

By using this and (i), observe the Newton polygon of $f(T + \beta) = h(T^p + \beta)$ β^p + $aT + a\beta$ and compare it with the Newton polygon of $f(T + \alpha^{1/p})$. Then, we can read off the value $v(\beta' - \beta)$ for $\alpha = \alpha'$. \Box

For each $\alpha \in \text{roots}(h)$, the subgroup $Gal(K_f/K(\alpha))$ of G_f acts on F_{α} . In order to prove (1.5)(ii), it suffices to prove that the image $Gal(K(\alpha)(F_{\alpha})/K(\alpha))$ of this action is contained in B_p (⊂ S_p), after choosing a suitable bijection $F_{\alpha} \simeq I_p.$

Claim (1.8). Let $\alpha \in \text{roots}(h)$ and $\beta \in F_{\alpha}$. (i) We have $K(\alpha)(F_{\alpha}) = K(\alpha)(\beta)((-a/h'(\alpha))^{1/(p-1)}).$ (ii) Let $\beta' \in F_\alpha$, $\beta' \neq \beta$. Then, we have $(\beta' - \beta)^{p-1} \sim -a/h'(\alpha)$. More precisely, we have

 $\{(\beta'-\beta) \mod \sim \mid \beta' \in F_\alpha, \beta' \neq \beta\} = \{\zeta(-a/h'(\alpha))^\frac{1}{p-1} \mod \sim \mid \zeta \in \mathbb{F}_p^\times\}.$

Proof. As in the proof of (1.7)(ii), observe the Newton polygon of $f(T + \beta) =$ $h(T^p + \beta^p) + aT + a\beta$. Then, observing the coefficients of T^0, T^1, \ldots, T^p , we see that $K(\alpha)(F_{\alpha}) = K(\alpha)(\beta)((-a/h'(\beta^p))^{1/(p-1)})$. Now, by (1.7)(i), we obtain $h'(\beta^p) \sim h'(\alpha)$, which implies $K(\alpha)(\beta)((-a/h'(\beta^p))^{1/(p-1)}) =$ $K(\alpha)(\beta)((-a/h'(\alpha))^{1/(p-1)})$. These complete the proof of (i), and also show $(ii). \square$

LEMMA (1.9). Let G be a subgroup of S_p , and, for each $i = 1, \ldots, p$, we denote by G_i the stabilizer of i in G. Moreover, let $\phi: G \to \mathbb{F}_p^{\times}$ be a homomorphism, such that, for each $i = 1, ..., p$, there exists an identification $\sigma_i : I_p - \{i\} \stackrel{\sim}{\to} \mathbb{F}_p^{\times}$, such that $\sigma_i g_i \sigma_i^{-1}$ coincides with the $\phi(g_i)$ -multiplication map on \mathbb{F}_p^{\times} for each $g_i \in G_i$. Then, we have $G \subset B_p$ via a suitable identification $I_p \simeq \mathbb{F}_p$.

Proof. Put $N \stackrel{\text{def}}{=} \text{Ker}(\phi)$. Then, N is a normal subgroup of G. By using the identity $\phi(g_i) = \sigma_i g_i \sigma_i^{-1}$, we see that $N \cap G_i = \{1\}$ for all $i = 1, \ldots, p$. Namely, the action of N on I_p is free. Since $\sharp(I_p) = p$ is a prime number, this implies that either $N = \{1\}$ or $N = C_p$ (via some identification $I_p \simeq \mathbb{F}_p$). In the latter case, we obtain $G \subset B_p$, since the normalizer of C_p in S_p coincides with B_p . So, assume $N = \{1\}$. Then, $G = G/N$ is abelian with $\sharp(G) | p-1$.

Let X be any G-orbit of I_p . Suppose that X is not a one-point set. Then, there exist $i, j \in X$, $i \neq j$. Since G is abelian, this implies $G_i = G_j$. On the other hand, by the identity $\phi(g_i) = \sigma_i g_i \sigma_i^{-1}$, we see that $G_i \cap G_j = \{1\}$. Thus, we must have $G_i(= G_j) = \{1\}.$

By this consideration, we conclude that I_p is isomorphic as a G-set to a disjoint union of copies of G and copies of G/G . If a copy of G/G appears, then this means $G = G_i$ for some $i = 1, \ldots, p$, and, by using the unique extension of σ_i to $I_p \overset{\sim}{\rightarrow} \mathbb{F}_p$, we obtain $G \subset \mathbb{F}_p^{\times} \subset B_p$.

On the other hand, if no copy of G/G appears, we must have $\sharp(G) | p$. As $\sharp(G) \mid p-1$ also holds, we conclude $G = \{1\} \subset B_p$. This completes the proof. \square

By (1.8), we may apply (1.9) to $G = \text{Gal}(K(\alpha)(F_{\alpha})/K(\alpha))$ and the Kummer character $\phi: G \to \mathbb{F}_p^{\times}$ defined by $(-a/h'(\alpha))^{1/(p-1)}$, and conclude $G \subset B_p$, as desired.

(iii) This has been already done in the proofs of (i) and (ii). \Box

COROLLARY (1.10). Let m be an integer > 1 . Let $R = R^{\text{univ}}$ be the completion of the discrete valuation ring $\mathbb{F}_p[s_0, s_p, s_{2p}, \ldots, s_{(m-1)p}, s_1]_{(s_1)}$ (where s_i 's are algebraically independent indeterminates), i.e., $R =$ $\mathbb{F}_p(s_0, s_p, \ldots, s_{(m-1)p})[[s_1]],$ and $K = K^{\text{univ}}$ the field of fractions of R. Consider a superseparable polynomial $f(T)$ as in (1.3), where $a = s_1$ and

$$
h(T) = \sum_{i=0}^{m} s_{ip} T^{i} \ (s_{mp} \stackrel{\text{def}}{=} 1). \ Then:
$$

(i) By choosing a suitable bijection between roots(f) and $I_m \times I_p$, the Galois group G_f can be identified with an extension group of S_m by a subgroup B of $(B_p)^{I_m}$. Here, B is an extension of a subgroup E of $(B_p)^{I_m}/(C_p)^{I_m} = (\mathbb{F}_p^{\times})^{I_m}$ by $(C_p)^{I_m}$, where $E = (\mathbb{F}_2^{\times})^{I_m} = \{1\}$ if $p = 2$,

$$
E = \begin{cases} \text{Ker}((\mathbb{F}_p^{\times})^{I_2} \twoheadrightarrow (\mathbb{F}_p^{\times}/\{\pm 1\})^{I_2}/\Delta(\mathbb{F}_p^{\times}/\{\pm 1\})), & m = 2, \\ \text{Ker}((\mathbb{F}_p^{\times})^{I_m} \twoheadrightarrow \mathbb{F}_p^{\times}/(\mathbb{F}_p^{\times})^2), & m \equiv 0 \pmod{2}, m \neq 2, \\ (\mathbb{F}_p^{\times})^{I_m}, & m \not\equiv 0 \pmod{2}, \end{cases}
$$

if $p \equiv 1 \pmod{4}$, and

$$
E = \begin{cases} \operatorname{Ker}((\mathbb{F}_p^\times)^{I_2} \twoheadrightarrow (\mathbb{F}_p^\times/\{\pm 1\})^{I_2}/\Delta(\mathbb{F}_p^\times/\{\pm 1\})), & m = 2, \\ \operatorname{Ker}((\mathbb{F}_p^\times)^{I_m} \twoheadrightarrow \mathbb{F}_p^\times/(\mathbb{F}_p^\times)^2), & m \equiv 0 \pmod{4}, \\ (\mathbb{F}_p^\times)^{I_m}, & m \not\equiv 0 \pmod{4}, m \not= 2, \end{cases}
$$

if $p \equiv 3 \pmod{4}$. Here, for a commutative group G and a positive integer r, we define subgroups $\Delta(G)$ and $(G^{I_r})^0$ of G^{I_r} by $\Delta(G) = \{(g, \ldots, g) \in G^{I_r} \mid g \in G^{I_r} \}$ $g \in G$ and $(G^{I_r})^0 = \text{Ker}(G^{I_r} \to G, (g_1, \ldots, g_r) \mapsto g_1 \cdots g_r)$, respectively, and, in the case where either $p \equiv 1 \pmod{4}$, $m \equiv 0 \pmod{2}$, $m \neq 2$ or $p \equiv 3 \pmod{4}$, $m \equiv 0 \pmod{4}$ holds, the surjective homomorphism $(\mathbb{F}_p^{\times})^{I_m} \rightarrow$ $\mathbb{F}_p^\times/(\mathbb{F}_p^\times)^2$ is the composite of $(\mathbb{F}_p^\times)^{I_m} \twoheadrightarrow (\mathbb{F}_p^\times/(\mathbb{F}_p^\times)^2)^{I_m}$ and $(\mathbb{F}_p^\times/(\mathbb{F}_p^\times)^2)^{I_m} \twoheadrightarrow$ $(\mathbb{F}_p^{\times}/(\mathbb{F}_p^{\times})^2)^{I_m}/((\mathbb{F}_p^{\times}/(\mathbb{F}_p^{\times})^2)^{I_m})^0 = \mathbb{F}_p^{\times}/(\mathbb{F}_p^{\times})^2$. Moreover, the inertia subgroup of G_f corresponds to $\Delta(\mathbb{F}_p^{\times}) \ltimes (\mathbb{F}_p)^{I_m}$.

(ii) k_{K_f} is generated by $\{(\alpha \mod m_{K_f})^{1/p} \mid \alpha \in \text{roots}(h)\}$ \cup $\{(h'(\alpha)/h'(\alpha'))^{\frac{1}{p-1}}\mod{\mathfrak{m}_{K_f}}\mid \alpha,\alpha' \in \text{roots}(h)\}\ \ over\ k. \quad Moreover, the$ algebraic closure \mathbb{F} of \mathbb{F}_p in k_{K_f} coincides with \mathbb{F}_2 if $p=2$,

$$
\mathbb{F} = \begin{cases} \mathbb{F}_{p^2}, & m = 2, \\ \mathbb{F}_p, & m \neq 2, \end{cases}
$$

if $p \equiv 1 \pmod{4}$, and

$$
\mathbb{F} = \left\{ \begin{array}{ll} \mathbb{F}_{p^2}, & m\equiv 2\pmod{4},\\ \mathbb{F}_p, & m\not\equiv 2\pmod{4}, \end{array} \right.
$$

if $p \equiv 3 \pmod{4}$.

Proof. (i) In order to apply (1.5) , we have to check that conditions (a) and (b) of (1.5) hold. It is easy to see that (a) holds. Next, since K_h = $\mathbb{F}_p(\alpha_1,\ldots,\alpha_m)((s_1)),$ where $\text{roots}(h) = {\alpha_1,\ldots,\alpha_m},$ we have $\mu(h,\alpha) = 0$ for each $\alpha \in \text{roots}(h)$, while $\delta(a, h, \alpha) = v(s_1) = 1$. Thus (b) holds, and we may apply (1.5) .

It is easy to see that K_h/K is an unramified S_m -extension. Next we have $M_f = K_h((-s_1/h'(\alpha_1))^{1/(p-1)}, \ldots, (-s_1/h'(\alpha_m))^{1/(p-1)})$. Since $-1/h'(\alpha_i)$ is a unit of R_{K_h} and s_1 is a prime element of R_{K_h} , the inertia subgroup of $Gal(M_f/K_h)$ corresponds to $\Delta(\mathbb{F}_p^{\times})$, and the maximal unramified subextension $M_{0,f}/K_h$ in M_f/K_h is $K_h((h'(\alpha_i)/h'(\alpha_j))^{1/(p-1)} | i, j = 1,...,m) =$ $K_h((h'(\alpha_i)/h'(\alpha_1))^{1/(p-1)} \mid i = 2,\ldots,m).$

Now, observing the subgroup of $K_h^{\times}/(K_h^{\times})^{p-1}$ generated by the classes of $-a/h'(\alpha)$ ($\alpha \in \text{roots}$) by using the divisor group of (the spectrum of) the polynomial ring $\mathbb{F}_p[\alpha_1,\ldots,\alpha_m]$ over \mathbb{F}_p , we obtain the desired description of E. (We leave the details to the readers.)

Finally, by (1.6)(i), k_{K_f} contains $\{(\alpha \mod m_{K_f})^{1/p} \mid \alpha \in \text{roots}(h)\}.$ Since k_{K_h} is a purely transcendental extension of \mathbb{F}_p generated by α mod \mathfrak{m}_{K_f} and k_{M_f} is separable over k_{K_h} , the inseparable degree of the extension k_{K_f}/k_{M_f} is at least p^m . Thus, the ramification index of the extension K_f/M_f is at least p^m . Therefore, K_f/M_f must be totally ramified with degree p^m and the Galois group $\text{Gal}(K_f/M_f)$ must coincide with the whole of $(C_p)^{I_m}$.

These complete the proof of (i).

(ii) The above proof shows that $k_{K_h} = k(\alpha \mod \mathfrak{m}_{K_h} \mid \alpha \in \text{roots}(h)),$ and that k_{K_f} contains the field k'_{K_f} generated by $\{(\alpha \mod \mathfrak{m}_{K_f})^{1/p} \mid \alpha \in \text{roots}(h)\} \cup$ $\{(h'(\alpha)/h'(\alpha'))^{\frac{1}{p-1}}\mod{\mathfrak{m}_{K_f}}\mid \alpha,\alpha'\in\mathop{\rm roots}(h)\}\text{ over }k_{K_h}\text{ (or, equivalently, }$ over k, as $\alpha = (\alpha^{1/p})^p$). Moreover, we can check $[k_{K_f}: k_{K_h}] = [k'_{K_f}: k_{K_h}]$, which implies $k_{K_f} = k'_{K_f}$, as desired.

Finally, k_{K_h} is a purely transcendental extension of \mathbb{F}_p generated by $\{\alpha \mod \mathfrak{m}_{K_h} \mid \alpha \in \text{roots}(h)\}.$ Moreover, observing the subgroup of $(K_h \overline{\mathbb{F}}_p)^{\times}/((K_h \overline{\mathbb{F}}_p)^{\times})^{p-1}$ generated by the classes of $-a/h'(\alpha)$ $(\alpha \in \text{roots}(h))$ by using the divisor group of (the spectrum of) the polynomial ring $\bar{\mathbb{F}}_p[\alpha_1, \ldots, \alpha_m]$ over $\overline{\mathbb{F}}_p$, and comparing the result with the above description of the subgroup of $K_h^{\times}/(K_h^{\times})^{p-1}$ generated by the classes of $-a/h'(\alpha)$ $(\alpha \in \text{roots}(h))$, we see that the algebraic closure of \mathbb{F}_p in k_{K_h} is as described in the assertion. Since k_{K_f}/k_{M_f} is purely inseparable, this completes the proof. \Box

So far, we have only investigated superseparable polynomials over complete discrete valuation fields. Here, we shall introduce the following global situation and study superseparable polynomials in a moduli-theoretic fashion. We put

$$
A^{mp}_\text{upper} \stackrel{\text{def}}{=} \text{Spec}(\mathbb{F}_p[t_1,\ldots,t_{mp}]) \simeq \mathbf{A}^{mp}_{\mathbb{F}_p}
$$

and

$$
A_{\text{lower}}^{mp} \stackrel{\text{def}}{=} \text{Spec}(\mathbb{F}_p[s_0,\ldots,s_{mp-1}]) \simeq \mathbf{A}_{\mathbb{F}_p}^{mp}.
$$

Moreover, consider the morphism $E: A^{mp}_{\text{upper}} \to A^{mp}_{\text{lower}}$, defined by

$$
\prod_{i=1}^{mp} (T - t_i) = \sum_{i=0}^{mp} s_i T^i,
$$

where $s_{mp} \stackrel{\text{def}}{=} 1$. Namely, for $i = 0, \ldots, mp - 1$, s_i is $(-1)^{mp-i}$ times the $(mp-i)$ -th elementary symmetric polynomial in t_1, \ldots, t_{mp} . It is well-known that E is finite flat of degree $(mp)!$, and that, if we delete the discriminant locus D_{lower} from A_{lower}^{mp} and the union D_{upper} of weak diagonals from A_{upper}^{mp} , E gives a finite, étale, Galois covering with Galois group S_{mp} .

Let A^{m+1}_{lower} be the closed subscheme of A^{mp}_{lower} defined by $s_i = 0$ for all i with $p \nmid i$ and $i \neq 1$. We define a divisor A_{lower}^m of A_{lower}^{m+1} by $s_1 = 0$. Observe that A_{lower}^m coincides with the non-étale locus of $E|_{A_{\text{lower}}^{m+1}}$, and that we have $A_{\text{lower}}^m = A_{\text{lower}}^{m+1} \cap D_{\text{lower}}$ set-theoretically. We also have $A_{\text{lower}}^{m+1} \simeq \mathbf{A}_{\mathbb{F}_p}^{m+1}$ and $A^m_{\text{lower}} \simeq \mathbf{A}^m_{\mathbb{F}_p}$ naturally.

Now, we have the following diagram:

 $\alpha \in S$

$$
A_{\text{upper}}^{mp} - D_{\text{upper}} \stackrel{E}{\rightarrow} A_{\text{lower}}^{mp} - D_{\text{lower}}
$$

\n
$$
\uparrow \text{c.i.} \qquad \Box \qquad \uparrow \text{c.i.}
$$

\n
$$
U_m \qquad \rightarrow \quad A_{\text{lower}}^{m+1} - A_{\text{lower}}^m
$$

where \Box means a fiber product diagram, $\stackrel{\text{c.i.}}{\rightarrow}$ means a closed immersion, and $U_m \stackrel{\text{def}}{=} A^{mp}_{\text{upper}} \times_{A^{mp}_{\text{lower}}} (A^{m+1}_{\text{lower}} - A^{m}_{\text{lower}}).$

We shall apply this moduli-theoretic situation to the study of superseparable polynomials over a (an arbitrary) complete discrete valuation field K of characteristic $p > 0$. From now, for each finite subset S of \overline{K} , we put $\phi_S(T) \stackrel{\text{def}}{=} \prod$ $(T - \alpha).$

PROPOSITION (1.11). Let m be an integer ≥ 1 . Assume that there exists a finite subset S of K with cardinality m, such that ϕ_S satisfies

(1.12)
$$
\phi'_{S}(\gamma)/\phi'_{S}(\gamma') \in (K^{\times})^{p-1} \text{ for all } \gamma, \gamma' \in S.
$$

Then, there exists a monic, superseparable polynomial $f(T) \in K[T]$ with $deg(f) = mp$, such that f is completely splittable in K.

