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ABSTRACT. Let Ok be a complete discrete valuation ring of mixed char-
acteristic (0, p) with perfect residue field. From the semi-stable conjecture
(Cs) and the theory of slopes, we obtain isomorphisms between the maxi-
mal unramified quotients of certain Tate twists of p-adic étale cohomology
groups and the cohomology groups of logarithmic Hodge-Witt sheaves for
a proper semi-stable scheme over Og. The object of this paper is to show
that these isomorphisms are compatible with the symbol maps to the p-
adic vanishing cycles and the logarithmic Hodge-Witt sheaves, and that
they are compatible with the integral structures under certain restric-
tions. We also treats an open case and a proof of Cy in such a case is
given for that purpose. The results are used in the work of U. Jannsen
and S. Saito in this volume.
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We will study a description of the maximal unramified quotients of certain
p-adic étale cohomology groups in terms of logarithmic Hodge-Witt sheaves.

Let K be a complete discrete valuation field of mixed characteristic (0, p) whose
residue field is perfect, let O be the ring of integers of K, and let K be an alge-
braic closure of K. We consider a proper semi-stable scheme X over Ok, i.e. a
regular scheme X proper and flat over Ok such that the special fiber Y of X is
reduced and is a divisor with normal crossings on X. For such an X, we have a
comparison theorem (the semi-stable conjecture by Fontaine-Jannsen) between
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834 TAKESHI TSuJI

the p-adic étale cohomology H}, (X7, @Q,) and the logarithmic crystalline coho-
mology of X with some additional structures (Theorem 3.2.2). Combining this
with the description of the maximal slope part of the logarithmic crystalline
cohomology in terms of logarithmic Hodge-Witt sheaves (see §2.3 for details),
we obtain canonical isomorphisms (=(3.2.6), (3.2.7)):

Hért (Xf7 QP(T))I = QP ®ZP Hgf: (?’ Ww%/E,log)

HY (X, Qp(d)r 2 Q, &z, H (Y, Ww%/g’log

0-1) ) ifr>d

by a simple argument. Here d = dim Xk, I denotes the inertia subgroup of
Gal(K /K) and the subscript I denotes the cofixed part by I, i.e. the maximal
unramified quotient.

The purpose of this paper is to answer the following two questions (partially
for the second one) on these isomorphisms.

First, if we denote by ¢ and j the closed immersion and the open immersion
Y = X and Xk = X Xgpec(0x) SPec(K) — X respectively, then we have a
unique surjective homomorphism of sheaves on the étale site Yg of Y:

(02) i*RTj*Z/an(T) — an{’/s,log

compatible with the symbol maps (see §3.1 for details), from which we obtain
homomorphisms from the LHS’s of (0.1) to the RHS’s of (0.1). Do these ho-
momorphisms coincide with (0.1) constructed from the semi-stable conjecture?
In [Sat], it is stated without proof that they coincide. We will give its precise
proof. This second construction via (0.2) is necessary in the applications [Sat]
and [J-Sai].

Secondly, the both sides of the isomorphisms (0.1) have natural integral struc-
tures coming from HZ (X%, Zy(s)) and H, °(Y, st?/g,log) for s = r,d. Do
the two integral structures coincide? We will prove that it is true in the case
r < p—2 and the base field K is absolutely unramified by using the comparison
theorem of C. Breuil (Theorem 3.2.4) between the p-torsion étale cohomology
and certain log crystalline cohomology.

By [Ts4], one can easily extend the theorem of C. Breuil to any fine and satu-
rated smooth log scheme whose special fiber is reduced (including the case that
the log structure on the generic fiber is non-trivial), and we will discuss on the
second question under this more general setting. For the Q, case, G. Yamashita
[Y] recently proved the semi-stable conjecture in the open case (more precisely
under the condition (3.1.2)) by the syntomic method. If we use his result, we
can prove our result also in the open case. Considering the necessity in [J-Sai]
of our result in the open case, we will give an alternative proof in §4 when
the horizontal divisors at infinity do not have self-intersections by proving the
compatibility of the comparison maps with the Gysin sequences.

This paper is organized as follows. In §1, we will give a description of the max-
imal unramified quotients of semi-stable Q,-representations and semi-stable

DOCUMENTA MATHEMATICA - EXTRA VOLUME KaTO (2003) 833-890
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Z,-representations (in the sense of C. Breuil) in terms of the corresponding ob-
jects in ME (o, N) and in MFy (o, N) respectively. In §2, we study the
relation between the maximal slope part of the log crystalline cohomology and
the logarithmic Hodge-Witt sheaves taking care of their integral structures. In
83, we will state our main theorem, review the construction of the comparison
map in the semi-stable conjecture and then prove the main theorem.

I dedicate this paper to Professor K. Kato, who guided me to the p-adic world,
especially to the p-adic Hodge theory. This paper is based on his work at many
points. I would like to thank Professors U. Jannsen and S. Saito for fruitful
discussions on the subject of this paper.

NoOTATION. Let K be a complete discrete valuation field of mixed characteristic
(0,p) whose residue field k is perfect, and let Ok denote the ring of integers of
K. Let W be the ring of Witt vectors with coefficients in k, and let Ky denote
the field of fractions of W. We denote by o the Frobenius endomorphisms of
k, W and K. Let K be an algebraic closure of K, and let k be the residue
field of K, which is an algebraic closure of k. Let Gk (resp. G) be the Galois
group Gal(K/K) (resp. Gal(k/k)), and let Ic be the inertia group of Gx. We
have Gi /Ix = G. We denote by Py the field of fractions of the ring of Witt
vectors W (k) with coefficients in k.

§l. THE MAXIMAL UNRAMIFIED QUOTIENTS OF SEMI-STABLE REPRESENTA-
TIONS.

In this section, we study the maximal unramified quotients (i.e. the coinvariant
by the inertia group Ix) of semi-stable p-adic or Z,-representations of G.

§1.1. REVIEW ON SLOPES.

Let D be a finite dimensional Py-vector space with a semi-linear automor-
phism ¢. For a rational number a = sr=! (s,r € Z,7 > 0,(s,7) = 1), we de-
note by D, the Py-subspace of D generated by the Frac(W (IF,-))-vector space
D¥¢"=P" Then, the natural homomorphisms D¥® =P’ QFrac(W(F,r)) £0 = Da
and ®qcqDqy — D are isomorphisms. We call D, the subspace of D whose
slope is «, and we say that « is a slope of D if D, # 0.

Let D be a finite dimensional Ky-vector space with a o-semi-linear automor-
phism ¢. Then the above slope decomposition of (Py @, D, ¢ ® ¢) descends
to the decomposition D = ®ncqDq of D. We call D, the subspace of D whose
slope is a and we say that « is a slope of D if D, # 0. For a subset I C Q, we
denote the sum ®ncr Dy by Dy.

§1.2. REVIEW ON SEMI-STABLE, CRYSTALLINE AND UNRAMIFIED p-ADIC REP-
RESENTATIONS ([Fol], [Fo2]A1, [Fo3], [Fod]).

Let MF (¢, N) denote the category of finite dimensional Ky-vector spaces
endowed with o-semilinear automorphisms ¢, Ky-linear endomorphisms N sat-
isfying Ny = ppN, and exhaustive and separated descending filtrations Fil’
on Di := K ®k, D by K-subspaces. Let MF () denote the full subcate-
gory of MF (¢, N) consisting of the objects such that N = 0. We denote by
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M () the category of a finite dimensional Ko-vector space endowed with a o-
semilinear automorphism ¢ whose slope is 0. We regard an object D of Mg ()
as an object of M F () by giving the filtration Fil°Dy = Dg, Fil' Dy = 0.
By a p-adic representation of Gk, we mean a finite dimensional Q,-vector
space endowed with a continuous and linear action of Gk, and we denote by
Rep(Gk) the category of p-adic representations. We denote by Rep_ (Gk)
(resp. @crys(GK)’ resp. Rep (Gk)) be the full subcategory of Rep(Gk)
consisting of semi-stable (resp. crystalline, resp. unramified) p-adic representa-
tions.