Proof. We consider the above moduli-theoretic situation $E: A^{mp}_{\text{upper}} \to A^{mp}_{\text{lower}}$ and A^m_{lower} $\stackrel{\text{c.i.}}{\rightarrow} A^{m+1}_{\text{lower}}$ $\stackrel{\text{c.i.}}{\rightarrow} A^{mp}_{\text{lower}}$. We have to show that $U \stackrel{\text{def}}{=} U_m$ admits a Krational point. Recall that E induces a finite, étale (not necessarily connected) S_{mp} -Galois covering $U \to A_{\text{lower}}^{m+1} - A_{\text{lower}}^m$. However, first we need to investigate the non-étale loci of E .

We put $A^m_{\text{upper}} \stackrel{\text{def}}{=} \text{Spec}(\mathbb{F}_p[u_1,\ldots,u_m]) \simeq \mathbf{A}^m_{\mathbb{F}_p}$, and define a morphism D : $A^m_{\text{upper}} \rightarrow A^{mp}_{\text{upper}}$ by

$$
(u_1, \ldots, u_m) \mapsto (\underbrace{u_1, \ldots, u_1}_{p \text{ times}}, \ldots, \underbrace{u_m, \ldots, u_m}_{p \text{ times}}),
$$

which is clearly a closed immersion. It is easy to see that $E \circ D : A^m_{\text{upper}} \to A^{mp}_{\text{lower}}$ factors through A^m_{lower} $\stackrel{\text{c.i.}}{\rightarrow} A^{mp}_{\text{lower}}$. More explicitly, $E \circ D$ induces a morphism $A^m_{\text{upper}} \to A^m_{\text{lower}}$, $(u_1, \ldots, u_m) \mapsto ((v_1)^p, \ldots, (v_m)^p)$, where v_i is $(-1)^{m-i}$ times the $(m - i)$ -th elementary symmetric polynomial in u_1, \ldots, u_m .

Now, we obtain the following diagram:

$$
A_{\text{upper}}^{mp} \xrightarrow{E} A_{\text{lower}}^{mp}
$$

\n
$$
\uparrow \text{c.i.} \quad \Box \qquad \uparrow \text{c.i.}
$$

\n
$$
\tilde{X} \rightarrow X \rightarrow A_{\text{lower}}^{m+1}
$$

\n
$$
\uparrow \text{c.i.} \quad \Box \qquad \uparrow \text{c.i.}
$$

\n
$$
Z' \rightarrow Z \rightarrow A_{\text{lower}}^{m}
$$

\n
$$
\uparrow \text{c.i.} \qquad \uparrow \text{c.i.}
$$

\n
$$
\tilde{W} \rightarrow W \rightarrow A_{\text{upper}}^{m}
$$

Here, $X \stackrel{\text{def}}{=} A^{mp}_{\text{upper}} \times_{A^{mp}_{\text{lower}}} A^{m+1}_{\text{lower}}$, \tilde{X} denotes the normalization of X in U, $Z \stackrel{\text{def}}{=} X \times_{A_{\text{lower}}^{m+1}} A_{\text{lower}}^m$, $Z' \stackrel{\text{def}}{=} \tilde{X} \times_X Z$, W denotes an irreducible component of $\tilde{X} \times_X A_{\rm upper}^m$ (regarded as a reduced closed subscheme of \tilde{X}) that is surjectively mapped onto A^m_{upper} , and \tilde{W} is the normalization of the integral scheme W.

Now, we are in the situation of (1.10). More explicitly, in the notation of (1.10), K^{univ} is just the field of fractions of the completed local ring of A^{m+1}_{lower} at the generic point of A^m_{lower} , $k_{K^{\text{univ}}} = \mathbb{F}_p(A^m_{\text{lower}})$, and $k_{K^{\text{univ}}_f} = \mathbb{F}_p(W)$. Moreover, we see that $\mathbb{F}_p(A_{\text{upper}}^m) = K_h^{\text{univ}}((\alpha_1)^{1/p}, \dots, (\alpha_m)^{1/p})$. Thus, $(1.10)(ii)$ implies that $\mathbb{F}_p(W)$ is generated by $\{(h'(\alpha)/h'(\alpha'))^{1/(p-1)} \mid \alpha, \alpha' \in \text{roots}(h)\}\$ over $\mathbb{F}_p(A^m_{\text{upper}})$. Note that $u_i = \alpha_i^{1/p}$ holds for each $i = 1, \ldots, m$. So, if we put $\mathbb{S} \stackrel{\text{def}}{=} \{u_1, \ldots, u_m\},\$ we have $\phi'_{\mathbb{S}}(u_i)^p = h'(\alpha_i),\$ hence

$$
\left(\frac{(h'(\alpha_i)/h'(\alpha_j))^{1/(p-1)}}{(\phi'_{\mathbb{S}}(u_i)/\phi'_{\mathbb{S}}(u_j))}\right)^{p-1} = \phi'_{\mathbb{S}}(u_i)/\phi'_{\mathbb{S}}(u_j).
$$

Thus, we see that $\mathbb{F}_p(W)$ is generated by $\{(\phi'_{\mathbb{S}}(u_i)/\phi'_{\mathbb{S}}(u_j))^{1/(p-1)} \mid i,j =$ $1, \ldots, m$ over $\mathbb{F}_p(A^m_{\text{upper}})$.

Let V be the complement of the union of weak diagonals defined by $u_i - u_j =$ 0 for $i, j = 1, ..., m, i \neq j$ in A_{upper}^m . Since \tilde{W} coincides with the integral closure of A^m_{upper} in $\mathbb{F}_p(W)$, we now see that $\tilde{W}_V \stackrel{\text{def}}{=} \tilde{W} \times_{A^m_{\text{upper}}} V$ is finite étale covering generated by $\{(\phi'_{\mathbb{S}}(u_i)/\phi'_{\mathbb{S}}(u_j))^{1/(p-1)} | i,j=1,\ldots,m\}$ over V.

Now, take a finite set S as in our assumption, and put $S = \text{roots}(\phi_S)$ $\{\gamma_1,\ldots,\gamma_m\}$. Then, $x=(\gamma_1,\ldots,\gamma_m)$ gives an element of $V(K)\subset \mathcal{A}^m_{\text{upper}}(K)$. Moreover, condition (1.12), together with the above description of \tilde{W}_V , implies that the fiber of $\tilde{W}_V \to V$ at x consists of K-rational points. In particular, we have $\tilde{W}_V(K) \neq \emptyset$. Note that \tilde{W}_V is smooth over \mathbb{F}_p , as being étale over A^m_{upper} . Or, equivalently, \tilde{W}_V is contained in the smooth locus \tilde{W}^{sm} of \tilde{W} . Now, as K is large, we conclude that $\tilde{W}(K)$ is Zariski dense in \tilde{W} . (See [Pop] for the definition and properties of large fields.) Accordingly, $W(K)$ is dense in W , a fortiori.

On the other hand, since \tilde{X} is normal (and \mathbb{F}_p is perfect), the complement of \tilde{X}^{sm} is of codimension ≥ 2 in \tilde{X} . It follows from this that $W \cap \tilde{X}^{\text{sm}}$ is non-empty (and open in W). Moreover, since W is integral (and \mathbb{F}_p is perfect), we have W^{sm} is also non-empty and open, hence so is $W' \stackrel{\text{def}}{=} W^{\text{sm}} \cap \tilde{X}^{\text{sm}}$. As we have already seen, $W(K)$ is dense in W. Accordingly, we have $W'(K) \neq \emptyset$, hence, a fortiori, $\tilde{X}^{\text{sm}}(K) \neq \emptyset$. As K is large, this implies that there exists a connected (or, equivalently, irreducible) component Y of \ddot{X} , such that $Y(K)$ is dense in Y. Now, observe that $Y \to A_{\text{lower}}^{m+1}$ is (finite and) surjective. From this, $Y_U \stackrel{\text{def}}{=} Y \times_X U = Y \cap U$ (where the last intersection is taken in \tilde{X}) is nonempty (and open in Y). Thus, $Y_U(K)$ is non-empty, hence, a fortiori, $U(K)$ is non-empty. This completes the proof. \Box

LEMMA (1.13). Let m be an integer ≥ 1 . Assume that (K, m) satisfies:

(1.14) *At least one of the following holds:*
\n
$$
K \supset \mathbb{F}_{p^2}; p = 2; m \equiv \epsilon \pmod{p+1} \text{ for some } \epsilon \in \{0, \pm 1\}.
$$

Then, there exists a finite subset S of K with cardinality m, such that ϕ_S satisfies (1.12).

Proof. Let s denote any element of $\mathfrak{m} \cap (K^{\times})^{p-1}$ (e.g., $s = t^{p-1}$).

Firstly, assume that either $K \supset \mathbb{F}_{p^2}$ or $p = 2$ holds. In this case, we take any integers i_1, \ldots, i_m with $i_1 < \cdots < i_m$ and put $S \stackrel{\text{def}}{=} \{s^{i_k} \mid k = 1, \ldots, m\}.$ Then, $\sharp(S) = m$ clearly holds. Now, for $\gamma = s^{i_k} \in S$, we have

$$
\begin{split} \phi'_{S}(\gamma) &= \prod_{j=1}^{k-1} (s^{i_k} - s^{i_j}) \prod_{j=k+1}^{m} (s^{i_k} - s^{i_j}) \\ &= (-1)^{k-1} s^{i_1 + \dots + i_{k-1} + (m-k)i_k} \prod_{j \neq k} (1 - s^{|i_k - i_j|}). \end{split}
$$

Note that we have $-1, s \in (K^{\times})^{p-1}$ and $1 + \mathfrak{m} \subset (K^{\times})^{p-1}$. (For -1 , use the assumption that either $K \supset \mathbb{F}_{p^2}$ or $p = 2$ holds.) Thus, (1.12) holds.

Secondly, assume $m \equiv \epsilon \pmod{p+1}$ with $\epsilon \in \{0, \pm 1\}$. We may put $m =$ $(p+1)n + \epsilon$. Moreover, we take any integers $i_1, j_1, i_2, j_2, \ldots, i_n, j_n, i_{n+1}$ with $i_1 < j_1 < i_2 < j_2 < \cdots < i_n < j_n < i_{n+1}$. Now, we put $S_{\epsilon} = \{s^{i_k} \mid k \in$ $I_{\epsilon} \} \cup \{ s^{j_k} + c s^{j_k+1} \mid k = 1, \ldots, n, \ c \in \mathbb{F}_p \},$ where

$$
I_{\epsilon} = \begin{cases} \{2, \ldots, n\}, & \epsilon = -1, \\ \{1, \ldots, n\}, & \epsilon = 0, \\ \{1, \ldots, n+1\}, & \epsilon = 1. \end{cases}
$$

Then, by using $s \in (K^{\times})^{p-1}$, $1 + \mathfrak{m} \subset (K^{\times})^{p-1}$, and the fact \prod $\prod_{j\in\mathbb{F}_p^\times}j=-1,$ we can elementarily check that $\phi'_{S_{\epsilon}}(\gamma) \in (K^{\times})^{p-1}$ (resp. $\phi'_{S_{\epsilon}}(\gamma) \in -(K^{\times})^{p-1}$) holds for each $\gamma \in S_{\epsilon}$, if $\epsilon = 0, 1$ (resp. $\epsilon = -1$). Thus, (1.12) holds. \Box

DEFINITION. Let $f(T) = a_1 T + \sum_{n=1}^{m}$ $i=0$ $a_{ip}T^{ip}$ be a superseparable polynomial (over

some field of characteristic p).

(i) We say that f is of special type, if $a_{mp} = a_1 = 1$, $a_0 = 0$ holds.

(ii) We put $\text{def}(f) \stackrel{\text{def}}{=} \sup\{r > 0 \mid a_j = 0 \text{ for all } j \text{ with } mp > j > mp - r\}$ and call it the defect of f. (Thus, we have $0 < \text{def}(f) \le mp - 1$, unless $m = 0$.)

COROLLARY (1.15) . Let m be a positive integer.

(i) Assume that (K, m) satisfies (1.14). Then, there exists a monic, integral, superseparable polynomial $f(T) \in K[T]$ with $f(0) = 0$ and $\deg(f) = mp$, such that f is completely splittable in K.

(ii) Assume that (K, m) satisfies one of the following: $K \supset \mathbb{F}_{p^2}$ and $(p-1, m-1)$ 1) = $(p+1, m+1) = 1$; $p = 2$; $m \equiv \epsilon \pmod{p+1}$ for some $\epsilon \in \{0, \pm 1\}$ and $(p-1, m-1) = 1$. Then, there exists a superseparable polynomial $f(T) \in K[T]$ of special type with $\deg(f) = mp$, such that f is completely splittable in K.

Proof. (i) By (1.11) and (1.13), there exists a monic superseparable polynomial $f(T) \in K[T]$ with $\deg(f) = mp$, such that f is completely splittable in K. Replacing $f(T)$ by $f_c(T) \stackrel{\text{def}}{=} c^{mp} f(c^{-1}T)$ with $c \in K^{\times}$, $v(c) \gg 0$, we may assume that f is integral. (Observe that $\text{roots}(f_c) = c \text{roots}(f)$.) Finally, replacing $f(T)$ by $f(T + \alpha)$, where $\alpha \in \text{roots}(f)$, we may assume $f(0) = 0$.

(ii) We have $K \supset \mathbb{F}_q((t))$ with $q = p^2$ (resp. $q = p$), if $K \supset \mathbb{F}_{p^2}$ (resp. either $p = 2$ or $m \equiv \epsilon \pmod{p+1}$ with $\epsilon \in \{0, \pm 1\}$. Thus, it suffices to prove the assertion in the case $K = \mathbb{F}_q((t))$. So, from now on, we assume that $K = \mathbb{F}_q((t)).$

By (1.11) and (1.13), there exists a monic, superseparable polynomial $f_1(T) \in K[T]$ with $\deg(f_1) = mp$, such that f_1 is completely splittable in K. Replacing $f_1(T)$ by $f_1(T + \alpha)$, where $\alpha \in \text{roots}(f_1)$, we may assume that $f_1(0) = 0$. Moreover, we may put $f_1(T) = a_1(t)T + \sum_{i=1}^{m}$ $i=0$ $a_{ip}(t)T^{ip}$, where

 $a_{ip}(t) \in K = \mathbb{F}_q((t)), a_1(t) \in K^\times = \mathbb{F}_q((t))^\times$, and $a_{mp}(t) = 1, a_0(t) = 0$. Next, we put $f_2(T) \stackrel{\text{def}}{=} a_1(t^{mp-1})T + \sum_{i=1}^m$ $i=1$ $a_{ip}(t^{mp-1})T^{ip}$. Then, $f_2(T)$ is completely splittable in $\mathbb{F}_q((t)) \supset \mathbb{F}_q((t^{mp-1}))$.

Put $a_1(t) = ct^r + \cdots$, where $c \in \mathbb{F}_q^{\times}$, $r \in \mathbb{Z}$, and \cdots means the higher order terms. Then, we have $a_1(t^{mp-1}) = ct^{r(mp-1)} + \cdots$. Here, observe that $(p-1, m-1) = (p+1, m+1) = 1$ (resp. $(p-1, m-1) = 1$) is equivalent to saying $(q-1, mp-1) = 1$, for $q = p^2$ (resp. $q = p$). So, we have $\mathbb{F}_q^{\times} = (\mathbb{F}_q^{\times})^{mp-1}$. By using this fact (and the fact that $1 + \mathfrak{m} \subset (K^{\times})^{mp-1}$ as $p \nmid mp-1$), we see that $a_1(t^{mp-1}) \in (K^{\times})^{mp-1}$. So, write $a_1(t^{mp-1}) = b(t)^{mp-1}$. Now, it is easy to check that $f(T) \stackrel{\text{def}}{=} b(t)^{-mp} f_2(b(t)T)$ satisfies the desired conditions. This completes the proof. \square

COROLLARY (1.16). (i) There exists a positive integer m_1 (which depends only on p), such that, for each positive integer m with $m_1 \mid m$, there exists a monic, integral, superseparable polynomial f in K[T] with $f(0) = 0$ and $\deg(f) = mp$, such that f is completely splittable in K .

(ii) There exists a positive integer m_2 (which depends only on p), such that, for each positive integer m with $m_2 \mid m$, there exists a superseparable polynomial f in K[T] of special type and with $\deg(f) = mp$, such that f is completely splittable in K.

Proof. (i) (resp. (ii)) is a direct corollary of $(1.15)(i)$ (resp. (ii)). We can take, for example, $m_1 = p + 1$ (resp. $m_2 = (p + 1)(p - 1)$). □

LEMMA (1.17) . Let F be a field of characteristic p, and L a Galois extension of F. Let A be an $\mathbb{F}_p[\text{Gal}(L/F)]$ -submodule of L with $\dim_{\mathbb{F}_p}(A) = r < \infty$, and put $\phi_A(T) \stackrel{\text{def}}{=} \prod$ $(T - \alpha)$. Then:

 $\alpha \in A$ (i) $\phi_A(T)$ is a monic superseparable polynomial in $F[T]$. (ii) $F_{\phi_A} = F(A)$. (iii) $\deg(\phi_A) = p^r \text{ and } \deg(\phi_A) \geq p^r - p^{r-1}.$ (iv) $\phi'_{A}(T) = \prod$ $\alpha \in A - \{0\}$ α. (v) If, moreover, $F = K$ and $A \subset R_L$, then ϕ_A is integral.

Proof. (i) By definition, ϕ_A is monic and separable. It is well-known that ϕ_A is an additive polynomial, hence a superseparable polynomial. Since A is $Gal(L/F)$ -stable, $\phi_A(T) \in F[T]$.

(ii) Clear.

(iii) The first assertion is clear. The second assertion follows from the fact that ϕ_A is an additive polynomial.

(iv) Since ϕ_A is monic and superseparable, we obtain

$$
\phi'_A(T)=\phi'_A(0)=\prod_{\alpha\in A-\{0\}}(-\alpha)=\prod_{\alpha\in A-\{0\}}\alpha,
$$

as desired. (v) Clear. \square

The following corollary is a final result of this \S , of which (i) (resp. (ii)) will play a key role in §2 (resp. §3). Note that one of the main differences between (i) and (ii) consists in the fact that, in (ii), the defect of the superseparable polynomial is estimated from below.

COROLLARY (1.18) . (i) Let L be a finite Galois extension of K. Then, there exists a positive integer $m_{L/K}$, such that, for each positive integer m with $m_{L/K}$ | m, there exists a superseparable polynomial $f(T) \in K[T]$ of special type with $\deg(f) = mp$ and $K_f = L$. (ii) We have:

∀n: positive integer,

 $\exists m_n$: positive integer (depending only on p and n),

 $\forall m: positive integer with m_{K,n} \mid m,$

 $\exists c = c_{K,n,m}:$ positive real number,

 $\forall L:$ (possibly infinite) Galois extension of K,

 $\forall A: \text{ finite } \mathbb{F}_p[\text{Gal}(L/K)]\text{-submodule of } R_L \text{ with } A \cap \mathfrak{m}_L = \{0\},\$

 $\forall r: \text{ integer} > \dim_{\mathbb{F}_p}(A),$

 $\forall \nu: \text{integer},$

 $\exists \delta$: positive integer with $\delta \leq cmp^{r+1}/\sharp(A)$ and $\delta \equiv \nu \pmod{n}$,

 $\forall a \in K^\times \text{ with } v(a) = \delta,$

 $\exists f(T)$: monic, integral, superseparable polynomial in $K[T]$,

s.t. $\deg(f) = mp^{r+1}$, $\deg(f) \ge (p-1)p^r$, $f'(T) = a$ and $K_f = K(A) \subset L$.

Proof. (i) Since L/K is finite, we see that there exists a finite $\mathbb{F}_p[\text{Gal}(L/K)]$ submodule $A_0 \neq \{0\}$ of L, such that $L = K(A_0)$. We put $q \stackrel{\text{def}}{=} \sharp(A_0)$, which is a power of p. Then, by (1.17), $\phi_1 \stackrel{\text{def}}{=} \phi_{A_0}$ is a monic, superseparable polynomial in K[T] with $deg(\phi_1) = q$, $\phi_1(0) = 0$, and $\phi'_1(T) = a_0 \stackrel{def}{=} \prod_{\alpha \in A_0 - \{0\}} \alpha$, and $L = K_{\phi_1}$. On the other hand, take m_2 as in (1.16)(ii). Now, we put $m_{L/K} \stackrel{\text{def}}{=} q(q-1)m_2.$

Let m be any positive integer divisible by $m_{L/K}$, and put $n \stackrel{\text{def}}{=} m/m_{L/K}$. Then, by (1.16)(ii), there exists a superseparable polynomial $f_1(T) \in K[T]$ of special type and with degree $n(q-1)m_2p$, such that f_1 is completely splittable in K.

For each $b \in K^{\times}$, we put $f_b(T) \stackrel{\text{def}}{=} b^{n(q-1)m_2 p} f_1(b^{-1}T)$ (resp. $\phi_b(T) \stackrel{\text{def}}{=}$ $b^q\phi_1(b^{-1}T)$, so that f_b (resp. ϕ_b) is a monic, superseparable polynomial with $deg(f_b) = n(q-1)m_2p$ (resp. $deg(\phi_b) = q$), $f_b(0) = 0$ (resp. $\phi_b(0) = 0$), and $f'_b(T) = b^{n(q-1)m_2p-1}$ (resp. $\phi'_b(T) = b^{q-1}a_0$).

Now, by $(1.4)(ii)$, every polynomial in $L[T]$ with degree q which is sufficiently close to $\phi_b(T)$ ($b \in K^\times$) is completely splittable in L. By using this, we see that $F_{b,b'} \stackrel{\text{def}}{=} f_{b'} \circ \phi_b \in K[T]$ satisfies $K_{F_{b,b'}} = L$ for all $b' \in K^\times$ with $v(b') \ge C(b)$, where $C(b)$ denotes a constant depending on b. Observe that $F_{b,b'}$ is a monic, superseparable polynomial with $\deg(F_{b,b'}) = n(q-1)m_2p \times q = mp$, $F_{b,b'}(0) = 0$, and $F'_{b,b'}(T) = (b')^{n(q-1)m_2p-1}b^{q-1}a_0$.

Now, take $b = a_0^{-nm_2p}$ and $b' = a_0 d^{mp-1}$ for any $d \in K^\times$ with $v(d)$ sufficiently large, then $f(T) \stackrel{\text{def}}{=} D^{-mp}F_{b,b'}(DT)$ with $D \stackrel{\text{def}}{=} d^{n(q-1)m_2p-1}$ satisfies all the desired properties.

(ii) Let m_1 be as in (1.16)(i), and choose any common multiple $m_n > 1$ of m_1 , $p-1$, and n.

Let m be any positive integer with $m_n \mid m$. Then, by (1.16)(i), there exists a monic, integral, superseparable polynomial $f_1(T) \in K[T]$ with $\deg(f_1) = mp$, $f_1(0) = 0$, and $K_{f_1} = K$. Now, put $f'_1(T) = a_1 \in R$ and $c \stackrel{\text{def}}{=} \max(\frac{v(a_1)}{m}, \frac{np}{p-1})$.

Let L be any Galois extension of K, A any finite $\mathbb{F}_p[\text{Gal}(L/K)]$ -submodule of R_L with $A \cap \mathfrak{m}_L = \{0\}$, and r any integer $> r_0 \stackrel{\text{def}}{=} \dim_{\mathbb{F}_p}(A)$. Let ν be any integer. We define μ to be the unique integer with $0 < \mu \leq n$, such that $\mu \equiv$ $v(a_1) - (r - r_0) - \nu \pmod{n}$. We put $\delta \stackrel{\text{def}}{=} v(a_1) + \mu (mp-1) + \sum_{r=r_0}^{r-r_0}$ $\sum_{j=1}^{\infty} (mp^{j+1}-1).$

Then, we have

$$
\delta \le v(a_1) + \sum_{j=0}^{r-r_0} nmp^{j+1}
$$

= $m \left(\frac{v(a_1)}{m} + \frac{np}{p-1} (p^{r-r_0+1} - 1) \right)$
 $\le m(c + c(p^{r-r_0+1} - 1))$
= $cmp^{r+1}/\sharp(A)$

and

$$
\delta \equiv v(a_1) - \mu - (r - r_0) \equiv \nu \pmod{n},
$$

as desired.

Let a be any element of K^{\times} with $v(a) = \delta$. For $j = 0, \ldots, r - r_0$, we shall inductively define a monic, integral, superseparable polynomial $f_{2,j}(T)$ with $deg(f_{2,j}) = mp^{j+1}, f_{2,j}(0) = 0, f_{2,j}(T) \equiv T^{mp^{j+1}} \pmod{\mathfrak{m}}$, and $K_{f_{2,j}} = K$, as follows. First, for $j = 0$, we put $g_0(T) \stackrel{\text{def}}{=} f_1(T)$ and $f_{2,0}(T) \stackrel{\text{def}}{=} t^{\mu m p} g_0(t^{-\mu}T)$. Next, for j with $0 < j < r-r_0$, we put $g_j \stackrel{\text{def}}{=} f_{2,j-1} \circ \phi_{\mathbb{F}_p}$, where $\phi_{\mathbb{F}_p}(T) = T^p - T$, and $f_{2,j}(T) \stackrel{\text{def}}{=} t^{mp^{j+1}} g_j(t^{-1}T)$. Finally, for $j = r - r_0$, let u and u' be elements of R^{\times} , which we shall fix later, and we put $g_{r-r_0} \stackrel{\text{def}}{=} f_{2,r-r_0-1} \circ \phi_{u\mathbb{F}_p}$, where $\phi_{u\mathbb{F}_p}(T) = T^p - u^{p-1}T$, and $f_{2,r-r_0}(T) \stackrel{\text{def}}{=} (u't)^{mp^{r-r_0+1}} g_{r-r_0}((u't)^{-1}T)$.

We can check inductively that $f_{2,j}(T)$ is a monic, integral, superseparable polynomial with $\deg(f_{2,j}) = mp^{j+1}, f_{2,j}(0) = 0, f_{2,j}(T) \equiv T^{mp^{j+1}} \pmod{\mathfrak{m}}$, and $K_{f_{2,j}} = K$. Moreover, since $f'_{2,0} = t^{\mu(mp-1)}a_1$, $f'_{2,j} = (-t^{mp^{j+1}-1})f'_{2,j-1}$ $(0 < j < r - r_0)$, and $f'_{2,r-r_0} = (-u^{p-1})(u't)^{mp^{r-r_0+1}-1}$, we obtain

$$
f'_{2,r-r_0} = u^{p-1}(u')^{mp^{r-r_0+1}-1}(-1)^{r-r_0}a_1t^{\mu(mp-1)+\sum_{j=1}^{r-r_0}(mp^{j+1}-1)}
$$

=
$$
u^{p-1}(u')^{mp^{r-r_0+1}-1}(-1)^{r-r_0}(a_1/t^{v(a_1)})t^{\delta}.
$$

So, put $u' = (-1)^{r-r_0} (a_1/t^{v(a_1)})(t^{\delta}/a)w$, where $w \stackrel{\text{def}}{=} \prod$ $\alpha \in A - \{0\}$ $\alpha \in R^{\times}$, and $u =$

$$
(u')^{-\frac{m}{p-1}p^{r-r_0+1}}
$$
, then we have $f'_{2,r-r_0}(T) = aw^{-1}$. Now, we put $f_2 \stackrel{\text{def}}{=} f_{2,r-r_0}$.

Finally, put $f \stackrel{\text{def}}{=} f_2 \circ \phi_A$. Then, f is a monic, integral, superseparable polynomial in $K[T]$ with $deg(f) = deg(f_2) deg(\phi_A) =$ $mp^{r-r_0+1}\sharp(A) = mp^{r+1}, \quad f' = f'_2\phi'_A = (aw^{-1})w = a, \text{ and}$ $K_f = K(A) \subset L$. Finally, by the above construction, we see that f is in the form of (a superseparable polynomial with degree mp) \circ (an additive polynomial with degree p^r). As $m \ge m_{K,n} > 1$ and $r > r_0 \ge 0$, this implies $\text{def}(f) \geq p^{r+1} - p^r$. This completes the proof. \Box

Remark (1.19). So far, we have assumed that K is a complete discrete valuation field (of characteristic p). However, this assumption is superfluous. More specifically, (1.4), (1.5), (1.11), (1.13), (1.15), (1.16), and (1.18) remain valid if we replace this assumption by the weaker assumption that K is henselian (of characteristic p , and (1.10) remains valid if we replace the phrase 'completion' by 'henselization'. Indeed, the proof of the henselian case is just similar to the complete case.

Moreover, among these, (1.11) , (1.13) , (1.15) (except that we need to delete the phrase 'integral' in (i)), (1.16) (except that we need to delete the phrase 'integral' in (i)), and $(1.18)(i)$ remain valid, if we only assume that K is a large field (of characteristic p) in the sense of [Pop]. (In particular, we do not have to assume that K is equipped with a discrete valuation.) Indeed, we see that these statements can be formulated in terms of the existence of K-rational points of K -varieties. The validity of the complete case implies that these varieties admit $K((t))$ -rational points. Now, the large case follows directly from one of the equivalent definitions of large fields (see [Pop], Proposition 1.1, (5)).

§2. Unramified extensions with prescribed local extensions.

In this \S , we use the following new notation. Let C be a noetherian, normal, integral, separated \mathbb{F}_p -scheme of dimension 1. We denote by K the rational function field of C, and fix an algebraic closure \overline{K} of K. We denote by K^{sep} and $G = G_K$ the separable closure of K in \overline{K} and the absolute Galois group $Gal(K^{sep}/K)$ of K, respectively. Let Σ_C be the set of closed points of C. For each $v \in \Sigma_C$, we denote by R_v the completion of the local ring $\mathcal{O}_{C,v}$. This is

a complete discrete valuation ring. We denote by K_v , \mathfrak{m}_v and k_v the field of fractions of R_v , the maximal ideal of R_v and the residue field R_v/\mathfrak{m}_v of R_v , respectively. We fix an algebraic closure \overline{K}_v of K_v , and denote by K_v^{sep} and $G_v = G_{K_v}$ the separable closure of of K_v in K_v and the absolute Galois group $Gal(K_v^{\text{sep}}/K_v)$, respectively.

DEFINITION. We refer to a tuple $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ as a base scheme data, if C is as above, Σ is a (possibly empty) finite subset of Σ_C ; and, for each $v \in \Sigma$, L_v is a (possibly infinite) normal subextension of \overline{K}_v over K_v , such that $L_v \cap K_v^{\text{sep}}$ is v-adically dense in L_v . (For example, this last condition is satisfied if either L_v/K_v is Galois or $L_v = \overline{K}_v$.

If, moreover, C is a normal, geometrically integral curve over a field k of characteristic p, we refer to $\mathcal C$ as a base curve data over k .

For a base scheme data $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$, we put $B = B_{\mathcal{C}} \stackrel{\text{def}}{=} C - \Sigma$. If, moreover, B is affine, then we put $R = R_{\mathcal{C}} \stackrel{\text{def}}{=} \Gamma(B, \mathcal{O}_B)$, so that R is a Dedekind domain and that $B = \text{Spec}(R)$.

We say that a base scheme data $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ is finite, if L_v is a finite extension of K_v for each $v \in \Sigma$. (In this case, L_v is automatically Galois over K_v .)

DEFINITION. Let $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ be a base scheme data. Let K' be an extension of K contained in \overline{K} . Then, we say that K' is C-distinguished (resp. C-admissible), if the integral closure C' of C in K' is étale over B; and, for each $v \in \Sigma$ and each embedding $\iota : \overline{K} \hookrightarrow \overline{K}_v$ over K, we have $\iota(K')K_v = L_v$ (resp. $\iota(K')K_v \subset L_v$).

THEOREM (2.1). Let $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ be a finite base scheme data, and assume that C is affine. Then, there exists a C -distinguished finite Galois extension K′/K.

Proof. For each $v \in \Sigma$, take a positive integer m_{L_v/K_v} as in $(1.18)(i)$, and let m be any common multiple of m_{L_v/K_v} $(v \in \Sigma)$. Then, for each $v \in \Sigma$, there exists a superseparable polynomial $f_v(T) \in K_v[T]$ of special type and with degree mp , such that $L_v = (K_v)_{f_v}$.

Now, observe that R is dense in $\prod_{v\in\Sigma} K_v$. (This follows essentially from the Chinese Remainder Theorem for the Dedekind domain $\Gamma(C, \mathcal{O}_C)$.) From this, we can take a superseparable polynomial $f(T) \in R[T]$ of special type and with degree mp, which is arbitrarily close to f_v for each $v \in \Sigma$. Then, we have $(K_v)_f = (K_v)_{f_v} = L_v$. Or, equivalently, $K_f \otimes_K K_v$ is isomorphic to a direct product of copies of L_v over K_v . On the other hand, for each $v \in \Sigma_C - \Sigma$, f mod \mathfrak{m}_v is a separable polynomial over k_v , since f is of special type. From this, we see that K_f is unramified at v. Thus, $K' \stackrel{\text{def}}{=} K_f$ satisfies all the desired properties. \Box

DEFINITION. Let F be a field. We denote by F^{sep} and G_F a separable closure of F and the absolute Galois group $Gal(F^{\text{sep}}/F)$ of F, respectively. For each prime number l, we define $F(l)$ to be the union of finite Galois extensions F' of

F in F^{sep} with $\text{Gal}(F'/F) \simeq (\mathbb{Z}/l\mathbb{Z})^n$ for some n. Thus, $F(l)$ corresponds via Galois theory to the closed subgroup $G_F(l) \stackrel{\text{def}}{=} \overline{[G_F, G_F](G_F)^l}$ of G_F (which coincides with the kernel of $G_F \twoheadrightarrow G_F^{\text{ab}}/(G_F^{\text{ab}})^l$.

DEFINITION. Let $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ be a base scheme data and Σ_{∞} a subset of Σ . Let K' be an extension of K contained in \overline{K} . Then, we say that K' is nearly C-distinguished (resp. nearly C-admissible) with respect to Σ_{∞} , if the integral closure C' of C in K is étale over B; for each $v \in \Sigma - \Sigma_{\infty}$ and each embedding $\iota : \overline{K} \hookrightarrow \overline{K}_v$ over K , we have $\iota(K')K_v = L_v$ (resp. $\iota(K')K_v \subset L_v$); and, for each $v \in \Sigma_{\infty}$ and each embedding $\iota : \overline{K} \hookrightarrow \overline{K}_{v}$ over K, we have $L_v \subset \iota(K')K_v \subset L_v(p)$ (resp. $\iota(K')K_v \subset L_v(p)$).

THEOREM (2.2). Let k be a field of characteristic p, and $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ a finite base curve data over k. Let Σ_{∞} be a subset of Σ , and assume that $C - \Sigma_{\infty}$ is affine. Then, there exists a finite Galois extension K'/K that is nearly C-distinguished with respect to Σ_{∞} .

Proof. Let C^* be the normal, geometrically integral compactification of C , and put $\Sigma^* \stackrel{\text{def}}{=} \Sigma \cup (\Sigma_{C^*} - \Sigma_C)$ and $\Sigma^*_{\infty} \stackrel{\text{def}}{=} \Sigma_{\infty} \cup (\Sigma_{C^*} - \Sigma_C)$. Moreover, for each $v \in \Sigma_{C^*} - \Sigma_C$, we choose any finite Galois extension L_v of K_v (say, $L_v = K_v$). Then, replacing $C = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ by $(C^*, \Sigma^*, \{L_v\}_{v \in \Sigma^*})$ and Σ_{∞} by Σ_{∞}^* , we may assume that C is proper over k. In this case, we have $\Sigma_{\infty} \neq \emptyset$, since $C - \Sigma_{\infty}$ is affine.