Choose and fix a uniformizer 7 of K. Then, by the theory of Fontaine, we have
the following commutative diagram of categories and functors:

Rep (Gk) 2% My, (9)

n N
Derys
Rep, (Gx) 2% ME(e)
n N

Rep (Gx) 2% MF (g, N)

The functors Dgys and Dy are fully faithful and the functor D, is an equiva-
lence of categories; they are defined by

Do(V) = (Be ®g, V)9 (e = st, crys,ur),

where By, and B,y are the rings of Fontaine and B, = Fy. A semi-stable
representation V' is crystalline if and only if N = 0 on Dg (V). Recall that the
embedding By < Bgr and hence the functor Dy depends on the choice of .
The quasi-inverse of D, is given by

Vur(D) = (PO K, D)W®LP:1

We say that an object D of MF (o, N) (resp. MF ;(p)) is admissible if there
exists a semi-stable (resp. crystalline) representation V' such that Dy (V) =
D (resp. Deys(V) = D). We denote by MF3 (¢, N) (resp. MF3(p))
the full subcategory of MF (¢, N) (resp. MF (¢)) consisting of admis-
sible objects.  Then the quasi-inverse Vi: MEF(p,N) — Rep  (Gk)
(resp. Verys: M%d(go) — @Crys(GK)) of the functor Dg;, (resp. Deyys) is given
by

V(D) = Fil’(Bar ®x Di) N (By, @, D)PEP=1NOIHION=0

(resp. Verys(D) = Fil®(Bar @k D) N (Berys ®, D)¥2¢=1)
For an object D of M F (¢, N) and an integer r, we denote by D(r) the object
of M F (¢, N) whose underlying Ky-vector space and monodromy operator N

are the same as D and whose Frobenius endomorphism (resp. filtration) is
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defined by ¢p() =p "¢p (resp. Fil'D(r)g = Fil'"" D). If D is admissible,
then D(r) is also admissible and there is a canonical isomorphism Vi (D)(r) &
Vst (D(r)) induced by (B @k, D) ®q, Qp(r) = Byt @k, D(r); (a®@d) @ 1"
at” ® d. Here (r) in the left-hand sides means the usual Tate twist

For an object D of MF (¢, N), we define the integers ¢ty (D) and ¢tn(D) by

tu(D) = (dimg gri; Dk ) - i
i€EZ

ty(D) =Y (dimg, Da) - a,
aeQ

where D, denotes the subspace of D whose slope is «.

We say that an object D of M F (¢, N) is weakly admissible if ty (D) =ty (D)
and if, for any Ky-subspace D’ of D stable under ¢ and N, ty(D’) < ty(D’).
Here we endow D’ with the filtration Fil'D} = Fil'Dg N D (i € Z). Note
that tg(D') < tn(D') is equivalent to ty(D/D’) > tx(D/D’) under the as-
sumption tg (D) = ty(D). The admissibility implies the weak admissibility.
P. Colmez and J.-M. Fontaine proved that the converse is also true ([C-Fo]).

§1.3. THE MAXIMAL UNRAMIFIED QUOTIENTS OF SEMI-STABLE p-ADIC REP-
RESENTATIONS.

LEMMA 1.3.1. Let D be a weakly admissible object of MF (p,N). If
Fil'Dg = Dy and Fil*T'Dg = 0 for integers r < s, then the slopes of ¢
on D are contained in [r, s].

Proof. We prove that the slopes of ¢ on D are not less than r. The proof of
slopes< s is similar and is left to the reader. (Consider the projection D — D,
for the largest slope a.) Let a be the smallest slope of D, and let D, be
the subspace of D whose slope is @. Then, D, is stable under ¢. By the
formula Ny = ppN and the choice of o, we see N = 0 on D,, especially
D, is stable under N. Hence ty(D,) < tn(Dy) = a - dimg, D,. Since
try(Dy) > r-dimg, D, by the assumption on D, we obtain o > r. O

Let V be a semi-stable p-adic representation of Gg, and set D = Dg(V).
Let s be an integer such that Fil*t'Dyg = 0, and let V, be the quotient
V(8)1,(—s) of V. We will construct explicitly the corresponding admissible
quotient of D. For a € Q, let D, denote the subspace of D whose slope is
a. By Lemma 1.3.1, D, = 0 if o > s and hence D = Dueq,a<sDa- We
define the monodromy operator on Dy by N = 0 and the filtration on (Dy)k
by Fil*(Ds)x = (Ds)x and Fil**1(Ds)x = 0. Then, we see that Dg(s) is
an object of My, (). Especially Dy is admissible. Using the relation Ny =
peN on D and Fil**'Dg = 0, we see that the projection D — Dy is a
morphism in the category M F E}éio (¢, N). Especially it is strictly compatible
with the filtrations ([Fo4]4.4.4. Proposition i)), that is, the image of Fil' Dy is
Fil'(Dy) k.
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ProrosiTioN 1.3.2. Under the notation and the assumption as above, the
quotient Vs of V' corresponds to the admissible quotient Dy of D.

Proof. Since D,(s) is contained in My (), Vit(Ds)(s) = Vit (Ds(s)) is unram-
ified. Hence the natural surjection V — Vg (Ds) factors through V. On the
other hand, since V(s) is unramified, Dy (Vi)(s) = Dy (Vi(s)) is contained in
Mg, (). Hence the unique slope of Dy (Vs) is s and the natural projection
D — Dy (Vy) factors as D — Dy — Dg(Vy). Ds — Dy (V) is strictly com-
patible with the filtrations because D — Ds and D — Dg(Vs) are strictly
compatible with the filtrations. (Compatibility with ¢ and N is trivial). O

COROLLARY 1.3.3. Under the above notations and assumptions, there exists a
canonical Gi-equivariant isomorphism:

V(8)1, = (Py ®x, D)?77".

Proof. By Proposition 1.3.2, we have canonical Gg-equivariant isomorphisms:

V() = Vals) 2 Vae(D2)(5) 2 Vae(Dy(5)) = Var(Dis(5))
= (Py ®x, Ds)?" #= = (Py @k, D)?¥9="".

O

§14 REVIEW ON SEMI-STABLE, CRYSTALLINE AND UNRAMIFIED p-TORSION
REPRESENTATIONS ([Fo-L], [Fo2]A1, [Br2], [Br3]§3.2.1).

In this section, we assume K = K. Following [Br2], we denote by S the p-adic
completion of the PD-polynomial ring in one variable W{u) = W {u — p), and
by fo (resp. fp) the W-algebra homomorphism S — W defined by ul™ — 0
(resp. pl™ = p™/n!) for n > 1. We define the filtration Fil'S (i € Z,i > 0) to
be the p-adic completion of the i-th divided power of the PD-ideal of W (u — p)
generated by u — p. We set Fil'!S = S fori € Z, i < 0. Let ¢5: S — S
denote the lifting of Frobenius defined by o on W and u[™ — (u?)["]. For an
integer i such that 0 < i < p — 2, we have p(Fil'S) C p'S and we denote
by ¢;: Fil’S — S the homomorphism p~% - ¢|pyig. Finally let N denote the
W-linear derivation N: S — S defined by N(ul™) = nul" (n € N).

Let MFyy 15,2 tor(p) be the category of Fontaine-Laffaille of level within
[0,p — 2], let MFy 0,9 tor(ps N) be the category MP2 of Breuil, and let
My ior(¢) be the category of W-modules of finite length endowed with o-
semilinear automorphisms. These categories are abelian and artinian.

An object of ME'yy g, o] tor () is @ W-module M of finite length endowed with
a descending filtration Fil*M (i € Z) by W-submodules such that Fil°M = M,
FilP~'M = 0 and o-semilinear homomorphisms ;1 FillM — M 0<i<p-
2) such that @;|pyi+1n = ppiv1 (0<i<p-3)and M =} ;) i (Fil*M).
We can prove that Fil'M (i € Z) are direct summands of M. For an integer
0 <r < p-—2, wesay that M is of level within [0,7] if Fil"™*M = 0. The
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sequence My — My — Mj in MEy, ., o () is exact if and only if it is
exact as a sequence of W-modules. Furthermore, for an exact sequence M; —
My — Mz in MEy, o, 1or(#), the sequence Fil! My — Fil' My — Fil' M is
exact for any i € Z.

An object of MFyy 1,9 t0r(, V) is an S-module M isomorphic to a fi-
nite sum of S-modules of the form S/p"S (n > 1) endowed with the
following three structures: A submodule FilP~2M such that FilP~2S -
M C FilP72M. A pg-semi-linear homomorphism ¢,_o: FilP72M —
M such that (¢1(u — p)P2pp 2(az) = 9y 2(@)pp((u — pPP~22) (a €
FilP=2S, z € M) and that M is generated by ¢, o(FilP72M) as
an S-module. A W-linear map N: M — M such that N(ax) =
N(a)z + aN(z) (a € S,z € M), (u — p)N(FilP"2M) C FilP"2M and
p1(u=p)Npp—2(x) = pp—2((u—p)N(z)) (x € FilP~>M). Note that @1 (u—p) =
(p — D!ulPl — 1 is invertible in S. For an object M of MFyw 10.p—21 t0r (05 V),
we define the filtration Fil'M (0 < i < p — 2) by Fil'lM := {z € M|
(u—p)P~27z € FilP"2 M} and the Frobenius ¢; : Fil'l M — M (0 <i < p—2)
by the formula ¢;(z) = @1(u — p)~ P2 D, 5((u — p)P~27'z). We have
Fil® M = M and ¢;|Fil'"™*M = pp; 41 for 0 < i < p — 3. For an object M of
MFw 10.p-2,t0r (0, V) and an integer 0 < r < p — 2, we say that M is of level
within [0, 7] if FilP~27"S- M D FilP~2 M. The sequence M; — My — M3 in
MF y10.p—2)t0r (5 V) is exact if and only if it is exact as S-modules. Further-
more, for an exact sequence My — Mz — M3 in MF 0,9 tor(, N) and
an integer 0 < r < p—2,if M, (s =1,2,3) are of level within [0, 7], then the
sequence Fil" My — Fil" My — Fil" M3 is exact.

We regard an object M of My, . () as an object of MFEy, 1., o 0, () by
setting Fil°M = M, Fil'!M = 0 and ¢y = ¢. We have a canonical fully
faithful exact functor MEFy, o ,_9 tor(9) = MEw [0 p—2)t0r (0, IV) defined as
follows ([Br2]2.4.1): To an object M of MEyy o, o tor(¢), We associate the
following object M. The underlying S-module is S @y M and FilP72M =
Yo<icpg FilP27'S @y Fil'M. The Frobenius ¢, o : FilP7>M — M is
defined by the formula: ¢, s(a ® ) = @,_o9_i(a) ® pi(z) (0<i<p—2,a €
FilP=271S x € Fil'M). The monodromy operator is defined by N(a ® x) =
N(@)®@x (a € S,z € M). To prove that ¢,_o is well-defined, we use the
fact that Fil'M (i € Z) are direct summands of M. Note that, for an integer
0 <r <p—2, M is of level within [0, ] if and only if M is of level within [0, 7].
Let @tor(G k) be the category of Z,-modules of finite length endowed with
continuous actions of G, and let @tor, (Gk) be the full subcategory of

ur

Rep, (Gk) consisting of the objects such that the actions of G are trivial on

tor
K-

First we have an equivalence of categories:

THF: MW,tor((p) — Reptor,ur(GK)
defined by Ty (M) = (W (k) @y M)¥®#=1. Its quasi-inverse is given by T
(W (k) ®z, T)9* (cf. for example, [Fo2]AL).
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J.-M. Fontaine and G. Laffaille constructed a covariant fully faithful exact
functor ([Fo-L}):

Tcrys : MW,[O,pfﬂ,tor(sp) — @tor(GK)'

(Strictly speaking, they constructed a contravariant functor Ug. We define
Terys to be its dual: Teyys(M) := Hom(U (M), Q,/Zy).) For an object M of
MF\y 0.5—2,tor () and an integer 0 < r < p — 2 such that M is of level within
[0, r], we have the following exact sequence functorial on M (cf. [Kal]Il §3):

(14.1) 0 — Torys(M)(r) — Fil" (Agrys @ M) =5 Agrys @ M — 0.

Here Fil'(Acrys @w M) = ZO<j<i Fil'=I Aerys @w Fil’M (0 <i < p—2) and
¢; is defined by ¢i(a @ z) = p;—j(a) ® p;(z) (0 < j < i, a € Fil"™ Aepys,
x € Fil/M).

C. Breuil constructed a covariant fully faithful exact functor ([Br2]):

TSt : ﬁw,[o,pfﬂ,tor(s& N) - @tor(GK)'

(Strictly speaking, he constructed a contravariant functor Vi. We define
Ty to be its dual: Ty (M) := Hom(Vg(M),Qp/Z,).) For an object M
of MFy 10p—2]tor(¢s N) and an integer 0 < r < p — 2 such that M is
of level within [0,7], we have the following exact sequence functorial on M
([Br3]§3.2.1):

(14.2) 0 — Tu(M)(r) — (Fil" (Aa@s M) V=" =5 (Ap@sM)V=0 — 0

Here we define Fil', ¢, and N on Ay ®g M as follows (see [Br1]§2 for the
definition of ;1;) We define Fil"(//l; ®s M) (0 < i < p—2) to be the
sum of the images of Fil' Ay ®g Fil’ M (0 < j < 4). The homomorphism
Or: Filr(f/l; ®s M) — Zs\t ®s M is defined by ¢r(a ® ) = vr_i(a) ® @;(x)
0<i<rac Fil"~i Ay, x € Fil'M). (The well-definedness is non-trivial).
The monodromy operator N is defined by N(a ® ) = N(a) ® z + a ® N(z)
(a € Ay, z € M).

Now we have the following diagram of categories and functors commutative up
to canonical isomorphisms:

~

MW,tor(Qa) — @tor,ur(GK)
N
TCr S
(143) MF,W,[O,p72],tOr(SD) —y> @tor(GK)
\ ., |
MW,[O,pfﬂ,tor((pv N) —= @tor(GK)'

For an object M of My, .. (¢), the isomorphism T, (M) = Terys(M) is in-
F

duced by the natural homomorphism (W (k) @w M)(r) — Fil"(Aays @w
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M) = (Fil"Acys) @Qw M (0 < r < p — 2) defined by the natural inclu-
sion W(k)(r) C Fil"Aeys. (The isomorphism is independent of the choice
of r.) For an object M of MEy o, o tor(¢), if we denote by M the corre-
sponding object of MW,[O,pfﬂ,tor((p?N ), then the natural homomorphisms
Fil'(Acrys @w M) — lez(gs\t ®s M)N=0 (0 < i < p— 2) are isomorphisms
and we obtain the natural isomorphism Tcrys(M ) 2 Ty (M) from the two exact
sequences (1.4.1) and (1.4.2).

§1.5. REVIEW OF THE COMPARISON BETWEEN @, AND p-TORSION THEORIES
([Fo-L], [Brl], [Br2]).

We assume K = K, and keep the notation of §1.4. We review the relation
between the functor T, (§1.4) and the functor V, (§1.2) (e € {ur, crys,st}).
Let us begin with e = ur. Let (M,),>1 be a projective system of objects of
My 4o () such that the underlying W-module of M, is a free W/p"W-module
of finite rank and the morphism M, 1 /p"M,+1 — M, is an isomorphism.
Associated to such a system, we define the object D of M., () to be Ko @w
lim  M,,. Then, we have a canonical isomorphism defined in an obvious way:

(1.5.1) Vir(D) = Q) @z, lim Ty (M,,).
Next consider the case = crys. Let (M,),>1 be a projective system of

objects of MFy, 15, o () such that the underlying W-module of M, is a
free W/p™W-module of finite rank and the morphism M, 1/p" M1 — M, is
an isomorphism. We define the object D of M F ;- () associated to this system
as follows: The underling vector space is Ko ®@w (lim, M, ), the filtration is
defined by Ko ®@w (lim,, Fil'M,) and the Frobenius endomorphism is defined
to be the projective limit of g of M,. Then D is admissible, and we have a
canonical isomorphism ([Fo-L]§7, §8):

(1.5.2) ‘/crys(D) = Qp ®Zp (Lmchrys(Mn))'

The homomorphism from the RHS to the LHS is constructed as follows: By
taking the projective limit of the exact sequence (1.4.1) for M = M, and
0 < r < p—2 such that M, are of level within [0, 7] for all » > 1 and tensoring
with @, we obtain an isomorphism

r

Qp ®Zp (Lﬂl Tcrys(Mn))(r) = Filr(B;ys @Ko D)wzp ’

whose RHS is contained in

Verys(D)(r) & Fil"(Berys @1, D)?7F
VR 5 70 (0 € Varys(D), t € Qp(1)).

Finally let us explain the case e = st. In this case, we need to introduce
another category MF i (¢, N) defined by C. Breuil [Br1]§6 (MFgq,, i, (2, N)
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in his notation), which is categorically equivalent to M F (¢, N). Set Sk, :=
Ko®w S, and let fy (resp. fp) also denote the surjective homomorphism Sk, —
Ky induced by fy (resp. fp) : S — W. The filtration Fil', the Frobenius
endomorphism ¢ and the monodromy operator N on S naturally induce those
on Sk, , which we also denote by Fil", ¢ and N. An object of MF (¢, N) is a
free Sk,-module D of finite rank endowed with the following three structures:
A descending filtration Fil*D (i € Z) by Sk,-submodules such that Fil’Sg, -
FiliD C Fil'*iD (i,j € Z), Fil'D = D (i << 0) and Fil'D C Fil'Sk, -
D (i >> 0). A ps,, -semilinear endomorphism D — D whose linearization
D ®sy,,¢ Sk, — D is an isomorphism. A homomorphism N: D — D such that
N(az) = N(a)z + aN(z) (a € Sk,,x € D), N(Fil'D) C Fil'"'D (i € Z) and
Ny = ppN. We can construct a functor M F (¢, N) = MF - (p, N) easily as
follows: Let D be an object of M F (¢, N). The corresponding object D is the
Sk,-module Sk, Rk, D with the Frobenius ¢ ® ¢ and the monodromy operator
defined by N(a®x) = N(a)®x+a® N(z). The filtration is defined inductively
by the following formula, where i is an integer such that Fil®®D = D.

Fil'D=D (i <ip)
Fil'D = {x € Fil'"'D|f,(z) € Fil'D,N(x) € Fil'"'D} (i > i)

Here f, denotes the natural projection D — D ®g, ., Ko and we identify
D®sy, .1, Ko with D by the natural isomorphism (D®s,. Sk,)®@sy, 1, Ko = D.

To construct the quasi-inverse of the above functor, we need the following
——N-nilp
proposition. (Compare with B = B}

PropPOSITION 1.5.3. ([Brl]§6.2.1). Let D be an object of MF ;- (¢, N). Then
D := DN s g finite dimensional vector space over Ko and the natural
homomorphism D ®k, Sk, — D is an isomorphism. Here N-nilp denotes the
part where N is nilpotent.

With the notation of Proposition 1.5.3, we can verify easily that D is stable
under N and ¢ and we can define an exhaustive and separated filtration on
D by the image of Fil*D under the homomorphism D — D @Syt Ko = D.
Thus we obtain an object D of M F (¢, N). The functor associating D to D
is the quasi-inverse of the above functor.