For each $v \in \Sigma$, take a positive integer m_{L_v/K_v} as in (1.18)(i), and let m be any common multiple of m_{L_v/K_v} $(v \in \Sigma - \Sigma_{\infty})$, pm_{L_v/K_v} $(v \in \Sigma_{\infty})$ and 2. Then, for each $v \in \Sigma - \Sigma_{\infty}$ (resp. $v \in \Sigma_{\infty}$), there exists a superseparable polynomial $f_v(T) \in K_v[T]$ of special type and with degree mp (resp. m), such that $L_v = (K_v)_{f_v}$.

Now, let $v \in \Sigma - \Sigma_{\infty}$. Then, for each polynomial $f_{1,v}(T) \in K_v[T]$ with degree mp which is sufficiently close to $f_v(T)$, we have $(K_v)_{f_{1,v}} = (K_v)_{f_v} = L_v$. More precisely, we can take (sufficiently small) $n_v \in \mathbb{Z}$ and (sufficiently large) $m_v \in \mathbb{Z}$ with $n_v < m_v$, so that every coefficient of f_v belongs to $\mathfrak{m}_v^{n_v}$, and that, if every coefficient of $f_{1,v} - f_v$ belongs to $\mathfrak{m}_v^{m_v}$, then we have $(K_v)_{f_{1,v}} = (K_v)_{f_v}$.

On the other hand, let $v \in \Sigma_{\infty}$. Then, similarly as above, we can take (sufficiently small) $n_v \in \mathbb{Z}$ and (sufficiently large) $m_v \in \mathbb{Z}$ with $n_v < m_v$, so that every coefficient of f_v belongs to $\mathfrak{m}_v^{n_v}$, and that, for each polynomial $f_{1,v}(T) \in K_v[T]$ with degree m, if every coefficient of $f_{1,v} - f_v$ belongs to $\mathfrak{m}_v^{m_v}$, then we have $(K_v)_{f_{1,v}} = (K_v)_{f_v}$. Moreover, replacing n_v and m_v if necessary, we may assume that, for each monic polynomial $f_{1,v}(T) \in K_v[T]$ with degree m whose constant term is 0, if every coefficient of $f_{1,v} - f_v$ belongs to $\mathfrak{m}_v^{m_v}$, then we have $(K_v)_{f_{1,v}} = (K_v)_{f_v}$ and there exists a bijection $\iota : \text{roots}(f_v) \stackrel{\sim}{\to} \text{roots}(f_{1,v}),$ such that, for each $\alpha \in \text{roots}(f_v)$, $v(\alpha) = v(\alpha)$, $\mu(f_{1,v}, \iota(\alpha)) = \mu(f_v, \alpha)$, and $f'_{1,v}(\iota(\alpha)) \sim f'_v(\alpha) = 1$. (For the notations $\mu(-,-)$ and ~, see §1.) Now, we

let d_v denote the minimal non-negative integer satisfying

$$
\mu(f_v, \alpha) < \min\left(d_v - v(f'_v(\alpha)) + \frac{1}{p}v(\alpha), \frac{p}{p-1}(d_v - v(f'_v(\alpha)))\right)
$$
\n
$$
= \min\left(d_v + \frac{1}{p}v(\alpha), \frac{p}{p-1}d_v\right)
$$

for all $\alpha \in \text{roots}(f_v)$.

LEMMA (2.3). Let P_1, \ldots, P_r be distinct closed points of C, and, for each $i = 1, \ldots, r$, let a_i and b_i be integers with $a_i \geq b_i$. If $b_1[k_{P_1}:k] + \cdots$ $b_r[k_{P_r}:k] > 2p_a(C) - 2$, then the natural map $\Gamma(C, \mathcal{O}_C(a_1P_1 + \cdots + a_rP_r)) \rightarrow$ ${\frak m}_{P_1}^{-a_1}/{\frak m}_{P_1}^{-b_1}\oplus\cdots\oplus{\frak m}_{P_r}^{-a_r}/{\frak m}_{P_r}^{-b_r}$ is surjective. Here, $p_a(C)$ denotes the arithmetic genus of C.

Proof. This follows from [CFHR], Theorem 1.1. \Box

We fix a sufficiently large integer N satisfying

(2.4)
$$
\left(p(p-1)\sum_{v\in\Sigma_{\infty}}[k_v:k]\right)N - \sum_{v\in\Sigma}[k_v:k]m_v > 2p_a(C) - 2
$$

and

(2.5)
$$
(mp-1)(p-1)N \ge \max\{d_v \mid v \in \Sigma_{\infty}\} (\ge 0),
$$

and, for each $v \in \Sigma_{\infty}$, choose any $e_v \in K_v$ with $v(e_v) = N$. Now, put

$$
g_v(T) \stackrel{\text{def}}{=} \begin{cases} f_v(T), & v \in \Sigma - \Sigma_{\infty}, \\ e_v^{-mp(p-1)} f_v(-e_v^{p(p-1)} T^p) + T, & v \in \Sigma_{\infty}. \end{cases}
$$

Then, $g_v(T)$ is a superseparable polynomial in $K_v[T]$ of special type and with degree mp. (For $v \in \Sigma_{\infty}$, use the assumption that $2 \mid m$.) So, by (2.3) and (2.4), we see that there exists a superseparable polynomial $g(T) \in R[T]$ of special type and with degree mp , such that every coefficient of $g(T) - g_v(T)$ belongs to $\mathfrak{m}_v^{m_v}$ (resp. $\mathfrak{m}_v^{-p(p-1)N+m_v}$) for $v \in \Sigma - \Sigma_\infty$ (resp. $v \in \Sigma_\infty$).

We put $K' \stackrel{\text{def}}{=} K_g$. Just as in the proof of (2.1), K' satisfies the desired property for $v \in \Sigma - \Sigma_{\infty}$ and $v \in \Sigma_{C} - \Sigma$. So, we shall observe what happens at $v \in \Sigma_{\infty}$. We put $g_{e_v}(T) \stackrel{\text{def}}{=} e_v^{mp(p-1)}g(-e_v^{-(p-1)}T)$. Or, writing $g(T) = T + k(T^p)$, we have $g_{e_v}(T) \stackrel{\text{def}}{=} -e_v^{(mp-1)(p-1)}T + k_v(T^p)$, where $k_v(T) \stackrel{\text{def}}{=} e_v^{mp(p-1)}k(-e_v^{-(p-1)p}T_p^p)$. By the choice of g, every coefficient of $g(T) - g_v(T)$ belongs to $\mathfrak{m}_v^{-p(p-1)N+m_v}$, hence every coefficient of $g_{e_v}(T) - (f_v(T^p) - e_v^{(mp-1)(p-1)}T)$ belongs to $e_v^{p(p-1)} \mathfrak{m}_v^{-p(p-1)N+m_v} = \mathfrak{m}_v^{m_v}$. Or, equivalently, every coefficient of $k_v - f_v$ belongs to $\mathfrak{m}_v^{m_v}$. Thus, we may apply the

preceding argument to $f_{1,v} = k_v$. Since, moreover, $v(-e_v^{(mp-1)(p-1)}) = (mp 1)(p-1)N \ge d_v$ by (2.5), we may apply (1.5) to $g_{e_v}(T) = -e_v^{(mp-1)(p-1)}T +$ $k_v(T^p)$. Then, firstly, we have $(K_v)_{g_{e_v}} \supset (K_v)_{k_v} = (K_v)_{f_v} = L_v$. Secondly, for each $\alpha_1 \in \text{roots}(k_v)$, $\left(-(-e_v^{(mp-1)(p-1)})/k_v'(\alpha_1) \right) \sim (e_v^{mp-1})^{p-1}$ belongs to $((K_v)_{k_v}^{\times})^{p-1}$. Thus, we have $M_{g_{e_v}} = (K_v)_{k_v}$. Thirdly, since $Gal((K_v)_{g_{e_v}}/M_{g_{e_v}})$ is a subgroup of $(C_p)^{I_m}$, we have $(K_v)_{g_{e_v}} \subset M_{g_{e_v}}(p)$. Combining these, we obtain $L_v \subset (K_v)_{g_{e_v}} \subset L_v(p)$. Finally, since $\text{roots}(g_{e_v}) = -e_v^{p-1} \text{roots}(g)$, we have $(K_v)_{g_{e_v}} = (K_v)_g$. Thus, $K' = K_g$ satisfies the desired property at $v \in \Sigma_{\infty}$. This completes the proof. \square

§3. Main results.

In this \S , we use the following notation. Let k be an (a possibly infinite) algebraic extension of \mathbb{F}_p and C a smooth, geometrically connected (or, equivalently, normal, geometrically integral) curve over k . In particular, C is a noetherian, normal, integral, separated \mathbb{F}_p -scheme of dimension 1, and we use the notations introduced at the beginning of $\S2$ for this C. Among other things, see $\S2$ for the definition of base curve data.

DEFINITION. (i) We refer to a tuple $S = (\mathcal{C}, f : X \to B, \{\Omega_v\}_{v \in \Sigma})$ as a (smooth) Skolem data, if $C = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ is a base curve data; $B = B_{\mathcal{C}}$; $f: X \to B$ is a smooth, surjective morphism whose generic fiber X_K is geometrically irreducible; and, for each $v \in \Sigma$, Ω_v is a non-empty, v-adically open, G_v -stable subset of $X(L_v)$. (Observe that X is automatically irreducible.)

(ii) We refer to a tuple $\mathcal{B} = (\mathcal{C}, Y_1, \ldots, Y_r \subset \mathbf{P}(\mathcal{E}), \{\check{\Omega}_v\}_{v \in \Sigma})$ as a Bertini data, if $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ is a base curve data; $\mathcal E$ is a locally free sheaf of finite rank $\neq 0$ on \hat{B} ; $r \geq 0$; Y_i is an irreducible, reduced, closed subscheme of $\mathbf{P}(\mathcal{E})$; and, for each $v \in \Sigma$, $\check{\Omega}_v$ is a non-empty, v-adically open, G_v -stable subset of $\mathbf{P}(\check{\mathcal{E}})(L_v)$, where $\check{\mathcal{E}} \stackrel{\text{def}}{=} \mathcal{H}om_{\mathcal{O}_B}(\mathcal{E}, \mathcal{O}_B)$.

For a Bertini data $\mathcal{B} = (\mathcal{C}, Y_1, \ldots, Y_r \subset \mathbf{P}(\mathcal{E}), {\{\hat{\Omega}_v\}}_{v \in \Sigma}),$ we define Y_i^{sm} $(i = 1, \ldots, r)$ to be the set of points of Y_i at which $Y_i \rightarrow B$ is smooth. This is an (a possibly empty) open subset of Y_i , and we regard it as an open subscheme of Y_i .

DEFINITION. (i) Let $S = (\mathcal{C}, f : X \to B, \{\Omega_v\}_{v \in \Sigma})$ be a Skolem data with $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma}).$ Then, an S-admissible quasi-section is a B-morphism $s: B' \to X$, where B' is the integral closure of B in a finite, C-admissible extension K' of K, such that, for each $v \in \Sigma$, the image of $B'_{L_v} \stackrel{\text{def}}{=} B' \times_B L_v$ in $X_{L_v} \stackrel{\text{def}}{=} X \times_B L_v$ is contained in $\Omega_v \subset (X(L_v) = X_{L_v}(L_v)).$

(ii) Let $\mathcal{B} = (\mathcal{C}, Y_1, \ldots, Y_r \subset \mathbf{P}(\mathcal{E}), \{\dot{\Omega}_v\}_{v \in \Sigma})$ be a Bertini data with $\mathcal{C} =$ $(C, \Sigma, \{L_v\}_{v \in \Sigma})$. Then, a B-admissible quasi-hyperplane is a hyperplane H in $\mathbf{P}(\mathcal{E})_{B'}$, where B' is the integral closure of B in a finite, C-admissible extension K' of K, such that (a) for each $i = 1, \ldots, r$, each geometric point b of B' and each irreducible component P of $Y_{i,\bar{b}}$, we have $P \cap H_{\bar{b}} \subsetneq P$; (b) for each $i = 1, ..., r$, the scheme-theoretic intersection $(Y_i^{\text{sm}})_{B'} \cap H$ (in $\mathbf{P}(\mathcal{E})_{B'}$) is smooth over B' ; (c) for each $i = 1, ..., r$ and each irreducible component P

of $Y_i\overline{\kappa}$ with dim(P) ≥ 2 , $P \cap H_{\overline{\kappa}}$ is irreducible; and (d) for each $v \in \Sigma$, the image of B'_{L_v} in $\mathbf{P}(\check{\mathcal{E}})_{L_v}$ by the base change to L_v of the classifying morphism $[H]: B' \to \mathbf{P}(\check{\mathcal{E}})$ over B is contained in $\check{\Omega}_v \ (\subset \mathbf{P}(\check{\mathcal{E}})(L_v) = \mathbf{P}(\check{\mathcal{E}})_{L_v}(L_v)).$

DEFINITION. Let $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ be a base curve data over k. (i) We denote by R_{L_v} , \mathfrak{m}_{L_v} , and k_{L_v} the integral closure of R_v in L_v , the maximal ideal of R_{L_v} , and the residue field $R_{L_v}/\mathfrak{m}_{L_v}$, respectively. (ii) We say that C satisfies condition (RI), if $[k_{L_v} : \mathbb{F}_p] = \infty$ for all $v \in \Sigma$. (Here, 'RI' means 'residually infinite'.)

Now, the following are the main results of the present paper.

THEOREM (3.1). Let $S = (\mathcal{C}, f : X \to B, \{\Omega_v\}_{v \in \Sigma})$ be a Skolem data with $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$, and assume that C is affine and that (RI) holds. Then, there exists an S-admissible quasi-section.

THEOREM (3.2). Let $\mathcal{B} = (\mathcal{C}, Y_1, \ldots, Y_r \subset \mathbf{P}(\mathcal{E}), \{\check{\Omega}_v\}_{v \in \Sigma})$ be a Bertini data with $C = (C, \Sigma, \{L_v\}_{v \in \Sigma})$, and assume that C is affine and that (RI) holds. Then, there exists a B-admissible quasi-hyperplane.

The aim of the rest of this \S is to prove these theorems, together and step by step. From now on, we put $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma}), \mathcal{S} = (\mathcal{C}, f : X \to B, \{\Omega_v\}_{v \in \Sigma}),$ and $\mathcal{B} = (\mathcal{C}, Y_1, \ldots, Y_r \subset \mathbf{P}(\mathcal{E}), \{\check{\Omega}_v\}_{v \in \Sigma}),$ and assume always that C is affine and that (RI) holds.

DEFINITION. We say that a Skolem data $S = (\mathcal{C}, f : X \to B, \{\Omega_v\}_{v \in \Sigma})$ is essentially rational, if $\Omega_v \cap X(K_v) \neq \emptyset$ for each $v \in \Sigma$.

Step 1. Assume that S is essentially rational, and that X is an open subscheme of \mathbf{P}_{B}^{1} . Then, there exists an *S*-admissible quasi-section.

Proof. We put $W \stackrel{\text{def}}{=} \mathbf{P}_{B}^{1} - X$. By shrinking X if necessary, we may assume that W is purely of codimension 1 in \mathbf{P}_B^1 and that W contains the infinity section ∞_B of \mathbf{P}_{B}^1 . Next, we put $\tilde{R} \stackrel{\text{def}}{=} \Gamma(C, \mathcal{O}_C)$, which is a Dedekind domain contained in $R = \Gamma(B, \mathcal{O}_B)$, such that $C = \text{Spec}(\tilde{R})$.

Since Pic(C) is a torsion group (cf. [Mo2], 1.9), there exists $n > 0$, such that $(\mathfrak{m}_v \cap \tilde{R})^n$ is a principal ideal of \tilde{R} for each $v \in \Sigma$. In particular, there exists $\omega \in \tilde{R}$, such that $(\prod_{v \in \Sigma} (\mathfrak{m}_v \cap \tilde{R}))^n = \tilde{R}\omega$. On the other hand, since $\mathbf{A}^1(R)$ is dense in $\prod_{v \in \Sigma} \mathbf{P}^1(K_v)$, there exists $x \in \mathbf{A}^1(R) (= R)$, such that $x \in \Omega_v \cap X(K_v)$ for each $v \in \Sigma$. (Here, we have used the assumption that S is essentially rational.) Since Ω_v is v-adically open in $X(L_v)$, there exists $l_v \geq 0$, such that $x + (\mathfrak{m}_v R_{L_v})^{l_v} \subset \Omega_v$. Finally, take a sufficiently large integer M, such that $nM \geq l_v$ for each $v \in \Sigma$ and that $nM > v(\omega - x)$ for each $v \in \Sigma$ and each $\omega \in W(\overline{K}_v) - \{\infty\}.$

Now, let S denote the coordinate of \mathbf{A}_{B}^{1} that we are using. Since $\varpi \in R^{\times}$ and $x \in R$, the coordinate change $S \to T \stackrel{\text{def}}{=} (S-x)/\varpi^M$ gives an automorphism of \mathbf{P}_B^1 that fixes the infinity section ∞_B . (More sophisticatedly, this corresponds) to a certain blowing-up(-and-down) process in the fibers of $\mathbf{P}_C^1 \to C$ at Σ .)