Let (My)n>1 be a projective system of objects of MFy, 15 ,,_o tor (¢, V) such
that the underlying S-module of M,, is a free S/p™S-module and the morphism
M1 /P" Myy1 — M, is an isomorphism for n > 1. Set M := lim, M,
FilP7> M := lim , FilP~*>M,,, and define the Frobenius ¢,_o: Fil’">M — M
and the monodromy operator N: M — M by taking the projective limit
of those on M,, (n € N). Then M is a free S-module of finite rank and the
additional three structures satisfy the same conditions required in the definition
of the category MFy 9 ,—9) tor (¢, V). Furthermore M/ FilP~2 M is p-torsion
free. Indeed, we have the following injective morphism between two short exact
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sequences:

o——— M 25 M — M —0

I I I

0 —— FilP2M —2— FilP2M —— FilP2M; — 0.

(With the terminology of [Br2]Définition 4.1.1.1, M with the three addi-
tional structures is a strongly divisible S-module.) For each integer i such
that 0 < i < p — 2, we define the S-submodule Fil'M of M by {z €
M|(u—p)P~27z € FilP~2 M} and the Frobenius ¢;: Fil' M — M by @;(x) =
1(u—p)~ P27 o((u—p)P~ 2 ix). We have Fil® M = M, ¢;|Fil't ' M =
ppiyq for 0 <i <p—3and Fil'M = @anlZMn (0<i<p-—2). H M, are
of level within [0, 7] for an integer 0 < r < p — 2, then we see that M /Fil" M
is p-torsion free. Now we define the object D of MF - (p, N) associated to the
projective system (M.,,),, as follows ([Br2]§4.1.1): The underlying Sk,-module
is Q, ®z, M. The filtration is defined by Fil'D =Q, ®z, Fill M (0<i<p-2)
and Fil'D = > 0<j<p_2 Fil"=1Sg, - Fil’D (i > p — 1). The Frobenius and the
monodromy operator on D are defined to be the endomorphisms induced by
o and N on M. Finally let D be the object of M F . (p, N) corresponding to
D. (It M,, are of level within [0,r] for an integer 0 < r < p — 2, then so is D,
that is, Fil°’D = D and Fil"*'D = 0.) Then D is admissible and there is a
canonical isomorphism

(1.5.4) V(D) = Qp ®z, lim T (M)

functorial on (M,,),, ([Br2]4.2).
This isomorphism is constructed as follows (cf. [Br3]4.3.2). First, since M is a
free S-module of finite rank and M,, = M/p" M, we have

(1.5.5) Qp ®z, (lm(Ay ©s M,)) = B ®s,, D.

n

See [Br1]§2 for the definition of BZ.

LEMMA 1.5.6. Let r be an integer such that 0 <r < p—2 and M, (n > 1)
are of level within [0,7]. Then the above isomorphism induces an isomorphism:

Qp ®z, Um(Fil" (Ay ®©5 M,,)V=0)) = Fil" (B, ®s,,, D)V~

n

Here Filr(//ls\t ®sM.,,) is the //ls\t—submodule ofgs\t ®s M, defined after (1.4.2),
and Fil"(BX ®sy, D) is the sum of the images of Fil"~i B} sy, Fil'D (0 <
j <r)in BY ®sye, D-
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This is stated in [Br3] Lemme 4.3.2.2 in the special case that (M,,) comes from
crystalline cohomology with only an outline of a proof, and his proof seems to
work for a general (M,,). To make our argument certain, I will give a proof,
which seems a bit different from his.

Proof. We use the terminology and the notation in [Br3]3.2.1 freely. We define
another filtration Fil M (0 <i<r)of M by Fil' M = FilDN M. We
see easily that this filtration satisfies the three conditions of [Br3] Définition
3.2.1.1, and Fil' M D‘Fil"/\/l. Note that M/Fil" M is p-torsion free. Define
another filtration Fil M., (0 <4 < r) of M, to be the images of Fil' M.
Then this filtration is admissible in the sense of [Br3] Définition 3.2.1.1. De-
fine mr(Ast ®s M,,) using Fil M,, instead of Fil' M, and mr(Ast ®s M)
similarly using Fil M. Then, by [Br3] Proposition 3.2.1.4, we have

(Fil (Ag ©5 M,))N=0 = (Fil" (A ®5 M,,))N=0.

Hence it suffices to prove that (1.5.5) induces an isomorphism
Q, @z, W Fil' (A 5 My)) = Fil" (B ®s,, D).
n

To prove this isomorphism, we choose a basis ey (A € A) of D over Sk, and
integers 0 < r) < r such that

Fil'D = @)\Fil" ™ Sg,exn (0<i<7)

([Br1] A). Let M’ be the free S-module generated by ey. By multiplying p~—™
for some m > 0 if necessary, we may assume that there exists an integer v > 0

such that p M’ ¢ M c M’. We define the filtration Fil' M (0<i<r)and
ﬁ“(Ast ®g M) in the same way as M. Then, for 0 < i < r, we have

Fil' M = @\Fil'™"™8 - e,

and hence o -

Fil (Ay @5 M) = @y Fil"™™ Ay - ey.
Especially mr(@ ®s M) and (Ay ®g M’)/(mr(zi; ®s M) are p-adically
complete and separated, and p-torsion free. On the other hand, we have
p"Fil' M’ C Fil' M C Fil' M’ and hence

P Fil (A 95 M) C Fill (Ay ©5 M) C Fill (Ag 05 M').
Since WT(//l; ®s M,,) is the image of mr(//l; ®s M) and (//1; ®g M)/p" =
Agt ®g M,,, we have the following commutative diagram:
Fil (Ag@s M)/p" 25 Fil (Ay @5 M) — Fill (A 5 M) /p"
N n N

« v

(Ag @s M)/ 25 Ap@s M,  —  (Ay @5 M)/p".

DOCUMENTA MATHEMATICA - EXTRA VOLUME KaTo (2003) 833-890



p-ADIC ETALE COHOMOLOGY AND Loc HODGE-WITT SHEAVES 845

By taking the projective limit with respect to n, we obtain the following com-
mutative diagram:

Fil (A @s M) 25 lim (Fil (Ay @5 M,)) —  Fill (Ag @5 M)
N 5 N N
Ast ®S M/ L> Ast ®S M — Ast ®S M/-

By tensoring with Q,,, we obtain the claim. [

Let r be an integer as in Lemma 1.5.6. Then by taking the projective limit
of the exact sequence (1.4.2) for M,, and r and using the isomorphism (1.5.5)
and Lemma 1.5.6, we obtain an isomorphism:

Q) @z, Um (T (Mn)(r)) & Fil" (B @s,e, DYN=0977,

where Fil"(BY ®sy, D) is as in Lemma 1.5.6. Recall that D denotes the
object of MF . (p, N) corresponding to D. By definition, D = DN-NIP  the
canonical homomorphism D ® g, Sk, — D is an isomorphism, ¢ and N on D
are induced from those on D, and the filtration Fil’D is the image of Fil'D

by fp: D — D ®sy, .5, Ko = D. (Recall that we assume K = Kp.) On the
— N-Nilp
other hand, B} = B} ([Ka3]Theorem (3.7)) and we have a canonical

homomorphism B — Bjz ([Brl]§7, see also [Ts2]§4.6) compatible with the

filtrations and f,: Sk, — Ko such that the composite with By C B:; is the
inclusion BY, C Bj (associated to p). Hence we have (BY ®g,, D)NNP =

— —

(B3 ®k, D)N"NP = B @, D and the image of Fil' (B ®g,, D)N(BY @k, D)
by the homomorphism B} ®x, D — Bd+R ®K, D is contained in Fili(BjR R K,
D). Thus we obtain an injective homomorphism

Qy @z, (im T (M) () < (B @, D)N="%=" 1 Fil" (B ®x, D)

and the RHS is contained in
Vio(D)(r) = (Bg @5, D)N=0¢=P" 0 Fil"(Byr @k, D).

§1.6. UNRAMIFIED QUOTIENTS OF SEMI-STABLE Z,-REPRESENTATIONS.

We assume K = Ky and keep the notation of §1.4 and §1.5.

Let (My)n>1 be a projective system of objects of MFy, 15,9 tor (0, V) such
that the underlying S-module M,, is a free S/p™S-module of finite rank and the
morphism M, +1/p"Mpt1 — M, in MWJ(W?Q]’tDr((p, N) is an isomorphism
for every integer n > 1. Let D and D be the objects of MF (¢, N) and
MF ;(p,N) associated to (M,,),>1. If we denote by M the projective limit
of M,, with respect to n as S-modules, then D = Q, ®z, M, D = DN-Nilp and
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D ®k, Sk, = D. Set T, := Ty (My,), T := lim,, T5,, and V := V(D). Recall
that D is admissible. We have a canonical isomorphism Q, ®z, T'= V (1.5.4)
and we will regard T as a lattice of V' by this isomorphism in the following.
Let 7 be an integer such that 0 < r < p—2 and let V' be a quotient of the repre-
sentation V such that V’(r) is unramified. Since V'(r) is unramified and hence
crystalline, V' is also crystalline, and if we denote by D’ the corresponding
quotient of D in the category MF (¢, N), then Fil"D' = D', Fil"*'D’ = 0,
and the slope of the Frobenius ¢ is . Furthermore, we have Gi-equivariant
isomorphisms

(1.6.1)

V' 2 Voo (D) 2 Vs (D' (1)) (=) 2 Vie (D' (1)) (=7) = (Po®5c, D')#=7") (=),

Let T' be the image of T in V' and let M’ be the image of M under the
composite
D — D®5K07f0 Ko=D— D'

THEOREM 1.6.2. Let the notation and the assumption be as above. Then the
composite of the isomorphisms (1.6.1) induces an isomorphism

T = (W(E) @w M)?2¢=") (—r)

Proof. Set T := T'/p™T’. Since T, (r) is unramified, T}, is crystalline. If
we denote by M/ the corresponding quotient of M,,, the projective system
(M7 )n>0 comes from the projective system (My)n>1 in MFy o, o tor(¢)
such that, for every integer n > 1, Fil"M! = M/ and Fil"T*M/! = 0, the
underlying W,-module of M, is free of rank ranky,,zT) = dimg, V', and
the morphism M), | /p" M), — M, in MW,[O,pfﬂ,tor(@) is an isomorphism.
We define M;,(r) to be the object of My . (¢) C MEy (o, tor(¢) Whose
underlying W,,-module is the same as M), and whose Frobenius ¢ is ¢,. Then,
we have isomorphisms:

Ty 2 T (M) 2 Torgs (M) = Terys (M3 (1) (=1)
= T (M (1) (1) = (W (E) sowr M;)#®9 1) (—r).

The third isomorphism follows from the exact sequence (1.4.1). By taking the
projective limit, we obtain an isomorphism

T' = (W (k) ®@w (lim M},))?&#r=")(=r).

Let M’ be the projective limit of M! as S-modules. By taking the projective
limit of the surjective homomorphisms M,, — M/ of S/p"S-modules, we
obtain a surjective homomorphisms M — M’ of S-modules such that the
following diagram is commutative:

M — M

oL

D — D,
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where D’ denotes the quotient of D corresponding to the quotient D’ of D. Note
that D" and D’ are the objects of MF - (¢, N) and M F . (¢, N) associated to
(M!)p. On the other hand, since M/, ®g, s, W = M, we have M’ ®g 5, W =
lim, M;,. Hence there exists an injective homomorphism lim M/ — D’ which
makes the following diagram commutative:

M — M @y, 5o W = lim, M,
\J \J
D — D @Sk fo Ky = D'.
By the definition of M’, the image of lim M, in D" is M’, and ¢, on lim M
is induced by p~"¢ on D'.
Thus we obtain an isomorphism:

T = (W(E) o M)?25=)(—r).

Now it remains to prove that this is compatible with (1.6.1), which is straight-
forward. 0O

§2. THE MAXIMAL SLOPE OF LOG CRYSTALLINE COHOMOLOGY.
Set s := Spec(k) and 5 := Spec(k). Let L be any fine log structure
on s, and let L denote its inverse image on 5. We consider a fine log
scheme (Y, My) smooth and of Cartier type over (s,L) such that Y is
proper over s. Let H((Y,My)/(W,W(L))) be the crystalline cohomology
lim HZ (Y, My)/(W,, W,(L))) defined by Hyodo and Kato in [H-Ka] (3.2),
which is a finitely generated W-module endowed with a o-semi-linear endo-
morphism ¢ called the Frobenius. The Frobenius ¢ becomes bijective after
Qw K. In this section, we will construct a canonical decomposition My & M of
H((Y, My)/(W,W(L))) stable under ¢ such that Ko®w M (resp. Ko®@w M>)
is the direct factor of slope ¢ (resp. slopes< ¢), and a canonical isomorphism
W (k) @w My = W (k) @z, Hg (Y, Wwl /g,log)-
We will also construct a canonical decomposition M| @ M3 stable under ¢ such
that Ko®w M, (resp. Ko®w M3) is the direct factor of slope d (resp. slopes< d),
and a canonical isomorphism

W (k) @w M{ =W (k) ®z, HY, YV, Wwi S5 low)-

Here (Y, Ms) := (Y, My) X (s,1,) (5, L). See §2.2 for the definition of the RHS’s.

§2.1. DE RHAM-WITT COMPLEX.

First, we will review the de Rham-Witt complex (with log poles) Wews /s A5
sociated to (Y, My)/(s,L). We don’t assume that Y is proper over s in §2.1.
Noting the crystalline description of the de Rham-Witt complex given in [I-R]
III (1.5) for a usual smooth scheme over s, we define the sheaf of W,,-modules
ani,/s on Yy to be

ol Ry My ) ) (W W (02O (Y My )/ (Wo Wi (L))
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for integers i > 0 and n > 0 ([H-Ka] (4.1)). Here u(y,ar,)/(w,,w, (L)) denotes
the canonical morphism of topoi: ((Y, My)/(Wy, Wi(L)))ays — Y& These
sheaves are endowed with the canonical projections 7: Wn+1w§, /s ané/ /s
([H-Ka] (4.2)) and the differentials d: ang,/s — anf;;i ([H-Ka] (4.1)) such
that 7d = dr and ((an;,/s, d)n>1,T)n becomes a projective system of graded
differential algebras over W. The projections 7 are surjective ([H-Ka] Theorem
(4.4)). Furthermore, we have the operators F': Wy 1wy, — Wywy, o and

Vi Wawy o = Wypiwsy, ([H-Ka] (4.1)) compatible with the projections .
As in the classical case (cf. [I1] I Introduction), one checks easily that we have
(1) FV = VF = p, FdV = d.

(2) Fa.Fy = F(zy) (z € Wawy.y € Waw],,,),

aVy=V(Fzy) (x € Wpwy .,y € an{//s).

(3) V(zdy) =Vz.dVy (z € ang//s,y € ané/s).

(The property (3) follows from (1) and (2): V(zdy) = V(x.FdVy) = Vz.dVy.)
We have W-algebra isomorphisms 7: W, (Oy) = W,w). /s (see [H-Ka] (4.9) for
the construction of 7 and the proof of the isomorphism) compatible with 7, F’

and V', where the projections m and the operators F' and V on W,,(Oy) are
defined in the usual manner. With the notation in [H-Ka] (4.9), Cyw, s a
complex of quasi-coherent W, (Oy)-modules and hence W, w}. /s = HI(Cy /Wn)
are quasi-coherent W, (Oy )-modules.

In the special case n = 1, we have an isomorphism Wlwﬁ,/s = H’(w{,/s) 0%1
wgl//s ([Ka2] (6.4), (4.12)), which is Oy-linear and compatible with the differ-
entials. Recall that we regard H*(ws /S) as an Oy-module by the action via
Oy — Oy;z — aP. We will identify (Wiwy,,, d) with (w3, , d) in the following
by this isomorphism.

With the notation of [H-Ka] Definition (4.3) and Theorem (4.4) Bn+1w§,/s ®
an;_/i (resp. Blwﬁ, /S) are coherent subsheaves of the coherent Oy-module
Ff“‘l(wg}/s @wif/i) (resp. F*wé,/s), the homomorphism (C™,dC™): Bn+1w§,/s@
ani,_/i — Bwi, /5 is Oy-linear and the isomorphism ([H-Ka] Theorem (4.4)):
(2.1.1)

(V",dV"):Ff+1(w§,/s@w§,_/i)/Ker(C",dC’") 5 Ker(r: Wn+1w§//s — ang'//s)

is Oy-linear, where we regard the right-hand side as an Oy-module via
F: Oy = Wyp10y VW, 110y — Wpi1Oy /pW, 110y . Especially this im-
plies, by induction on n, that anﬁ/ /s is a coherent W,,(Oy )-module.

We set Ww%,/s = lim Wn‘*’%//s and denote also by d, F' and V the projective
limits of d, F and V for W.w;,/s. Then, by the same argument as in the proof
of [I1] II Proposition 2.1 (a) using the above coherence, we see that, if ¥ is
proper over k, then H?(Y, an;,/s) and H (Y, an;,/s) are finitely generated
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W,-modules and the canonical homomorphisms

(2.1.2) HI (Y, Wwy,) = lim H (Y, Wpwi ) )
(2.1.3) H (Y, Wuws),) = LiTmHj(Y, Wows )

are isomorphisms.

THEOREM 2.1.4. ([H-Ka] Theorem (4.19), cf. [I1] II Théoreéme 1.4). There
exists a canonical isomorphism in DT (Ye, W,):

Ruey, My ) /(Wi W (1)) O (v, My ) (Wi, W (L)) = Wty

functorial on (Y, My) and compatible with the products, the Frobenius and the
transition maps. Here the Frobenius on the RHS is defined by p'F in degree i.

Recall that p: an§,/ R ané,/s factors through the canonical pro-
jection 7: an§,/s — Wn_lw;/s and that the induced homomorphism
p: Whoiwy, = Wawy ) is injective ([H-Ka] Corollary (4.5) (1), cf. [I1] I
Proposition 3.4). Hence p'F: ang} /s = ang} /s is well-defined for ¢ > 1.
For i = 0, it is defined by the usual F' on W,,Oy.