From now, we shall use this new coordinate T. Then, by the choice of (ϖ, x, M) , we have $R_{L_v} = \mathbf{A}^1(R_{L_v}) \subset \Omega_v$ for each $v \in \Sigma$ and $v(\omega) < 0$ for each $v \in \Sigma$ and $\omega \in W(K_v) - \{\infty\}.$

We define \tilde{W} to be the closure of W in \mathbf{P}^1_C , which contains the infinity section ∞_C of \mathbf{P}_{C}^1 . By the above choice of coordinate, we have $\tilde{W} \cap \mathbf{P}_{k_v}^1 \subset \infty_{k_v}$ for each $v \in \Sigma$. From now, we regard W as a reduced closed subscheme (or, as a divisor) of \mathbf{P}_C^1 . By [Mo2], Théorème 1.3, Pic(\tilde{W}) is a torsion group. So, let s_0 be the order of the class of the line bundle $\mathcal{O}_{\mathbf{P}_C^1}(1)|_{\tilde{W}}$ on \tilde{W} . On the other hand, let e be the degree of \tilde{W} over C. Now, choose a positive integer s which is divisible by s_0 and greater than $e - 2$. As in [Mo2], proof of Théorème 1.7, Etape VIII, consider the exact sequence ´

$$
0 \to \mathcal{O}_{{\mathbf P}^1_C}(s)(-\tilde W) \to \mathcal{O}_{{\mathbf P}^1_C}(s) \to \mathcal{O}_{{\mathbf P}^1_C}(s)|_{\tilde W} \to 0,
$$

which induces the following long exact sequence:

$$
\cdots \to H^0(\mathbf{P}_C^1, \mathcal{O}_{\mathbf{P}_C^1}(s)) \to H^0(\tilde{W}, \mathcal{O}_{\mathbf{P}_C^1}(s)|_{\tilde{W}})
$$

$$
\to H^1(\mathbf{P}_C^1, \mathcal{O}_{\mathbf{P}_C^1}(s)(-\tilde{W})) \to \cdots.
$$

Since s_0 | s, we have $\mathcal{O}_{\mathbf{P}_C^1}(s)|_{\tilde{W}} \simeq \mathcal{O}_{\tilde{W}}$, so that there exists an element $g_0 \in H^0(\tilde{W}, \mathcal{O}_{\mathbf{P}_C^1}(s)|_{\tilde{W}})$ which generates $\mathcal{O}_{\mathbf{P}_C^1}(s)|_{\tilde{W}}$. On the other hand, since $s > e - 2$, we see that $H^1(\mathbf{P}_C^1, \mathcal{O}_{\mathbf{P}_C^1}(s)(-\tilde{W}))$ (which is the dual of $H^0(\mathbf{P}_C^1, \mathcal{O}_{\mathbf{P}_C^1}(-2-s)(\tilde{W}))$ vanishes. Thus, there exists an element $g \in$ $H^0(\mathbf{P}_C^1, \mathcal{O}_{\mathbf{P}_C^1}(s))$ that maps to g_0 . Then, we have $\text{Supp}(g) \cap \tilde{W} = \emptyset$. In particular, we have $\text{Supp}(g) \cap \infty_C = \emptyset$.

We may identify $H^0(\mathbf{P}_C^1, \mathcal{O}_{\mathbf{P}_C^1}(s))$ with the set of polynomials in $\tilde{R}[T]$ with degree $\leq s$. Then, since $\text{Supp}(g) \cap \infty_C = \emptyset$, we see that g is strictly of degree s and that the coefficient u of T^s in $g = g(T)$ is an element of \tilde{R}^{\times} . So, replacing g by $u^{-1}g$ (and g_0 by $u^{-1}g_0$), we may assume that g is monic.

Next, since $Pic(\mathbf{A}_{\mathbf{C}}^1) = Pic(\mathbf{C})$ is a torsion group, there exists an element $w(T) \in \tilde{R}[T]$, such that the zero locus of $w(T)$ in A_C^1 coincides (settheoretically) with $\tilde{W} \cap \mathbf{A}_{C}^1$. Recall that, for each $v \in \Sigma$ and each root ω of w in \overline{K}_v , we have $v(\omega) < 0$. From this fact (and the fact that $\tilde{W} \cap \mathbf{A}^1_{k_v} \subsetneq \mathbf{A}^1_{k_v}$), we see that $w(0)$ is a unit in R_v and that $w(T) \equiv w(0) \pmod{\mathfrak{m}_v}$. Moreover, since k_v^{\times} is a torsion group, we may assume that $w(0) \equiv 1 \pmod{\mathfrak{m}_v}$ for each $v \in \Sigma$, replacing w by a suitable power. Now, we define d to be the degree of w .

First, assume $\Sigma \neq \emptyset$, and we shall apply (1.18)(ii) carefully. Let n be as in the beginning of the proof. Then, there exists a positive integer m_n . We choose a positive integer m to be a common multiple of m_n and s. For this m, we obtain a positive real number $c_{K_v,n,m}$. We put $c_m \stackrel{\text{def}}{=} \max\{c_{K_v,n,m} | v \in \Sigma\}.$

We put $D \stackrel{\text{def}}{=} \frac{d}{p-1}$ and $E \stackrel{\text{def}}{=} \frac{p}{p-1}c_mmp$. We take a positive integer t, such that $p^t > D$. Next, since we are assuming the condition (RI) that k_{L_v} is an infinite

algebraic extension of \mathbb{F}_p , there exists a finite subfield of k_{L_y} with arbitrarily large cardinality. So, we may take a finite subfield \mathbb{F}_v of k_{L_v} , such that $p^{r_v} \stackrel{\text{def}}{=}$ $\sharp(\mathbb{F}_v) > Ep^t$. Since R_v is complete, \mathbb{F}_v admits a canonical lifting in R_{L_v} , to which we refer again as \mathbb{F}_v . Now, take a positive integer $r > \max\{r_v(v \in \Sigma), t\}.$

Applying $(1.18)(ii)$ to $L = L_v$, $A = \mathbb{F}_v$, r as above, and $\nu = 0$, we see that there exists a positive integer δ_v , such that $\delta_v \leq c_m m p^{r+1}/\sharp(\mathbb{F}_v) = c_m m p^{r-r_v+1}$ and that $\delta_v \equiv 0 \pmod{n}$. Since δ_v is divisible by $n, \mathfrak{a} \stackrel{\text{def}}{=} \prod_{v \in \Sigma} (\mathfrak{m}_v \cap \tilde{R})^{\delta_v}$ is a principal ideal of \tilde{R} . So, let $a \in \tilde{R}$ be a generator of **a**. Then, $v(a)$ = $δ_v$ for each $v ∈ Σ$. Now, the conclusion of (1.18)(ii) is that there exists a monic, integral, superseparable polynomial $f_v(T) \in K_v[T]$, such that $deg(f_v)$ mp^{r+1} , $\text{def}(f_v) \ge (p-1)p^r$, $f'_v(T) = a$ and $(K_v)_{f_v} = K_v \mathbb{F}_v \subset L_v$. Moreover, by using (1.4)(ii) and the Chinese Remainder Theorem (for the Dedekind domain \tilde{R}), we may assume that $f_v(T) \in \tilde{R}[T]$ and $f_v(T)$ does not depend on v. So, put $f(T) \stackrel{\text{def}}{=} f_v(T)$ for some (or, equivalently, all) $v \in \Sigma$, then, f is monic, superseparable polynomial in $\tilde{R}[T]$, such that $\deg(f) = mp^{r+1}$, $\det(f) \ge (p -$ 1) p^r , $f'(T) = a$ and $(K_v)_f = K_v \mathbb{F}_v \subset L_v$ for each $v \in \Sigma$.

Next, assume $\Sigma = \emptyset$. In this case, we define m to be any multiple of s, put $D \stackrel{\text{def}}{=} \frac{d}{p-1}$, take a positive integer t with $p^t > D$ and a positive integer r with $r > t$, and let a be any element of \tilde{R}^{\times} . Now, we choose a monic superseparable polynomial $f(T) \in \tilde{R}[T] = R[T]$, such that $\deg(f) = mp^{r+1}$, $\det(f) \ge (p-1)p^r$, and $f'(T) = a$. (For example, put $f(T) = T^{mp^{r+1}} + aT$.)

Finally, we put

$$
F(T) \stackrel{\text{def}}{=} g(T)^{\frac{m}{s}p^{r+1}} + w(T)^{p^{r-t}} (f(T) - g(T)^{\frac{m}{s}p^{r+1}}) \in \tilde{R}[T].
$$

Claim (3.3). *F* is monic of degree mp^{r+1} .

Proof. f is monic with $\deg(f) = mp^{r+1}$ and $\deg(f) \ge (p-1)p^r$. On the other hand, since g is monic of degree s, $g^{\frac{m}{s}}$ is monic of degree m, hence $g^{\frac{m}{s}p^{r+1}}$ is monic of degree mp^{r+1} and with 'defect' $\geq p^{r+1} \geq (p-1)p^r$. From these, we see that $f - g^{\frac{m}{s}p^{r+1}}$ has degree $\leq mp^{r+1} - (p-1)p^r$. Thus,

$$
\begin{aligned} \deg(w^{p^{r-t}}(f-g^{\frac{m}{s}p^{r+1}})) &\leq p^{r-t}d + mp^{r+1} - (p-1)p^r \\ &< p^r dD^{-1} + mp^{r+1} - (p-1)p^r = mp^{r+1} .\end{aligned}
$$

Since $g^{\frac{m}{s}p^{r+1}}$ is monic of degree mp^{r+1} as we have already seen, we conclude that F is monic of degree mp^{r+1} . \Box

Claim (3.4). For each $v \in \Sigma$, any root α of F in K_v is contained in R_{L_v} . *Proof.* Since $w(T) \equiv 1 \pmod{\mathfrak{m}_v}$, we have $w(T)^{p^{r-t}} \equiv 1 \pmod{\mathfrak{m}_v^{p^{r-t}}}$ v^{p^r-1}). Thus,

$$
F(T) \equiv g(T)^{\frac{m}{s}p^{r+1}} + (f(T) - g(T)^{\frac{m}{s}p^{r+1}}) = f(T) \pmod{\mathfrak{m}_{v}^{p^{r-t}}}
$$

Now, since $p^{r-t} > Ep^{r-r_v} = \frac{p}{p-1}c_mmp^{r-r_v+1} \geq \frac{p}{p-1}\delta_v$, we have $(K_v)_{F}$ $(K_v)_f \subset L_v$ by (1.4)(ii). This implies $\alpha \in L_v$. Since $\hat{F}(T)$ is a monic polynomial in $\tilde{R}[T] \subset R_v[T]$, we have $\alpha \in R_{L_v}$, as desired. \Box

Let \tilde{Z} be the zero locus of $F(T)$ in \mathbf{A}_{C}^{1} . By (3.3), \tilde{Z} is closed in \mathbf{P}_{C}^{1} . We put $Z \stackrel{\text{def}}{=} \tilde{Z} \cap \mathbf{P}_B^1$.

Claim (3.5). (i) $Z \subset X$. (ii) Z is finite étale over B .

Proof. (i) On $(W \cap A_B^1)$ ^{red}, we have $F(T) \equiv g(T)^{\frac{m}{s}} p^{r+1}$. Now, since the zero locus of g in \mathbf{A}_{B}^{1} is disjoint from $W \cap \mathbf{A}_{B}^{1}$, so is that of F, as desired. (ii) By (3.3), $Z = \text{Spec}(R[T]/(F(T)))$ is finite (and flat) over R. Since $F' =$ $w^{p^{r-t}}f' = w^{p^{r-t}}a$ and $a \in R^{\times}$, the zero locus of F' in \mathbf{A}_{B}^{1} is (set-theoretically) contained in W . This, together with (i), implies that the zero loci of F and F' are disjoint from each other, as desired. \square

Take an irreducible (or, equivalently, connected) component B' of Z . By (3.5), we have a natural immersion $B' \hookrightarrow X$ over B, which we regard as a finite étale quasi-section of $X \to B$. Since $R_{L_v} \subset \Omega_v$, (3.4) implies that this quasi-section is S-admissible. This completes the proof. \Box

Step 1 is the main step, and, roughly speaking, the rest of proof is only concerning how to reduce general cases to Step 1.

Step 2. Assume that S is essentially rational, and that X is an open subscheme of \mathbf{P}_{B}^{n} for some $n \geq 0$. Then, there exists an *S*-admissible quasi-section.

Proof. If $n = 0$, we must have $X = B$, and the assertion clearly holds. So, assume $n \geq 1$.

Let A be a commutative ring. We define $\mathbf{P}^{n}(A)^{0}$ to be $(\mathbf{A}^{n+1} - 0)(A)/A^{\times}$, where 0 denotes the section $(0, \ldots, 0)$, regarded as a closed subscheme of \mathbf{A}^{n+1} . We define $\mathbf{P}^n(A)^{00}$ to be $\cup_{i=0}^n U_i(A)$, where $U_i(\simeq \mathbf{A}^n)$ is the standard open subset of \mathbf{P}^n . Then, we have $\mathbf{P}^n(A)^{00} \subset \mathbf{P}^n(A)^0 \subset \mathbf{P}^n(A)$. If $\text{Pic}(A) = \{0\}$ (resp. A is a local ring), then we have $\mathbf{P}^n(A)^0 = \mathbf{P}^n(A)$ (resp. $\mathbf{P}^n(A)^{00} =$ $\mathbf{P}^{n}(A)^{0} = \mathbf{P}^{n}(A)$. If A is a Dedekind domain, we see that $\mathbf{P}^{n}(A)^{0}$ forms a $GL_{n+1}(A)$ -orbit.

Now, observe that $\mathbf{P}^n(R)^{00} \cap X(K)$ is dense in $\prod_{v \in \Sigma} \mathbf{P}^n(K_v)$. $(X(R)$ may be empty, though.) So, there exists $x \in \mathbf{P}^n(R)^0 \cap X(K)$, such that $x \in$ $\Omega_v \cap X(K_v)$ for each $v \in \Sigma$. (Note that S is essentially rational.) By changing the coordinates via the $GL_{n+1}(R)$ -action, we may assume $x = [1:0:\cdots:0]$ $(\in U_0).$

Let e_1, \ldots, e_{n-1} be positive integers, and consider the B-morphism $i_{e_1,...,e_{n-1}} : \mathbf{A}_{B}^1 \to U_0 = \mathbf{A}_{B}^n, t \mapsto (t^{e_1},...,t^{e_{n-1}},t)$. It is easy to see that $i_{e_1,\ldots,e_{n-1}}$ is a closed immersion.

Claim (3.6). For some choice of $e_1, \ldots, e_{n-1}, (i_{e_1,\ldots,e_{n-1}})^{-1}(X)$ surjects onto B.

Proof. Denote by T_1, \ldots, T_n the coordinates of $U_0 = \mathbf{A}_{B}^{n}$. Then, there exist a finite number of polynomials $f_1, \ldots, f_r \in R[T_1, \ldots, T_n]$, such that the closed subset $\mathbf{A}_{B}^{n}-X$ of \mathbf{A}_{B}^{n} coincides with the common zero locus of f_1, \ldots, f_r . Since $\mathbf{A}_{B}^{n} \cap X$ surjects onto B (as X surjects onto B), we see that, for each $b \in B$, there exists $i = i_b \in \{1, ..., r\}$, such that the image of f_i in $k_b[T_1, ..., T_r]$ is non-zero.

LEMMA (3.7). Let S be a finite subset of \mathbb{Z}^n . Then, there exist positive integers e_1, \ldots, e_{n-1} , such that the map $S \to \mathbb{Z}$, $(k_1, \ldots, k_n) \mapsto e_1k_1 + \cdots + e_{n-1}k_{n-1} +$ k_n is injective.

Proof. Put $T \stackrel{\text{def}}{=} \{s - s' \mid s, s' \in S, s \neq s'\}.$ This is a finite subset of \mathbb{Z}^n that does not contain $0 = (0, \ldots, 0)$. For each $t = (l_1, \ldots, l_n) \in T$, consider the linear subspace W_t of $\mathbf{A}_{\mathbb{Q}}^n$ defined by $l_1x_1 + \ldots l_nx_n = 0$. On the other hand, consider the hyperplane $H = \{(x_1, \ldots, x_n) \mid x_n = 1\}$ of $\mathbf{A}_{\mathbb{Q}}^n$. As $H \not\subset$ W_t , $H' \stackrel{\text{def}}{=} H - \bigcup_{t \in T} W_t$ is a non-empty open subset of H. Since the set $\{(e_1, \ldots, e_{n-1}, 1) \mid e_1, \ldots, e_{n-1} \in \mathbb{Z}_{>0}\}\$ is Zariski dense in H (as $\mathbb{Z}_{>0}$ is an infinite set), it must intersect non-trivially with H' . Take $(e_1, \ldots, e_{n-1}, 1)$ in this intersection, then e_1, \ldots, e_{n-1} satisfies the desired property. \Box

We define S to be the set of elements $(k_1, \ldots, k_n) \in (\mathbb{Z}_{\geq 0})^n$ such that the coefficient of $T_1^{k_1} \cdots T_n^{k_n}$ in f_i is non-zero for some $i = 1, \ldots, r$. Applying (3.7) to this S, we obtain $e_1, \ldots, e_{n-1} \in \mathbb{Z}_{>0}$. Then, we see that, for each $b \in B$, there exists $i = i_b \in \{1, ..., r\}$, such that the image of $f_i(T^{e_1}, ..., T^{e_{n-1}}, T)$ in $k_b[T]$ is non-zero. This means that $(i_{e_1,\ldots,e_{n-1}})^{-1}(X)$ surjects onto B, as desired. \square

Take e_1, \ldots, e_{n-1} as in (3.6), and put $S' \stackrel{\text{def}}{=} (\mathcal{C}, (i_{e_1, \ldots, e_{n-1}})^{-1}(X) \rightarrow$ $B, \{(i_{e_1,\ldots,e_{n-1}}(L_v))^{-1}(\Omega_v)\}\)$, where $i_{e_1,\ldots,e_{n-1}}(L_v)$ denotes the map $\mathbf{A}^1(L_v) \to$ $U_0(L_v) = \mathbf{A}^n(L_v)$ induced by $i_{e_1,...,e_{n-1}}$. Then, S' is an essentially rational Skolem data. (Observe that $0 \in \mathbf{A}^1(K)$ lies in $(i_{e_1,...,e_{n-1}}(L_v))^{-1}(\Omega_v)$.)

Now, by Step 1, there exists an \mathcal{S}' -admissible quasi-section. By composing this quasi-section with $i_{e_1,\dots,e_{n-1}}$, we obtain an S-admissible quasi-section. This completes the proof. \square

Remark (3.8). The above argument that involves rational curves with higher degree was communicated to the author by a referee. The author's original argument, which is slightly more complicated, uses lines over finite extensions.

Step 3. Assume that X is an open subscheme of \mathbf{P}_{B}^{n} for some $n \geq 0$. Then, there exists an S -admissible quasi-section.