Remark. Strictly speaking, the compatibility with the products is not men-
tioned in [H-Ka] Theorem (4.19), but one can verify it simply by looking
at the construction of the map carefully as follows: We use the notation
of the proof in [H-Ka]. We have a PD-homomorphism Op. — W,(Oy)
and w%;L/(Wn,Wn(L))W' — w11/Vn(Y')/(Wn,Wn(L))’ which induce a morphism of
graded algebras C,, = Op. ® w}ﬁ/(WmWn(L)) — w",Vn(Y)/(WmWn(L)). By tak-
ing the quotient wl./Vn(Y')/(Wn,Wn(L),[]) of the target, we obtain a morphism
C, — wi./Vn(Y-) /(W Wi (L)1) of differential graded algebras. The homomor-
phism W, (Oy.) — ang’,./s is extended uniquely to a W,,(Oy-)-linear mor-
phism of differential graded algebras: wj, )/ (W W (L)) Whwy,. compat-
ible with dlog’s from W, (M) = M & Ker(W,(Oy)* — 05.). It factors
through the quotient w‘./Vn(Y‘)/(Wn,Wn(L),H)' Thus we see that the morphism
Cn — Whwy,. , constructed in the proof of [H-Ka] Theorem (4.19) is a mor-
phism of differential graded algebras.

From the definition, we immediately obtain the following exact sequences
(cf. [I1] Remarques 3.21.1):

i ntk i dvk i1
W27l+ka/s — any/é — W7L+kwy/s7

i—1 devn . Vk, .
(2.15) Wkw;,/s — anﬁ,/s — Wn+kw§,/s,
T . Fm . de i+1
W2n+kw§//s — Wn+kw§//s — an;/s,

. yn . Fk .
Wkwg//s — W7L+]€W§//s — ang/‘/s
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For example, the first exact sequence is obtained by considering the following
morphism of short exact sequences:

L] L] L]
0 Cn+k Tk 02n+2k OnJrk O
P

| [ [

0 » Oy — G5y —— O —— 0,

pm

where Cp is the same complex as in [H-Ka] (4.1).

Finally we review a generalization of the Cartier isomorphism to the de Rham-
Witt complex (cf. [I-R] III Proposition (1.4)) and the operator V' (cf. [I-R] III
(1.3.2)), which will be used in the proof of our main result in §2.

By the exact sequences (2.1.5), F"™: Wang//s — ané/s induces an isomor-
phism F™: Wgnwg}/s/V”an{,/s 5 Zang,/s. We define the operator V'’ on
Z W.wg, /s by the following commutative diagram:

; ; n’ i n i
WQ,L+2w§//S/V”+1Wn+1w§,/S —_— Wgnwy/s/V any/s

(2.1.6) llF”“ len
. Avad .
ZWn+1w§//S — Zang,/S.
We see easily that this operator satisfies the relations:

(2.1.7) Vit =aV', FV' =V'F =7? V'd = dVr*.

The last relation implies V/(BW11wy, ) C BWywy,  and hence V' induces a
morphism (W03, ) = H' (Wywy, ), which we will also denote by V.
Using the property F"dV" = d, we also see that F" induces an isomorphism
Wgnwi}/s/(V"an§/8+dV"an§/_/i) = Hi(an;,/s). On the other hand, from
[H-Ka] Theorem (4.4), we can easily derive

(2.1.8) Ker(n™: Wn+mw§//s — ané//s) = V"meg//s + dV”mei,_/i

by induction on m (cf. [I1] T Proposition 3.2). Hence F™ induces an isomor-
phism:

(219) cm: ang//s = Hi(an;’/s)v

which we can regard as a generalization of the Cartier isomorphism. Indeed,
if n = 1, this coincides with the Cartier isomorphism by the identification
Wiws, /s = wy /s (To prove this coincidence, we need dlog which will be ex-
plained in the next subsection.)

We need the following lemma in the proof of Lemma 3.4.4.

DOCUMENTA MATHEMATICA - EXTRA VOLUME KaTo (2003) 833-890



p-ADIC ETALE COHOMOLOGY AND Loc HODGE-WITT SHEAVES 851

LEMMA 2.1.10. The composite of the following homomorphisms is the identity.

v

- 1.
Wy, —— H(Wawy) = BTy vy (w, Wa2))s0 = Wawy

Proof. Denote by a the homomorphism in question. Then « is compati-
ble with the products. Since an}r,/s (r > 2) is generated by z1.za...x,
(x; € anil//s) as a sheaf of modules ([H-Ka] Proposition (4.6)), it suf-
fices to prove the lemma in the case r = 0, 1. We use the notation in
the proof of [H-Ka] Theorem (4.19). The lemma for » = 0 follows from
the fact that the composite of W,0ye > Ope — W,Oye coincides with
F" where 7(xg,... ,Tn_1) = Z?:_Ol p'E;?" . By [H-Ka] Proposition (4.6),
an§,/s is generated by dz (x € W,,0y) and dlog(a) (a € M{P) as a W,,Oy-
module. Using the quasi-isomorphism Wgnw;/s /Q"an;,/s — an;,/s ([H-
Ka] Corollary (4.5)), we see that o commutes with the differentials. Hence
a(dz) = d(a(z)) = dz. For a € M;P, we have C~"(dlog(a)) = the class of
dlog(a). On the other hand, by the construction of the quasi-isomorphism of
[H-Ka] Theorem (4.19), the following diagram is commutative:

M%p. —_— Wn(Myo)gp

d logl d logl

Ol —— Wl

n

Choose a lifting @ € M7, of a and let au, u € Ker(W,,03. — OF.) be
its image in W, (M*)eP. Then the image of dlog(a) € C} in ani,./s is
dlog(a) + d(log(u)), which is congruent to dlog(a) modulo dW,, (Oy.). O

§2.2. LOGARITHMIC HODGE-WITT SHEAVES.
We will review the logarithmic Hodge-Witt sheaves Wqwy, /s, log associated to

(Y, My)/(s, L) (See [I1] for usual smooth schemes and [H], [L] for log smooth
schemes). We still don’t assume that Y is proper over s.
As in [H-Ka] (4.9), we have natural homomorphisms

dlog: MEP — W,wy  (n>1),

which satisfy dlog(g—t(L8P)) = 0, [b]dlog(a) = d([b]) for a € My, its image
b in Oy and [b] = (b,0,0,---) € W,(Oy), ndlog = dlog, Fdlog = dlog, and
d(dlog(M3P)) = 0. For n = 1, dlog coincides with the usual dlog: My —
w%,/s. We define the logarithmic Hodge- Witt sheaves ang,/s, log 1O be the
subsheaves of abelian groups of ané/ /s generated by local sections of the form
dlog(ay) A--- ANdlog(a;) (ai,...,a; € M{P).
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THEOREM 2.2.1. ([I1] 0 Théoréme 2.4.2, [Ts1] Theorem (6.1.1)). The following
sequence is exact for any integer i > 0:

i i 1=C
0 wY/s, log ZwY/s wY/s 0.

Now, by the same argument as the proof of [I1] T (3.26) and [11] T (5.7.2) plus
some additional calculation, we can derive the following theorem from Theorem
2.2.1, the exact sequences (2.1.5) and the isomorphism (2.1.1) (cf. [L] 1.5.2).

THEOREM 2.2.2. (cf. I1] I (3.26), (5.7.2)). For any integers n > 1 and i > 0,

the following sequence is exact:

0 — W)y 10p + V" Wiwh . — W, ™5 Wo1wl, — 0.

Note that we easily obtain

Ker(V": i), — Wywh ) = Bawl .,
(2.2.3) Y/ Y/ v/

Ker(V"; w;’/s — Wn_;'_lw;//s/dvnw;_/i) = Bn+1w§//s

(cf. 11] I (3.8)) from the isomorphism (2.1.1) ([L] Proposition 1.2.7).

COROLLARY 2.2.4. (cf. [H] (2.6), [L] (1.5.4)). The following sequence is exact
for any integers i > 0, n,m > 1:

m

. P . .
7 = 2 (2
0 anY/s, log WTH‘me/s, log meY/s, log 0.

COROLLARY 2.2.5. (cf. [I-R] IV §3). The homomorphism ang’/s.log —
’Hi(an;,/s) is injective and the following sequence is exact:

0 — K, — H(Wow} ) “F H(Wosaw) ) — 0,

where K! denotes the image of ang//s’log + Pn_lF(Wn+1W§//S) n
’Hi(an;,/S),

Proof. This immediately follows from Theorem 2.2.2 using the following com-
mutative diagram:

i T F i
any/s — Wn,lwy/s

Zlc—n zlcf(nfl)

HI(Waw})) — H(Wn_1wy),).
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COROLLARY 2.2.6. (cf. [I-R] IV §3). The homomorphism V' —: Zani,/s —
ZWn,lwi,/s is surjective and, if we denote its kernel by Lt , then ang}/s log C
Li and L;/ani}/& log 15 Killed by 3.

Proof. The surjectivity follows from Theorem 2.2.2 using the commutative di-
agram:

2
i Tt —nF i
Wznwy/s e Wgn_gwy/s

e
IWay), 5 ZWooawy .

The assertion on the kernel follows from Theorem 2.2.2 and Lemma 2.2.7 below
by considering the commutative diagram:

IWpiawly), ——  ZWawl,

H v

V' —x?

ZWn+1wY/ — ZW, 1wy/s

O

LEMMA 2.2.7. The homomorphism V': ZWn+1w§,/S — Zangl//S 1§ surjective
and its kernel is killed by 2.

Proof. In the diagram (2.1.6), the upper horizontal map is a surjection with
its kernel (V™ Wn+2wy/s +dV? "Wawy Lyt Wn+1w§//s (2.1.8). Hence V' is

surjective and its kernel is p FWn-s-wa/s +dVTiw, wfy/l O

§2.3. THE MAXIMAL SLOPE.
In §2.3, we always assume that Y is proper over s. For i € N, we define the
projective system of morphisms of complexes (cf. [I-R] IIT (1.7)):

Vi Ar<iWawy )y = 7<iWno1wy) fn>1

by the morphism p* 7~ '72V in degree j < i — 1 and V': Zang//s —
ZWn,lwg,/s in degree i. If j < i or i =d := dimY, then the natural homo-
morphism H7 (Y, 7<;Whwy, ) — H? (Y, Whwy, () is an isomorphism and hence
V< induces an endomorphism on H7(Y, Wwy/g), which we will also denote

by Véz We need the following lemma, which is well-known for a o-semilinear
endomorphism and is proven in the same way as in the o-semilinear case.

LEMMA 2.3.1. Let M be a finitely generated W-module and let V be a o !-
semilinear endomorphism of M.

(1) There exists a unique decomposition Myi; & My of M stable under V' such
that V is bijective on My and p-adically nilpotent on Myj.
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(2) If k is algebraically closed, V' — 1 is surjective on M and bijective on My;.
Furthermore, the natural homomorphism.:

W ®z, MV=" =W &z, (Myi;)" =" — My
1s bijective.
Recall that we have canonical isomorphisms:

HI (Y, Wawy,) = Hly (Y, My )/ (W, Wa(L)))

crys

HY (Y, Wwy) = HE (Y, My) / (W, W(L)))

crys

by Theorem 2.1.4 and the right hand sides are finitely generated modules over
W,, and over W respectively. By applying Lemma 2.3.1 to H’ (Y, Ww;,/s) and
Véi for ¢ > j or i = d, we obtain a decomposition

(232)  H/(Y,Wuy,,) = H'(Y, WwS ) ve, —ij @ HI(Y,Wwy) v: il

and a natural isomorphism
(2.3.3) W @z, H (Y, Way) )<= S HI (Y, Way) ve g

if k is algebraically closed.

LEMMA 2.3.4. For any integers i and j such that ¢ > j or i = d, we have

Ko @w H (Y, Wwy vz —vij = (Ko @w H’ (Y, Wwy,,)) i,
Ko @w H (Y, Wy vz —ni = (Ko @w HY (Y, WS ) o,

(See §1.1 for the definition of Dy (I C Q) for an F-isocrystal D over k.)

Proof. Let F denote the morphism 7<;W, w3, /s T<iWn_1wy, /s whose degree
g-part is p?F, which induces the Frobenius endomorphism ¢ on H’ (Y, Wws, /S).
Then fVéi = Véi}" = pin?: TSZ-an;,/S — TSiWn,gw;/s. Hence, we have
Vi, =Vip= p' on HI(Y, Wwy, ), which implies the lemma. [
We set HI(Y, Wuwy, ) ) o= lim, H (Y, Wawy ) ,,)-
PROPOSITION 2.3.5. Assume that k is algebraically closed. Then, for any
integers i and j, we have

HO(Y, Wy 10g) — H'(Y, Ww;/s)véizl,

Hj (K ng//s, log) ;> Hjer(Yv Ww;//s)véd:1'
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Proof. First note that V' is a nilpotent endomorphism of ang, /s By Corol-
lary 2.2.6, the morphism of complexes

/ L] L]
Ve, —m: TSiany/s — TSZ-Wn,lwy/S

K] = Ker(m: Wyw?,, —

wY/s
Wn_1wy/s) itj <i—1, anY/s log C K}, and Kiwn/ané,/s, log 1S annihilated
by 72. Hence we have a long exact sequence

is surjective, and if we denote its kernel by K

171?

’

. . V.. —m .
s HI(Y, Ky ) — HI (Y, 7<iWawy),) == HI (Y, 7<iWn 1w$)) — -+
and the natural homomorphism

HI7HY, Wwy ), 105) — Um B (Y, K3 )

is bijective. By Lemma 2.3.1 (2), if j <4 or i = d, the endomorphism VZ; — 1
on HI(Y, Ww;,/s) is surjective. On the other hand, we have the following
morphism of short exact sequences:

0 — HI(Y/W)/p~ — HI(Y/W,) — HT(Y/W)pm — 0

TPYOJ' Tproj Tp
0 — HI(Y/W)/p"T — HI(Y/Wyp1) — HTHY /W)y — 0,
where we abbreviate (Y, My)/(W,W (L)) or (Wp,Wy,(L)) to Y/W or W,.

Hence, if the torsion part of HT1((Y, My)/(W, W (L))) is killed by p*i+1, then
the cokernel of the homomorphism

Vi —m: HI (Y, Wawy ) = H (Y, W, _1wy),)

is killed by 7"+t if j < or ¢« = d. By taking lim  of the above long exact
sequences, we obtain

L_HZYK' 5 HU(Y, Wy, =

N

L_HJ (Y, K3 ) = HI (Y, Waws ) V==t

O

We also need the following lemma (in (3.4.5)):
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LEMMA 2.3.6. Assume that k is algebraically closed. Then, for any integers
1> 0 and j > 0, we have an isomorphism

Hj (}/7 ng//& log) L} LLHH] (K Hi(an;//s))V,:1'

Proof. Set M := HI (Y, H'(Wowy,)), M7 = lim M and let M be the
image of M7 in M}. By (2.1.9), M, are finitely generated W,-modules and
hence { (V' —7)(M; ;) }n>1 satisfies the Mittag-Leffler condition. On the other
hand, by Lemma 2.3.7 below, (V' — W)(Mflﬁrl) = M7’, which implies

Wn((V' — m)(M2,,)) S U (V7 = 7)(M,)) = lim M = lim Mj.

n

Hence imn(Mg/(V’ — W)(Mi_’_l)) = 0. Since {Mj=1/(V' — ﬂ)(MZH)}nzl
satisfies the Mittag-Leffler condition, Corollary 2.2.5 implies lim H7 (Y, K},) =
(M7)V'=1. Since w(p"_lFWn+1w§,/s) = 0, the LHS is isomorphic to
HI(Y,Wwy /g ) O

LEMMA 2.3.7. Let My and Ms be W-modules of finite length, let w: M, —
My be a surjective W -linear homomorphism and let V': My — M be a o !-
linear homomorphism. If k is algebraically closed, then V' — m: My — My is

surjective.

Proof. Using the short exact sequences 0 — pM; — M; — M;/pM; — 0
(i = 1,2), we are easily reduced to the case pM; = 0 (i = 1,2). In this case, 7
has a W-linear section s: My — M; and V'os—mos =V’'0s—1 is surjective
by Lemma 2.3.1 (2). O

§3. THE MAXIMAL UNRAMIFIED QUOTIENT OF p-ADIC ETALE COHOMOLOGY.

§3.1. STATEMENT OF THE MAIN THEOREM.

Let (S, N) be the scheme Spec(Ok) endowed with the canonical log structure
(i.e. the log structure defined by its closed point). Let f: (X,M) — (S,N)
be a smooth fs(=fine and saturated) log scheme and let g: (Y, My) — (s, L)
be the reduction of f modulo the maximal ideal of Ox. We assume that X
is proper over S and that f is universally saturated, which is equivalent to
saying that g is of Cartier type, or also to saying that Y is reduced ([Ts3]). Let
Xiriv denote the locus where the log structure M is trivial, which is open and
contained in the generic fiber of X. Let (5, L) be the scheme Spec(k) endowed
with the inverse image of L, and set (Y, My) := (Y, My) x(s,1) (5,L). Set
(Xoriv) 5 7= Xtriv XSpec(K) Spec(K). We will describe the maximal unramified
quotients

He (Xiniv) 7, Qo(r))1e, - Hel(Xunv) e Qp(d)) e (r > d)
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of p-adic étale cohomology groups and the images of HJ ((Xiwiv)ze, Zp(r'))
(r' = 7 or d) in them in terms of the logarithmic Hodge-Witt sheaves of
(Y, Ms)/(5,L) (Theorem 3.1.11).

In the rest of §3.1, we choose and fix an integer r > 0, and assume that
(X,M)/(S,N) and r satisfy one of the following conditions:

(3.1.1) r<p-—2.

(3.1.2) Etale locally on X, there exists an étale morphism over S:

X — Spec((Ok[Th, ... , Tu)/(Ty -+ Ty — 7))[Us,... ,Us,V1,... , V4])

for some integers u > 1, s,t > 0 and e > 1 such that e | [K : K] and
Xiriv = X — (Y U D), where D is the inverse image of {U; --- U, = 0}.