Proof. For each $v \in \Sigma$, $\mathbf{P}^n(L_v \cap K_v^{\text{sep}})$ is *v*-adically dense in $\mathbf{P}^n(L_v)$. Accordingly, we have $\Omega_v \cap \mathbf{P}^n(L_v \cap K_v^{\text{sep}}) \neq \emptyset$. So, there exists a finite Galois subextension M_v/K_v of L_v/K_v , such that $\Omega_v \cap X(M_v)$ is non-empty. Now, put $\mathcal{C}_1 \stackrel{\text{def}}{=} (C, \Sigma, \{M_v\}_{v \in \Sigma})$, which is a finite base curve data. By (2.1), there exists a C_1 -distinguished finite Galois extension K' of K. We define C' (resp. B') to

be the integral closure of C (resp. B) in K', and put $\Sigma' \stackrel{\text{def}}{=} C' - B'$, which is the inverse image of Σ in C' . Let v' be an element of Σ' and v the image of *v'* in Σ. Then, we have $(K')_{v'} = M_v \subset L_v$. So, put $\mathcal{C}' \stackrel{\text{def}}{=} (C', \Sigma', \{L_v\}_{v' \in \Sigma'})$ and $\mathcal{S}' \stackrel{\text{def}}{=} (\mathcal{C}', X_{B'} \to B', \{\Omega_v\}_{v' \in \Sigma'})$. Then, \mathcal{C}' is a base curve data (over the algebraic closure of k in K') such that C' is affine and that (RI) holds, and \mathcal{S}' is an essentially rational Skolem data such that $X_{B'}$ is an open subscheme of $\mathbf{P}_{B'}^n$. So, by Step 2, there exists an S'-admissible quasi-section $B'' \to X_{B'}$. Now, the composite of this morphism and the natural projection $X_{B'} \to X$ gives an S-admissible quasi-section. This completes the proof. \Box

Step 4. Assume that $\mathcal{E} \simeq \mathcal{O}_B^{n+1}$, where $n+1$ is the rank of \mathcal{E} . Then, there exists a B-admissible quasi-hyperplane.

Proof. For simplicity, we put $P = P(\mathcal{E})$ and $\tilde{P} = P(\tilde{\mathcal{E}})$. Let I denote the incidence subscheme of $P \times_B \check{P}$, and let p and \check{p} be the natural projections $\mathbf{P} \times_B \check{\mathbf{P}} \to \mathbf{P}$ and $\mathbf{P} \times \check{\mathbf{P}} \to \check{\mathbf{P}}$, respectively. Both $p|_I$ and $\check{p}|_I$ are \mathbf{P}^{N-1} . bundles, hence, a fortiori, smooth.

Let $i = 1, \ldots, r$. Since Y_i is an integral scheme and B is a smooth curve, the morphism $Y_i \to B$ is either flat over B or flat over b_i for some closed point $b_i \in B$. We shall refer to the former (resp. latter) case as case 1 (resp. 2).

In case 1, let \tilde{Y}_i be the normalization of Y_i and B_i the integral closure of B in \tilde{Y}_i . Then, since the generic fiber of $\tilde{Y}_i \to B_i$ is geometrically irreducible, there exists a non-empty open subset B'_i of B_i , such that each fiber of $\tilde{Y}_i \times_{B_i} B'_i \to B'_i$ is geometrically irreducible ([EGA4], Théorème (9.7.7)). We denote by Σ_i the image of $B_i - B'_i$ in B, which is a finite set. We define $U_{i,1}$ to be the image of $(\tilde{Y}_i \times_{B_i} \tilde{\mathbf{P}}_{B_i})$ minus the inverse image of I_{B_i}) in $\tilde{\mathbf{P}}_{B_i}$, which is an open subset of $\check{\mathbf{P}}_{B_i}$, and define $U_{i,2}$ to be the complement in $\check{\mathbf{P}}$ of the image of $\check{\mathbf{P}}_{B_i} - U_{i,1}$, which is an open subset of \check{P} . Moreover, for each $b \in \Sigma_i$, fix a geometric point b on b. Then, for each irreducible component P of $Y_{i,\bar{b}}$, we put $U_{P,1}$ the image of $(P \times_{\overline{b}} \check{P}_{\overline{b}})$ minus the inverse image of $I_{\overline{b}})$ in $\check{P}_{\overline{b}}$, and define $T_{P,2}$ to be the image of $\check{\mathbf{P}}_{\bar{b}} - U_{P,1}$ in $\check{\mathbf{P}}_b$, which is a closed subset of $\check{\mathbf{P}}_b$. Now, put $U_i \stackrel{\text{def}}{=} U_{i,2} - \bigcup_{b \in \Sigma_i} \bigcup_P T_{P,2}$, which is an open subset of \check{P} . In case 2, for each irreducible component P of Y_{i,\bar{b}_i} , we define a closed subset $T_{P,2}$ of $\check{\mathbf{P}}_{b_i}$ just as above, and put $U_i \stackrel{\text{def}}{=} \check{\mathbf{P}} - \bigcup_{P} T_{P,2}$.

Now, we put $U \stackrel{\text{def}}{=} \bigcap_{i=1}^r U_i$. Let \overline{b} be a geometric point on B, then, we see that a point of $U_{\overline{b}}$ corresponds to a hyperplane $H_{\overline{b}}$ of $\mathbf{P}_{\overline{b}}$ that satisfies condition (a) in the definition of B-admissible quasi-hyperplane. In particular, U_b is a non-empty open subset of $\check{\mathbf{P}}_b$ for each $b \in B$.

Next, for each $i = 1, ..., r$, let $((p|_I)^{-1}(Y_i^{\text{sm}}))^{\text{non-sm}}$ be the set of points of $(p|I)^{-1}(Y_i^{\text{sm}})$ at which $(p|I)^{-1}(Y_i^{\text{sm}}) \to \check{P}$ is not smooth. This is a closed subset of $(p|_I)^{-1}(Y_i^{\text{sm}})$. Let Z_i be the image of $((p|_I)^{-1}(Y_i^{\text{sm}}))^{\text{non-sm}}$ in \check{P} . Chevalley's theorem implies that Z_i is a constructible subset of \check{P} , and the usual Bertini theorem implies that, for each $b \in B$, $\check{P}_b - Z_i$ contains a non-empty open subset

of $\check{\mathbf{P}}_b$. From these, we observe that $V_i \stackrel{\text{def}}{=} \check{\mathbf{P}} - \overline{Z_i}$ satisfies that, for each $b \in B$, $(V_i)_b$ is a non-empty open subset of $\check{\mathbf{P}}_b$. We put $V \stackrel{\text{def}}{=} \bigcap_{i=1}^r V_i$. Then, for each $b \in B$, V_b is a non-empty open subset of $\check{\mathbf{P}}_b$.

Next, let P be an irreducible component of $Y_i\overline{K}$ with $\dim(P)\geq 2$. Then, by a version of Bertini theorem $([J],$ Théorème 6.11, 3), there exists a non-empty open subset $W_{P,1}$ of $\check{\mathbf{P}}_{\overline{K}}$, such that, for each hyperplane $H_{\overline{K}}$ corresponding to a point of $W_{P,1}$, $P \cap \overline{H}_{\overline{K}}$ is irreducible. We define W_1 to be the intersection of $W_{P,1}$ for irreducible components P of $Y_{i,\overline{K}}$ with $\dim(P) \geq 2$, which is a non-empty open subset of $\check{\mathbf{P}}_{\overline{K}}$, and T_2 the image of $\check{\mathbf{P}}_{\overline{K}} - W_1$ in $\check{\mathbf{P}}_K$, which is a proper closed subset of $\check{\mathbf{P}}_K$. Moreover, we denote by \overline{T}_2 the closure of T_2 in $\check{\mathbf{P}}$. We see that $(\overline{T}_2)_b$ is a proper closed subset of $\check{\mathbf{P}}_b$ for each $b \in B$. Now, we put $W = \check{\mathbf{P}} - \overline{T}_2$. Then, for each $b \in B$, W_b is a non-empty open subset of \mathbf{P}_b .

Now, we put $\check{X} \stackrel{\text{def}}{=} U \cap V \cap W$. This is an open subset of \check{P} that is surjectively mapped onto B. Put $S' \stackrel{\text{def}}{=} (C, \check{X} \to B, {\{\check{\Omega}_v \cap \check{X}(L_v)\}}_{v \in \Sigma})$. Then, S' is a Skolem data.

So, by Step 3 and the assumption that $\mathcal{E} \simeq \mathcal{O}_B^{n+1}$, there exists an S'admissible quasi-section $B' \to \check{X}$. By the choice of \mathcal{S}' , this section corresponds to a hyperplane H of $\mathbf{P}_{B'}$, which satisfies all the conditions (a)–(d) in the definition of B-admissible quasi-hyperplane. This completes the proof. \Box

Step 5. Assume that X is quasi-projective of relative dimension 1 over B . Then, there exists an S -admissible quasi-section.

Proof. By assumption, we may assume that X is a subscheme of \mathbf{P}_{B}^{n} for some $n \geq 1$. We define \overline{X}_1 to be the closure of X in \mathbf{P}_{B}^n , regarded as a reduced scheme. \overline{X}_1 is a projective flat integral curve over B, and X is an open subscheme of \overline{X}_1 . It is well-known that, after normalizations and blowing-ups outside X, \overline{X}_1 can be desingularized. Namely, there exists a birational projective morphism $\pi : X_2 \to X_1$, where X_2 is a regular, integral scheme, such that $\pi^{-1}(X) \stackrel{\sim}{\to} X$. Since $X_{\overline{K}}$ is irreducible, so is $(\overline{X}_2)_{\overline{K}}$. Hence, by [EGA4], Théorème (9.7.7), there exists a non-empty open subset B_1 of B, such that each fiber of $X_{B_1} \to B_1$ is geometrically irreducible, and, in particular, irreducible. We put $\Sigma_1 \stackrel{\text{def}}{=} B - B_1$, which is a finite set.

Now, we introduce a new base curve data $C_1 \stackrel{\text{def}}{=} (C, \Sigma \cup \Sigma_1, \{L_v\}_{v \in \Sigma} \cup$ $\{K_v^{\text{ur}}\}_{v \in \Sigma_1}$, where K_v^{ur} denotes the maximal unramified extension of the complete discrete valuation field K_v . Note that C_1 satisfies (RI) and that C is affine. Moreover, we put $S_1 = \{C_1, X_{B_1} \to B_1, \{\Omega_v\}_{v \in \Sigma} \cup \{X(R_{K_v^{\text{ur}}})\}_{v \in \Sigma_1}\}.$ Since $X \to B$ is smooth surjective, we see that $X(R_{K_v^{\text{ur}}})$ is non-empty. Thus, S_1 becomes a Skolem data. Now, suppose that there exists an S_1 -admissible quasi-section $B'_1 \to X_{B_1}$. Then, firstly, the integral closure B' of B in B'_1 is finite étale over B. Secondly, as $\overline{X}_2 \to B$ is proper, $B'_1 \to X_{B_1}$ extends to $B' \to \overline{X}_2$. Now, since $B'_1 \to X_{B_1}$ is S_1 -admissible, we see that the image of $B' \to \overline{X}_2$ must be contained in X. Thus, we obtain an S-admissible quasi-section $B' \to X$.

So, replacing S by S_1 , we may assume that each fiber of $\overline{X}_2 \to B$ is geometrically irreducible. Now, we put $\overline{X} \stackrel{\text{def}}{=} \overline{X}_2$.

LEMMA (3.9). Let F be a field and X a projective, geometrically integral F scheme of dimension 1. We denote by X' the normalization of $X_{\overline{F}}$, so that we have a natural morphism $\pi : X' \to X$. Then, there exists a natural number N, such that each invertible sheaf L on X with $\deg(L) \geq N$ is very ample, where $\deg(L) \stackrel{\text{def}}{=} \deg(\pi^*(L)).$

Proof. This follows from [CFHR], Theorem 1.1. (We may take $N = 2p_a(X) + p_b(X)$ $1.)\quad \Box$

Now, take a natural number N for \overline{X}_K as in (3.9). We shall choose horizontal divisors Y_1, Y_2, \ldots of \overline{X} inductively, as follows. Firstly, by [Mo3], Théorème 1.3, there exists a horizontal divisor Y_1 of \overline{X} , such that Y_1 is contained in X and that, for each $v \in \Sigma$, $Y_1 \times_B \text{Spec}(L_v)$ is a disjoint union of copies of $\text{Spec}(L_v)$ and is contained in Ω_v . Next, assume that we have defined Y_1, \ldots, Y_r . Then, again by [Mo3], Théorème 1.3, there exists a horizontal divisor Y_{r+1} of X, such that Y_{r+1} is contained in $X - \bigcup_{i=1}^{r} Y_i$ and that, for each $v \in \Sigma$, $Y \times_B \text{Spec}(L_v)$ is a disjoint union of copies of $Spec(L_v)$ and is contained in $\Omega_v - \bigcup_{i=1}^r Y_i(L_v)$. By construction, Y_1, Y_2, \ldots are disjoint from one another. Now, take n so large that $\deg(Y_{1,K} + \cdots + Y_{n,K}) \geq N$, and we put $Y \stackrel{\text{def}}{=} Y_1 + \cdots + Y_n$. (Note that each Y_i defines an invertible sheaf on \overline{X} , since it lies in the smooth locus.) Then, by (3.9), Y_K is very ample. On the other hand, since each fiber of $\overline{X} \to B$ is geometrically irreducible, Y itself is ample (cf. $[Mo2]$, Proposition 4.3), hence there exists a natural number m such that mY is very ample. So, consider an embedding $\overline{X} \hookrightarrow \mathbf{P}_{B}^{n}$ with respect to the very ample divisor mY .

We put $D \stackrel{\text{def}}{=} \overline{X} - X$. Let E_1, \ldots, E_h be the irreducible components of D , which must be either an isolated point or a horizontal divisor, as $X \to B$ is surjective and each fiber of $\overline{X} \to B$ is irreducible. Next, for each $v \in \Sigma$, we define $\check{\Omega}'_v$ to be the subset of $\check{\mathbf{P}}^n(L_v)$ consisting of points corresponding to L_v rational hyperplanes H such that $\overline{X}_{L_n} \cap H$ is a disjoint union of L_v -rational points in Ω_v (whose cardinality must coincide with deg(mY_K)). It is easy to show that $\check{\Omega}'_v$ is a v-adically open subset of $\check{\mathbf{P}}(L_v)$. Moreover, by using the fact that (not only mY_K but also) Y_K is very ample and that Y_{L_v} is a disjoint union of L_v -rational points in Ω_v , we see that $\check{\Omega}'_v$ is non-empty.

Now, we put $\mathcal{B}' \stackrel{\text{def}}{=} (\mathcal{C}, \overline{X}, E_1, \ldots, E_h \subset \mathbf{P}_{B}^n, {\{\check{\Omega}'_v\}}_{v \in \Sigma}),$ which becomes a Bertini data. As $\mathbf{P}_{B}^{n} = \mathbf{P}(\mathcal{O}_{B}^{n+1})$, we may apply Step 4 to this Bertini data \mathcal{B}' , to conclude that there exists a \mathcal{B}' -admissible quasi-hyperplane $H \subset \mathbf{P}_{\mathcal{B}'}^n$. By condition (a), we see that $\overline{X}_{B'} \cap H$ is finite (as proper and quasi-finite) over B, and that $E_{i,B'} \cap H = \emptyset$ for each $i = 1, \ldots, h$, hence $D_{B'} \cap H = \emptyset$, or, equivalently, $\overline{X}_{B'} \cap H = X_{B'} \cap H$. By condition (b), we see that $X_{B'} \cap H$ is smooth over B'. From these, $X_{B'} \cap H$ is finite étale over B', hence over B. Moreover, by condition (d), each component of $(X_{B'} \cap H)_{L_v}$ is a disjoint union of L_v -rational point in Ω_v . Thus, any connected component of $X_{B'} \cap H$ gives

an S-admissible quasi-section. This completes the proof. \Box

Step 6. Assume that X is quasi-projective over B. Then, there exists an S admissible quasi-section.

Proof. We shall prove this by using induction on the relative dimension d of X over B. If $d = 0$, this is clear. If $d = 1$, this is just the content of Step 5. So, assume $d > 1$. Since X is quasi-projective, we may choose an embedding $X \hookrightarrow \mathbf{P}_{B}^{n}$. We denote by \overline{X} the closure of X in \mathbf{P}_{B}^{n} , and put $W \stackrel{\text{def}}{=} \overline{X} - X$. Next, for each $v \in \Sigma$, we define $\check{\Omega}'_v$ to be the subset of $\check{P}^n(L_v)$ consisting of points corresponding to L_v -rational hyperplanes that meet transversally with a point of Ω_v . Then, it is easy to see that $\check{\Omega}'_v$ is a non-empty, v-adically open, G_v -stable subset of $\check{\mathbf{P}}^n(L_v)$. Thus, $\mathcal{B}' \stackrel{\text{def}}{=} (\mathcal{C}, \overline{X}, W \subset \mathbf{P}_{B}^n, {\{\check{\Omega}'_v\}}_{v \in \Sigma})$ becomes a Bertini data, and, by Step 4, there exists a \mathcal{B}' -admissible quasi-hyperplane $H \subset \mathbf{P}_{\mathcal{B}'}^n$, where B' is the integral closure of B in some finite C -admissible extension K' of K. By conditions (a) and (b) in the definition of \mathcal{B}' -admissibility, we see that $X'_{B'} \stackrel{\text{def}}{=} X_{B'} \cap H$ is smooth, surjective over B'. By condition (c), $X'_{B'} \times_{B'} \overline{K'}$ is irreducible. Moreover, by condition (d), $\Omega'_v \stackrel{\text{def}}{=} \Omega_v \cap H(L_v)$ is non-empty.

Now, we define C' (resp. B') to be the integral closure of C (resp. B) in K', and put $\Sigma' \stackrel{\text{def}}{=} C' - B'$, which is the inverse image of Σ in C' . Let v' be an element of Σ' and v the image of v' in Σ . Then, we have $(K')_{v'} \subset L_v$. So, put $\mathcal{C}' \stackrel{\text{def}}{=} (C', \Sigma', \{L_v\}_{v' \in \Sigma'})$ and $\mathcal{S}' \stackrel{\text{def}}{=} (\mathcal{C}', X'_{B'} \to B', \{\Omega'_v\}_{v' \in \Sigma'})$. Then, \mathcal{C}' is a base curve data (over the algebraic closure of k in K') such that C' is affine and that (RI) holds, and S' is a Skolem data such that the relative dimension of $X_{B'}$ over B' is $d-1$. Thus, by the assumption of induction, there exists an \mathcal{S}' -admissible quasi-section $B'' \to X'_{B'}$. Composing this quasi-section with the natural map $X'_{B'} \to X$, we obtain an S-admissible quasi-section, as desired. This completes the proof. \square

Step 7. There exists an S-admissible quasi-section. Namely, (3.1) holds.

Proof. Let X' be a non-empty affine open subset of X, and let B' denote the image of X' in B, which is a non-empty open subset of B. Put $\Sigma' \stackrel{\text{def}}{=} B - B'$. Then, $S' \stackrel{\text{def}}{=} (C', X' \to B', \{\Omega_v \cap X'(L_v)\}_{v \in \Sigma} \cup \{X'(K_v^{\text{ur}}) \cap X(R_{K_v^{\text{ur}}})\}_{v \in \Sigma'}),$ where $\mathcal{C}' \stackrel{\text{def}}{=} (C, \Sigma \cup \Sigma', \{L_v\}_{v \in \Sigma} \cup \{K_v^{\text{ur}}\}_{v \in \Sigma'})$, becomes a Skolem data. Now, just as in the proof of Step 5, an \mathcal{S}' -admissible quasi-section (whose existence is assured by Step 6) induces an S -admissible quasi-section. This completes the proof. \square

Step 8. There exists a B-admissible quasi-hyperplane. Namely, (3.2) holds.

Proof. This is just similar to the proof of Step 4, except that we use Step 7 instead of Step 3. \Box

§4. Some remarks and applications.

4.1. On condition (RI).

It is desirable to remove the disgusting condition (RI) in the main results (3.1) and (3.2). The main (and the only) technical difficulty in doing so appears in Step 1 of $\S3$. More specifically, recall that we have applied $(1.18)(ii)$ in Step 1. However, to apply $(1.18)(ii)$, we need a finite submodule A of R_{L_v} with $A \cap \mathfrak{m}_{L_v} = \{0\}$ and with $\sharp(A)$ sufficiently large, which requires the infiniteness of the residue field of L_v . In fact, it is possible to modify $(1.18)(ii)$ to include the case where $A \cap \mathfrak{m}_{L_v} = \{0\}$ does not hold, but then we cannot expect the valuation δ of a is sufficiently small compared to deg(f), and the proof of (3.4) fails when we try to apply $(1.4)(ii)$.

4.2. On the incompleteness hypothesis.

In the main results (3.1) and (3.2) , we have assumed the incompleteness hypothesis that the base curve C is affine. It is impossible to remove this condition entirely, but it is desirable to be able to control the objects at the points at infinity, even in some weaker sense. In this direction, we have a capacitytheoretic approach due to Rumely ([Ru1], [Ru2]) and another approach via small codimension arguments due to Moret-Bailly ([Mo5]). The author hopes for the following third approach (though it is only applicable to positive characteristic). More precisely, let $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ be a base curve data over an algebraic extension k of \mathbb{F}_p (with C not necessarily affine), and Σ_{∞} a nonempty subset of Σ . Then, even if C is proper over k, we might expect that the following version of (3.1) and (3.2) hold.

For (3.1), let $S = (C, f : X \to B, \{\Omega_v\}_{v \in \Sigma - \Sigma_{\infty}} \cup \{X(L_v)\}_{v \in \Sigma_{\infty}})$ be a Skolem data. (Thus, for $v \in \Sigma_{\infty}$, we just assume $X(L_v) \neq \emptyset$.) Then, we might expect that there exists a quasi-section $s : B' \to X$ of $f : X \to B$ which is nearly S-admissible with respect to Σ_{∞} in the following sense: K' is a finite extension of K which is nearly C-admissible with respect to Σ_{∞} ; B' is the integral closure of B in K'; and for each $v \in \Sigma - \Sigma_{\infty}$, the image of $B'_{L_v} \stackrel{\text{def}}{=} B' \times_B L_v \text{ in } X_{L_v} \stackrel{\text{def}}{=} X \times_B L_v \text{ is contained in } \Omega_v \ (\subset X(L_v) = X_{L_v}(L_v)).$ (For $v \in \Sigma_{\infty}$, the image of $B'_{L_v(p)}$ in $X_{L_v(p)}$ is automatically contained in $X(L_v(p)) = X_{L_v(p)}(L_v(p))$, and we do not impose any more condition.)

For (3.2), let $\mathcal{B} = (\mathcal{C}, Y_1, \ldots, Y_r \subset \mathbf{P}(\mathcal{E}), \{\check{\Omega}_v\}_{v \in \Sigma - \Sigma_{\infty}} \cup \{\mathbf{P}(\check{\mathcal{E}})(L_v)\}_{v \in \Sigma_{\infty}})$ be a Bertini data. Then, we might expect that there exists a quasi-hyperplane $H \subset \mathbf{P}(\mathcal{E})_{B'}$ which is nearly B-admissible with respect to Σ_{∞} in the following sense: K' is a finite extension of K which is nearly C-admissible with respect to Σ_{∞} ; B' is the integral closure of B in K'; (a), (b), (c) as in the definition of Badmissibility; and (d) as in the definition of \mathcal{B} -admissibility only for $v \in \Sigma - \Sigma_{\infty}$. (For $v \in \Sigma_{\infty}$, the image of $B'_{L_v(p)}$ in $\mathbf{P}(\check{\mathcal{E}})_{L_v(p)}$ is automatically contained in $\mathbf{P}(\check{\mathcal{E}})(L_v(p)) = \mathbf{P}(\check{\mathcal{E}})_{L_v(p)}(L_v(p)),$ and we do not impose any more condition.) We might consider (2.2) as a weak evidence for this expectation.

4.3. Hopeful generalizations (mild).

Firstly, it should be possible to generalize the main results (3.1) and (3.2) to the case of algebraic spaces or even algebraic stacks, along the lines of [Mo5].

Secondly, it should be possible to prove qualitative versions of (3.1) and (3.2) , in terms of heights (cf. [U], and $[A1,2]$) and/or degrees (cf. [Mi], $[E1,2]$). (See also [Poo].)

Thirdly, it is desirable to be able to prove that, in (3.1) , we can choose an Sadmissible quasi-section $B' \to X$ which is a closed immersion (cf., e.g., [Mo2], Définition 1.4.), and, similarly, that, in (3.2) , we can choose a β -admissible quasi-hyperplane $H \subset \mathbf{P}(\mathcal{E})_{B'}$ such that the classifying morphism $[H] : B' \to$ $P(\mathcal{E})$ is a closed immersion. This third possible generalization was suggested to the author by the referee. Indeed, this generalization is possible in Steps 1 and 2 of §3. (For Step 2, this is possible by means of the simplification of the proof due to him or her. See (3.8).)

4.4. Hopeful generalizations (ambitious).

As we have mentioned in the Introduction, word-for-word translations of the main results (3.1) and (3.2) to the number field case, namely, to the case where C in the base scheme data is (an open subscheme of) the spectrum of the integer ring of an algebraic number field are false. However, it is very interesting (at least to the author) to ask if we might hope for any (modified) unramified versions of (3.1) and (3.2) also in the number field case.

Also, it might be interesting to investigate what happens in the case where C is a higher-dimensional (affine) scheme, even in positive characteristic. One of the main obstacles of this direction consists in the fact that the Picard group of C is no longer a torsion group, and word-for-word translations of (3.1) and (3.2) to the higher-dimensional case are false. However, there might exist some reasonable restrictions on the (Skolem or Bertini) data, with which (3.1) and (3.2) are valid.

4.5. An application to local-global principle and largeness in field theory.

DEFINITION. Let $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ be a base scheme data. Then, we define $K^{\mathcal{C}}$ to be the maximal \mathcal{C} -admissible extension of K contained in the algebraic closure \overline{K} of K, $C^{\mathcal{C}}$ (resp. $B^{\mathcal{C}}$) the integral closure of C (resp. B) in $K^{\mathcal{C}}$, and $\Sigma^{\mathcal{C}}$ to be the inverse image of Σ in $C^{\mathcal{C}}$. (Thus, $\Sigma^{\mathcal{C}} = C^{\mathcal{C}} - B^{\mathcal{C}}$.)

As an application of (3.1), we obtain the following local-global principle in field theory (cf. [Mo4]).

THEOREM (4.1). Let $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ be a base curve data over an algebraic extension of \mathbb{F}_p , and assume that C is affine and that (RI) holds. Then, $K^{\mathcal{C}}$ satisfies the local-global principle in the sense that, for each smooth, geometrically connected scheme X over $K^{\mathcal{C}}$, $X(K^{\mathcal{C}}) \neq \emptyset$ holds if and only if $X((K^{\mathcal{C}})_{w})\neq\emptyset$ holds for every prime w of $K^{\mathcal{C}}$. Here, $(K^{\mathcal{C}})_{w}$ denotes the algebraic closure of K_v in the completion of $K^{\mathcal{C}}$ at w, where v is the prime of K that is below w.

Proof. The 'only if' part is trivial. To prove the 'if' part, assume that $X((K^{\mathcal{C}})_{w}) \neq \emptyset$ holds for every prime w of $K^{\mathcal{C}}$. First, replacing X by any non-empty quasi-compact open subset, we may assume that X is of finite type over $K^{\mathcal{C}}$. (Observe that the image of $X((K^{\mathcal{C}})_{w})$ in X is Zariski dense.) Then, replacing K and C by a suitable finite C-admissible extension and a suitable base curve data, respectively, we may assume that X comes from a (smooth, geometrically connected) K-scheme X_K . Now, the following (4.2) implies $X(K^{\mathcal{C}}) = X_K(K^{\mathcal{C}}) \neq \emptyset$, as desired. (Put $\Omega_v = X_K(L_v)$.) \Box

THEOREM (4.2). Notations and assumptions being as in (4.1), let X_K be a smooth, geometrically connected K-scheme. Assume that $X_K(K_b^{\text{ur}}) \neq \emptyset$ holds for each closed point $b \in B$, and that a non-empty, v-adically open, G_v -stable subset Ω_v of $X_K(L_v)$ is given for each $v \in \Sigma$. Then, there exists a finite Cadmissible extension K' of K and $s_K \in X_K(K')$, such that, for each $v \in \Sigma$, the image by $s_K \times_K L_v$ of $Spec(K') \times_K L_v$ in $X_{L_v} \stackrel{\text{def}}{=} X_K \times_K L_v$ is contained in $\Omega_v \subset X_K(L_v) = X_{L_v}(L_v)$.

Proof. First, assume that there exist a regular, integral scheme X proper, flat over B and an open immersion $X_K \hookrightarrow X_K$ over K. (We shall refer to such an \overline{X} as a regular, relative compactification over B.) Put $W_K \stackrel{\text{def}}{=} \overline{X}_K$ - X_K and denote by W the closure of W_K in \overline{X} . Then, we see easily that $W \cap \overline{X}_K = W_K$ and that the fiber W_b of W at each closed point b of B has dimension strictly smaller than the dimension of the whole fiber X_b (which is automatically equidimensional). On the other hand, let \overline{X}^{sm} denote the set of points of \overline{X} at which $\overline{X} \to B$ is smooth. This is an open subset of \overline{X} . Since \overline{X} is regular and $\overline{X}(K_b^{\text{ur}})$ $(\supset X_K(K_b^{\text{ur}})) \neq \emptyset$ for each closed point $b \in B$, we see that $\overline{X}^{\text{sm}} \to B$ is surjective. From these, we conclude that $X \stackrel{\text{def}}{=} \overline{X}^{\text{sm}} - W$ surjects onto B and that $X \times_B K = X_K$ holds. Now, applying (3.1) to the Skolem data $S \stackrel{\text{def}}{=} (C, X \to B, \{\Omega_v\}_{v \in \Sigma})$, we obtain an S-admissible quasisection $s: B' \to X$. Then, $s_K \stackrel{\text{def}}{=} s \times_B K$ satisfies the desired properties.

In general, the above desingularization result may not be available, but we can proceed by using induction on $d \stackrel{\text{def}}{=} \dim(X_K)$, as follows. The case $d = 0$ is trivial. In the case $d = 1$, the existence of a regular, relative compactification as above is well-known. So, we may assume $d \geq 2$. Replacing X_K by a suitable (say, non-empty and affine) open subset, we may also assume that X_K is quasi-projective over K. (Observe that the image of Ω_v in X_K is Zariski dense.) We choose an embedding $X_K \hookrightarrow \mathbf{P}_{K}^n$. Then, as in the proof of Step 4 of §3, there exists a non-empty open subset \tilde{U}_K of the dual projective space $\check{\mathbf{P}}_K^n$, such that, for each hyperplane $H_{\overline{K}}$ that corresponds to a point of $\check{U}_K(\overline{K})$, $X_{\overline{K}} \cap H_{\overline{K}}$ is smooth, (geometrically) connected of dimension $d-1$. Moreover, as in the proof of Step 6 of §3, for each $v \in \Sigma$, we define $\tilde{\Omega}'_v$ to be the subset of $\check{P}^n(L_v)$ consisting of points corresponding to L_v -rational hyperplanes that meet transversally with a point of Ω_v . Then, it is easy to see that $\check{\Omega}'_v$ is a nonempty, v-adically open, G_v -stable subset of $\mathbf{P}^n(L_v)$. Now, since \tilde{U}_K admits

a regular, relative compactification \check{P}_B^n , we may apply the above argument to $(\check{U}_K, \{\Omega'_v \cap \check{U}_K(L_v)\}_{v \in \Sigma})$ to obtain a suitable quasi-section s'_K of \check{U}_K . (Note also that $\check{U}_K(K_b^{\mathrm{ur}}) \neq \emptyset$ holds for each closed point b of B.) Now, as in the proof of Step 6 of §3, we may reduce the problem to the case $d-1$ by cutting (the base change of) X_K with the quasi-hyperplane corresponding to s'_K . Thus, the proof by induction is completed. \square

COROLLARY (4.3). $K^{\mathcal{C}}$ is large (in the sense of [Pop]). \square

Proof. Immediate from (4.1). (See [Pop], Proposition 3.1.) \Box

This corollary gives an interesting new example of large fields. Indeed, as far as the author knows, in all the known examples of large fields which are algebraic extensions of either number fields K or function fields K over finite fields, we can control only finitely many primes of K. On the other hand, our $K^{\mathcal{C}}$ is defined by imposing restrictions at almost all primes of K.

In this sense, this corollary may be regarded as the first example of large fields which are not so large! (See also (4.11) below.)

4.6. An application to principal ideal theorem.

As an application of (3.1) , we obtain the following $(cf. [Mo1], 3.1)$:

THEOREM (4.4). Let $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ be a base curve data over an algebraic extension k of \mathbb{F}_p , and assume that C is affine and that (RI) holds. Then, we have $Pic(C^{\mathcal{C}}) = \{0\}$. In particular, we have $Pic(B^{\mathcal{C}}) = \{0\}$.

Proof. Let $\mathcal{L}^{\mathcal{C}}$ be any invertible sheaf on $C^{\mathcal{C}}$. Then, there exists a finite subextension K_1 of $K^{\mathcal{C}}$ over K , such that $\mathcal{L}^{\mathcal{C}} = \mathcal{L}_1 \otimes_{\mathcal{O}_{C_1}} \mathcal{O}_{C^c}$ holds for some invertible sheaf \mathcal{L}_1 on C_1 , where C_1 is the integral closure of C in K_1 . We define B_1 and Σ_1 to be the integral closure of B in K_1 and the inverse image of Σ in C_1 , respectively, and, for each $v_1 \in \Sigma_1$, we put $L_{v_1} \stackrel{\text{def}}{=} L_v$, where v is the image of v_1 in Σ . Then, observe that $\mathcal{C}_1 \stackrel{\text{def}}{=} (C_1, \Sigma_1, \{L_{v_1}\}_{v_1 \in \Sigma_1})$ becomes a base curve data (over the algebraic closure of k in K_1), such that $(C_1)^{C_1} = C^{\mathcal{C}}$. Now, consider the Skolem data $S_1 = (\mathcal{C}_1, (\mathbf{V}(\check{\mathcal{L}}_1) - 0_{C_1}) \times_{C_1} B_1 \to B_1, \{ (\mathbf{V}(\check{\mathcal{L}}_1) - 0_{C_1}) (R_{L_v}) \}_{v_1 \in \Sigma_1})$ (such that C_1 is affine and that (RI) holds), where $\mathbf{V}(\check{\mathcal{L}}_1)$ denotes the (geometric) line bundle on C_1 defined by the dual $\check{\mathcal{L}}_1$ of \mathcal{L}_1 , and 0_{C_1} denotes the zero section of $V(\check{\mathcal{L}}_1)$. Now, by (3.1), there exists an S_1 -admissible quasi-section $B' \to (\mathbf{V}(\check{\mathcal{L}}_1) - 0_{C_1}) \times_{C_1} B_1$. By the choice of S_1 , this quasi-section extends to a (unique) quasi-section $C' \to \mathbf{V}(\check{\mathcal{L}}_1) - 0_{C_1}$ of $\mathbf{V}(\check{\mathcal{L}}_1) - 0_{C_1} \to C_1$, where C' is the integral closure of C_1 in B' . This implies that \mathcal{L}_1 admits an everywhere non-vanishing section over C', or, equivalently, \mathcal{L}_1 becomes trivial after the base change to C'. Therefore, $\mathcal{L}^{\mathcal{C}}$ is trivial, a fortiori. This completes the proof of the first assertion.

The second assertion follows from the first, as the natural map $Pic(C^{\mathcal{C}}) \to$ $Pic(B^{\mathcal{C}})$ is surjective. \square

In the case where $\Sigma = \emptyset$, (4.4) directly follows from the principal ideal theorem in class field theory. In general, however, there exists an invertible sheaf

that cannot be trivialized if we only consider abelian C -admissible extensions. (See (4.11) below.) In this sense, we may regard (4.4) as a new (non-abelian) type of principal ideal theorem which cannot be covered by class field theory.

4.7. An application to torsors.

More generally than the second assertion of (4.4) , we obtain the following:

THEOREM (4.5). Let $\mathcal{C} = (C, \Sigma, \{L_v\}_{v \in \Sigma})$ be a base curve data over an algebraic extension of \mathbb{F}_p , and assume that C is affine and that (RI) holds. Let $G^{\mathcal{C}}$ be a smooth, separated group scheme of finite type over $B^{\mathcal{C}}$, such that the generic fiber $G_{Kc}^{\tilde{C}}$ is connected. Then, we have $\text{Ker}(\check{H}^1_{fpqc}(B^{\mathcal{C}}, G^{\mathcal{C}}) \rightarrow$ $\prod_{w \in \Sigma^c} \check{H}^1_{fpqc}(\text{Spec}((K^{\mathcal{C}})_{w}), G^{\mathcal{C}}))) = \{1\}.$

Proof. By [Ra], Théorème XI, 3.1, each class x of $\check{H}^1_{fpqc}(B^{\mathcal{C}}, G^{\mathcal{C}})$ corresponds to a representable $B^{\mathcal{C}}$ -torsor $X^{\mathcal{C}}$. If, moreover, x belongs to the kernel in question, $X^{\mathcal{C}}$ admits a $(K^{\mathcal{C}})_{w}$ -rational point for each $w \in \Sigma^{\mathcal{C}}$. Since $X^{\mathcal{C}}$ is of finite presentation over $B^{\mathcal{C}}$, it comes from a scheme over a finite (C-admissible) extension of B. Now, as in the proof of (4.4), we can prove that $X^{\mathcal{C}}$ admits a $B^{\mathcal{C}}$ -section, by using (3.1). This completes the proof. \Box

Note that the second assertion of (4.4) is a special case of (4.5) , where $G^{\mathcal{C}} = \mathbb{G}_{m,BC}$. (The first assertion of (4.4) can also be generalized in a suitable sense. We leave it to the readers.)

As an interesting corollary of (4.5), we obtain:

COROLLARY (4.6) . Let C be an affine, smooth curve over an algebraic extension of \mathbb{F}_p , and K the function field of C. Let G be a smooth, separated, commutative group scheme of finite type over C, such that the generic fiber G_K is connected.

Then, we have $H^1_{\text{\'et}}(C, G) = H^1(\pi_1(C), G(\tilde{C}))$, where $\tilde{C} \stackrel{\text{def}}{=} B^{\mathcal{C}}(= C^{\mathcal{C}})$ for the base curve data $\mathcal{C} \stackrel{\text{def}}{=} (C, \emptyset, \emptyset)$.

Proof. This follows from (4.5), together with the Hochschild-Serre spectral sequence. \square

4.8. A group-theoretical remark.

Recall that a quasi-p group (for a prime number p) is a finite group that does not admit a non-trivial quotient group of order prime to p.

PROPOSITION (4.7) . Let B be a smooth, geometrically connected curve over a finite field k of characteristic p . We denote by B^* the smooth compactification of B and put $\Sigma \stackrel{\text{def}}{=} B^* - B$ (which we regard as a reduced closed subscheme of B[∗]). Then, there exists a natural number N (depending only on the genus g of B^* and the cardinality n of $\Sigma(\overline{k})$, such that, for each finite extension l of k with \sharp (l) $\geq N$, there is no non-trivial finite étale covering of $B_l \stackrel{\text{def}}{=} B \times_k l$ at most tamely ramified over $\Sigma_l \stackrel{\text{def}}{=} \Sigma \times_k l$ in which every point of $B(l) = B_l(l)$ splits completely.

Proof. This is a rather well-known application of the Weil bound on the cardinality of rational points over finite fields. More specifically, suppose that l is a finite extension of k with cardinality q and that B' is a connected finite étale covering with degree d of B_l at most tamely ramified over Σ_l in which every point of $B(l)$ splits completely. We denote by l' the integral closure of l in B' , and define $(B')^*$, g' and n' for B' just similarly to B^* , g and n, respectively, for B. Now, firstly, the tamely ramified condition, together with the Hurwitz' formula, implies

$$
2g' - 2 \le d_{\rm geom}(2g-2) + (d_{\rm geom} - 1)n \le d(2g-2) + (d-1)n,
$$

where $d_{\text{geom}} \stackrel{\text{def}}{=} d/[l': l]$. Secondly, the complete splitting condition, together with the Weil (lower) bound for B_l , implies that

$$
\sharp(B'(l)) = d\sharp(B_l(l)) \ge d(\sharp((B')^*(l)) - n) \ge d(1 + q - 2g\sqrt{q} - n).
$$

Thirdly, the Weil (upper) bound for B' implies

$$
\sharp(B'(l)) \le \sharp((B')^*(l)) \le 1 + q + 2g'\sqrt{q}.
$$

(Note that this holds (trivially) even if $[l' : l] > 1$.) Combining these three inequalities together, we obtain

$$
d(q-(4g+n-2)\sqrt{q}-(n-1))\leq q-(n-2)\sqrt{q}+1.
$$

From this, we see that $d < 2$ (or, equivalently, $d = 1$) must hold for sufficiently large q, as desired. \square

PROPOSITION (4.8). Let k and B be as in (4.7). Then, there exist finite sets Σ_1 and Σ_2 of closed points of B, disjoint from each other, such that the following holds: For each $v \in \Sigma_1$ (resp. $v \in \Sigma_2$), let L_v be any (possibly infinite) pro-p Galois extension of K_v (resp. Galois extension such that $Gal(L_v \cap K_v^{\text{ur}}/K_v)$ is a pro-prime-to-p group) and put $\mathcal{C} = (B, \Sigma_1 \cup \Sigma_2, \{L_v\}_{v \in \Sigma_1 \cup \Sigma_2})$. Then, for every C-admissible, finite, Galois extension K' of K, $Gal(K'/K)$ is a quasi-p group and the constant field of K' (i.e., the algebraic closure of k in K') coincides with k.

Proof. Take a natural number N as in (4.7) , and choose two finite extensions l_1 and l'_1 of k with $\sharp(l_1) \geq N$ and $\sharp(l'_1) \geq N$, such that $l_1 \cap l'_1 = k$. We define Σ_1 to be the union of the images of $B(l_1)$ and $B(l'_1)$ in B. Next, the Weil bound implies that there exists a natural number N' , such that, for each finite extension l of k with $\sharp(l) \geq N'$, $(B - \Sigma_1)(l) \neq \emptyset$ holds. (Note that $B - \Sigma_1$ is geometrically connected over k.) So, we can choose a finite extension l_2 of k, such that $(B - \Sigma_1)(l_2) \neq \emptyset$ and that $[l_2 : k]$ is not divisible by p. We define Σ_2 to be any non-empty subset of the image of $(B - \Sigma_1)(l_2)$ in $B - \Sigma_1$. Now, for each $v \in \Sigma_1$ (resp. $v \in \Sigma_2$), let L_v be any pro-p Galois extension of K_v (resp.

Galois extension such that $Gal(L_v \cap K_v^{\text{ur}}/K_v)$ is a pro-prime-to-p group), and put $C = (B, \Sigma_1 \cup \Sigma_2, \{L_v\}_{v \in \Sigma_1 \cup \Sigma_2}).$

Let K' be any C -admissible finite Galois extension of K . We define $\mathrm{Gal}(K'/K)^{p'}$ (resp. $Gal(K'/K)^p)$ to be the maximal quotient group of $Gal(K'/K)$ with order prime to p (resp. with order a power of p), and denote by M_1 (resp. M_2) the subextension of K' over K that corresponds via Galois theory the kernel of the natural surjective map $Gal(K'/K) \rightarrow Gal(K'/K)^{p'}$ (resp. $Gal(K'/K) \rightarrow Gal(K'/K)^p$. Thus we have $Gal(M_1/K) = Gal(K'/K)^{p'}$ (resp. $Gal(M_2/K) = Gal(K'/K)^p)$.

We shall first prove that $Gal(K'/K)$ is a quasi-p group, or, equivalently, that $M_1 = K$ holds. As K' is C-admissible, so is M_1 . Since, moreover, $Gal(M_1/K)$ has order prime to p and $Gal(L_v/K_v)$ is pro-p for each $v \in \Sigma_1$, M_1/K must split completely at each $v \in \Sigma_1$. Now, by (4.7), we obtain $M_1 \subset Kl_1 \cap Kl'_1 = K$, as desired.

Next, we shall prove that the constant field of K' is k . Since the Galois group over k of a finite extension of k is cyclic (hence nilpotent, a fortiori), we see that the constant field of K' is the compositum of those of M_1 and M_2 . Since we have already proved $M_1 = K$, it suffices to prove that the constant field of M_2 is k. As K' is C-admissible, so is M_2 . Since, moreover, $Gal(M_2/K)$ has p-power order and $Gal(L_v \cap K_v^{\text{ur}}/K_v)$ is pro-prime-to-p for each $v \in \Sigma_2$, M_2/K does not admit a non-trivial residue field extension over Σ_2 . In particular, the constant field of M_2 is contained in the residue field of each $v \in \Sigma_2$, hence in l_2 by the choice of Σ_2 . Now, since Gal (M_2/K) has p-power order and $[l_2 : k]$ is prime to p , the constant field of M_2 must coincide with k , as desired.

This completes the proof. \square

PROPOSITION (4.9) . Let the notations and the assumptions be as in (2.2) , and assume, moreover, that k is an algebraic extension of \mathbb{F}_p . Then, in the conclusion of (2.2) , we may assume that $Gal(K'/K)$ is a quasi-p group and that the constant field of K' coincides with k .

Proof. We can choose a finite subextension k_0 of \mathbb{F}_p in k, such that the curve C and the (reduced) closed subscheme Σ of C descend to C_0 and Σ_0 , respectively. Replacing k_0 by a suitable finite extension (in k), we may assume $\sharp(\Sigma) = \sharp(\Sigma_0)$. Moreover, again replacing k_0 by a suitable finite extension, we may assume that, for each $v \in \Sigma$, the finite Galois extension L_v/K_v descends to a finite Galois extension $L_{0,v_0}/K_{0,v_0}$, where K_0 is the function field of C_0 and v_0 is the image of v in Σ_0 . We define $\Sigma_{0,\infty}$ to be the image of Σ_{∞} in Σ_0 . We also put $B_0 \stackrel{\text{def}}{=} C_0 - \Sigma_0.$

Now, take finite sets Σ_1 and Σ_2 of closed points of B_0 as in (4.8), and put $\mathcal{C}_0 \stackrel{\text{def}}{=} (C_0, \Sigma_0 \cup \Sigma_1 \cup \Sigma_2, \{L_{0,v_0}\}_{v_0 \in \Sigma_0} \cup \{K_{0,v_0}\}_{v_0 \in \Sigma_1 \cup \Sigma_2})$. Applying (2.2) to \mathcal{C}_0 and $\Sigma_{\infty,0}$, we obtain a finite Galois extension K'_0 of K_0 that is nearly \mathcal{C}_0 distinguished with respect to $\Sigma_{\infty,0}$. By (4.8), Gal(K'_0/K_0) is a quasi-p group and the constant field of K'_0 coincides with k_0 .

Finally, put $K' \stackrel{\text{def}}{=} K'_0 k$. Then, we easily see that K' is a finite Galois

extension of $K = K_0 k$ that is nearly C-distinguished with respect to Σ_{∞} , that $Gal(K'/K)$ is a quasi-p group (as $Gal(K'/K) \to Gal(K'_0/K_0)$) and that the constant field of K' coincides with k. This completes the proof. \Box

PROPOSITION (4.10) . In (3.1) and (3.2) , we may choose B' such that K' is a finite Galois extension of K with quasi-p Galois group and that the constant field of K' coincides with k .

Proof. The proof of this fact goes rather similarly as that of (4.9) . The main difference between them consists in the fact that, in the proof of (4.9), we can use the trivial extension $K_{0,v_0}/K_{0,v_0}$ for each $v \in \Sigma_1 \cup \Sigma_2$, while, in the proof of (4.10), this is impossible, since we have to require that condition (RI) also holds for the (enlarged) base curve data. Here, however, we may take $K_{0,v_0}\mathbb{F}_p(p^{\infty})/K_{0,v_0}$ (resp. $K_{0,v_0}\mathbb{F}_p(p')/K_{0,v_0}$) for $v_0 \in \Sigma_1$ (resp. $v_0 \in \Sigma_2$) instead of $K_{0,v_0}/K_{0,v_0}$, where $\mathbb{F}_p(p^{\infty})$ (resp. $\mathbb{F}_p(p')$) denotes the maximal prop (resp. pro-prime-to-p) extension of \mathbb{F}_p . Details are left to the readers. \Box

Remark (4.11) . The group-theoretical results of this subsection are also applicable to other results in this section.

For example, (4.8) implies that, for some base curve data C, the field $K^{\mathcal{C}}$ that appears in (4.1) and (4.3) satisfies the following property: Gal(K^C/K) is pro-quasi- p in the sense that its maximal pro-prime-to- p quotient is trivial.

A similar remark is also applicable to (4.4). Namely, for some base curve data C, Gal $(K^{\mathcal{C}}/K)(= \text{Aut}(B^{\mathcal{C}}/B))$ is pro-quasi-p. In particular, the abelianization Gal $(K^{\mathcal{C}}/K)$ ^{ab} of Gal $(K^{\mathcal{C}}/K)$ is a pro-p group, or, equivalently, every finite abelian C -admissible extension of K has p -power degree. Accordingly, if, moreover, we start with C such that $Pic(C)$ admits a non-trivial torsion element $[L]$ whose order is prime to p, then L cannot be trivialized over any finite abelian C -admissible extension, while it can be trivialized over some finite (necessarily non-abelian) \mathcal{C} -admissible extension by (4.4) .

REFERENCES

- [A1] P. Autissier, *Points entiers sur les surfaces arithmétiques*, J. Reine Angew. Math. 531 (2001), 201–235.
- [A2] $\qquad \qquad \qquad$, Points entiers et théorèmes de Bertini arithmétiques, Ann. Inst. Fourier (Grenoble) 51 (2001), 1507–1523; Corrigendum, ibid. 52 (2002), 303–304.
- [CR] D. C. Cantor and P. Roquette, On Diophantine equations over the ring of all algebraic integers, J. Number Theory 18 (1984), 1–26.
- [CFHR] F. Catanese, M. Franciosi, K. Hulek and M. Reid, Embeddings of curves and surfaces, Nagoya Math. J. 154 (1999), 185–220.
- $[EGA4]$ A. Grothendieck et al, Eléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas, Publications Mathématiques, 20, 24, 28, 32, IHES, 1964–1967.
- [E1] R. Erné, The degree of an integral point in \mathbf{P}^s minus a hypersurface, C. R. Acad. Sci. Paris, Sér. I, Math. **324** (1997), 1121–1126.

- [E2] , On the degree of integral points of a projective space minus a horizontal hypersurface, J. Reine Angew. Math. 532 (2001), 151-177.
- [EG] D. R. Estes and R. M. Guralnick, Module equivalences: local to global when primitive polynomials represent units, J. Algebra 77 (1982), 138–157.
- [G] O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal. 11 (2001), 1192–1200.
- [GPR] B. Green, F. Pop and P. Roquette, On Rumely's local-global principle, Jahresber. Deutsch. Math.-Verein. 97 (1995), 43–74.
- [J] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, 42, Birkhäuser Boston, Inc., Boston, 1983.
- [Mi] P. Mikkelsen, *Effective bounds for integral points on arithmetic sur*faces, J. Reine Angew. Math. 496 (1998), 55–72.
- [Mo1] L. Moret-Bailly, *Points entiers des variétés arithmétiques*, in Séminaire de Théorie des Nombres, Paris 1985–86, Progr. Math., 71, Birkhäuser Boston, Boston, 1987, pp. 147–154.
- [Mo2] , Groupes de Picard et problèmes de Skolem, I, Ann. Sci. École Norm. Sup. (4) **22** (1989), 161–179.
- [Mo3] , Groupes de Picard et problèmes de Skolem, II, Ann. Sci. École Norm. Sup. (4) 22 (1989), 181–194.
- [Mo4] , Applications of local-global principles to arithmetic and geometry, in Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemp. Math., 270, Amer. Math. Soc., Providence, 2000, pp. 169–186.
- [Mo5] , Problèmes de Skolem sur les champs algébriques, Composition Math. 125 (2001), 1–30.
- [Poo] B. Poonen, Bertini theorems over finite fields, Ann. of Math. (to appear).
- [Pop] F. Pop, Embedding problems over large fields, Ann. of Math. (2) 144 (1996), 1–34.
- [Ra] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, 119, Springer-Verlag, Berlin-New York, 1970.
- [Ro] P. Roquette, Solving diophantine equations over the ring of all algebraic integers, in Atas da 8. Escola de Algebra (Rio de Janeiro, 1984), ´ 2, Coleção Atas, no. 16, Instituto de Mathemática Pura e Aplicada, 1985, pp. 1–26.
- [Ru1] R. S. Rumely, Arithmetic over the ring of all algebraic integers, J. Reine Angew. Math. 368 (1986), 127–133.
- [Ru2] $\qquad \qquad$, Capacity theory on algebraic curves, Lecture Notes in Mathematics, 1378, Springer-Verlag, Berlin, 1989.
- [S] T. Skolem, Lösung gewisser Gleichungen in ganzen algebraischen Zahlen, insbesondere in Einheiten, Skr. Norske Vid.-Akad. Oslo I, Mat. Naturv. Kl. (1934), no. 10.

- [T] A. Tamagawa, The Eisenstein quotient of the Jacobian variety of a Drinfeld modular curve, Publ. Res. Inst. Math. Sci. 31 (1995), 203– 246.
- [U] E. Ullmo, *Points entiers, points de torsion et amplitude arithmétique*, Amer. J. Math. 117 (1995), 1039-1055.

Akio Tamagawa Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, Japan 832