Let ¢ and j denote the immersions ¥ — X and Xi;;v — X respectively. By
[Ka4]Theorem (11.6), we have

(3.1.3) M =0Ox Nj.O%, . —and M = ;0%
and, hence, from the Kummer sequence on (Xt,iy)st, we obtain a symbol map:
(3.1.4) (i* MEPOT — i*R" 5,7 /p"Z(r).

THEOREM 3.1.5. ([Bl-Ka|Theorem (1.4), [H|(1.6.1), [Ts2], [Ts4]). The homo-
morphism (3.1.4) is surjective.

Proof. In the case (3.1.2) with s = 0, this is [H](1.6.1) (=[Bl-Ka]Theorem (1.4)
in the good reduction case). The case (3.1.2) for a general s is reduced to the
case s = 0 as in the proof of [Ts2] Lemma 3.4.7. (The proof of Lemma 3.4.7
(1) works without the assumption p,» C K). In the case (3.1.1), we are easily
reduced to the case n = 1, and the theorem follows from [Ts3]Theorem 5.1 and
Proposition A15 with r =¢q. O

We have a surjective homomorphism (§2.2):
(3.1.6) (MP)®" — Wpwy /g 106301 © -+~ @ a, = dlog(ar) A --- A dlog(ay).

PrOPOSITION 3.1.7. (cf. [Bl-Ka]Theorem (1.4) (i), [H](1.6.2)). There exists a
unique surjective homomorphism:

(3.1.8) VR GLLIP L(r) — Wawy /g 10g
such that the following diagram commutes:

(i* MEP)ET — *R7j,Z/p"L(r)

! !

gP\®r r
(MY ) — W"WY/S, log*
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Proof. We have the required map v*(i*R"j,Z/p"Z(r)) = v*(Wawy ) ) for
each generic point v: 7 — Y of Y ([Bl-Ka] (6.6)). Note that Y is reduced.
Since the homomorphism wy, /s = Dy var wy, /s is injective, the homomorphism
ang}/& log EB,,I/*V*WR(JJ;//S’ log is also injective by Corollary 2.2.4. Now the
proposition follows from Theorem 3.1.5 (cf. [Bl-Ka] (6.6)). O

The condition (3.1.1) or (3.1.2) still holds for the base change of (X, M)/(S, N)
by any finite extension of K contained in K. Hence, by taking the inductive
limit, we obtain:

(3.1.9) it R"3,Z/p"Z(r) — W”w%/g,log
Here X = X Xgpec(0x) Spec(Oz), and i and j denote the morphisms ¥ — X
and (Xuiv)7z — X respectively. Note that, for any fs log structure L' on s and
a morphism (s, L") — (s, L), Wyw*® and W,wy,, associated to (Y, My)/(s, L)
and (Y, My) x5y (s,L")/(s, L") coincide by the base change theorem [H-
Ka]Proposition (2.23) (or [Ts2] Proposition 4.3.1).

Let d = dim Xg. Then, for any affine scheme U étale over (Xiiy)7, we have
H(U,Z/p"Z(d)) = 0 (i > d). Hence we have i R'j,Z/p"Z(d) = 0 (i > d). By
the proper base change theorem, we obtain from (3.1.9) homomorphisms:
Hgt((XtriV)Fﬂ Z/an(T)) — Hgt (?7 an%/g,log)7

Hi (Xuiv) g, Z/p"2(d) — H (Y, Wi

(3.1.10)
?/E,log)

THEOREM 3.1.11. (1) (cf. [Sat] Lemma 3.3). Assume K = Ky in the case
(3.1.1) and s = 0 in the case (3.1.2). Then the homomorphisms (3.1.10) induce
isomorphisms:

(3.1.12)

HE (Xuiv)ze: Qp(r)re — Qp ®z, HG(Y, Wl o)

Hgt((XtriV)?v Qp(d))lx — Qp ®Zp Hértid<?> Wwd

Y/5 ,log) Zf’l“ >d

(2) In the case (3.1.1), if K = Ky, (3.1.10) induce isomorphisms:
(3.1.13)

HE (X g2 Zp(r)) g Jtor 5 HG (V. Wee )

HE (Xiviv) 7z Zp(d)) 1 [ tor — Hgt_d(?, Ww%/g’ log)/tor ifr>d

Remark 3.1.14. For (1) in the case (3.1.2), if we use [Y] (resp. Theorem 4.1.2),
the proof of Theorem 3.1.11 in 3.2-3.4 works without the assumption s = 0
(resp. under the assumption (4.1.1)). See Remark 3.2.3.

83.2. REVIEW OF THE SEMI-STABLE CONJECTURE.
We will review comparison theorems between p-adic étale cohomology and crys-
talline cohomology.
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Let f: (X, M) — (S,N) and g: (Y, My) — (s, L) be the same as in §3.1. Then
the crystalline cohomology D? := Ko ®@w lim,, HY((Y, My )/(W,, W,(L)) ([H-
Ka] (3.2)) is a finite dimensional Ky-vector space endowed with a o-semi-linear
automorphism ¢ and a linear endomorphism N ([H-Ka] (3.4), (3.5), (3.6))
satisfying the relation Ny = ppN. We choose and fix a uniformizer 7 of K.
Then there exists a canonical isomorphism ([H-Ka] Theorem (5.1)):

(321) pr: K R K, D1 Hq(XK,Q;(K(IOg MK))

Using the Hodge filtration on the RHS, the crystalline cohomology D? becomes
an object of MF (¢, N) (8§1.2). Set V¢ := H ((Xtriv)7 Qp), which is a finite
dimensional Q,-vector space endowed with a continuous and linear action of
Gk.

THEOREM 3.2.2. (The semi-stable conjecture by Fontaine-Jannsen:[Ka3],
[Ts2]). Assume that (X, M)/(S,N) satisfies the condition (3.1.2) with s = 0.
Then, for any integer ¢ > 0, V1 is a semi-stable p-adic representation and
there exists a canonical isomorphism Dg (V1) = DY in MF (o, N). Here we
define Dy using the same uniformizer m as (3.2.1).

Remark 3.2.3. G. Faltings ([Fa]) proved the theorem without the assumption
on (X, M)/(S,N). However his construction of the comparison map is differ-
ent from that in [Ka3], [Ts2] via syntomic cohomology, and we will use the
latter construction in the proof of Theorem 3.1.11. Recently, G. Yamashita [Y]
proved that the comparison map via syntomic cohomology is an isomorphism
for any (X, M) satisfying (3.1.2). We give an alternative proof in §4 when the
horizontal divisors at infinity do not have self-intersections.

To prove Theorem 3.1.11 (2), we need the following refinement by C. Breuil
for the integral p-adic étale cohomology T9 := HZ ((Xuiv), Zp)/tor. We
assume K = Ky and ¢ < p — 2. Let (E,,Mg,) be the scheme
Spec(Wp(u)) = Spec(W,{(u — p)) endowed with the log structure associ-
ated to N — W, (u);1 — u. We have a closed immersion i,: (Sp, N,) —
(En,Mpg,) defined by u + p. Then the crystalline cohomology M? :=
H((Xp, M)/ (En, Mg,)) =2 HI((X1,M)/(E,, Mg, )) is naturally regarded
as an object of MFy, o o1 or(w, V) ([Br3] Théoreme 2.3.2.1). Set M7 :=
(lim,, M%) /tor and M;? := M?/p" M. Then {M;7}, becomes a projective
system of objects of MFyy oo tor(; V) satisfying the condition in the be-
ginning of §1.6 ([Br3] 4.1).

THEOREM 3.2.4. ([Br3] Théoreme 3.2.4.7, §4.2, [Tsd]). Assume K = Ky and
let q¢ be any integer such that 0 < q < p — 2. Then there exist canonical
G i -equivariant isomorphisms:

Tst (Mgz) = Hgt((XtriV)fa Z/an)v Tst(M;g) = Tq/pan
The object of M F ;(, N) associated to the projective system { M7}, (§1.6)
is canonically isomorphic to D? ([Br3] Proposition 4.3.2.3 and the remark after

Corollaire 4.3.2.4). Hence, Theorem 3.2.4 implies (§1.5):

DOCUMENTA MATHEMATICA - EXTRA VOLUME KaTo (2003) 833-890



860 TAKESHI TSuJI

THEOREM 3.2.5. ([Br3]Corollaire 4.3.2.4 and the following remark). If K =
Ky, for any integer 0 < q < p — 2, the p-adic étale cohomology V4 is a
semi-stable p-adic representation and there exists a canonical isomorphism
Dy (V) = D7 in MF g (¢, N)

By Corollary 1.3.3, Lemma 2.3.4 and Proposition 2.3.5, we obtain the following
isomorphisms form Theorem 3.2.2 (resp. 3.2.5) for an integer r > 0 such that
the condition (3.1.2) with s = 0 is satisfied (resp. the condition (3.1.1) is
satisfied and K = Kj):

(3.2.6) V' (r) 1 = Qp @z, HG (Y, Wl /5108)
(327) V(A 2Q, @z, H "V, Wl ) ifr>d.

Here d = dim(Xg). See the proof of Lemma 2.3.4 for the relation between ¢
and VZ,. In the case (3.1.2), if we use the result in [Y] (resp. Theorem 4.1.2),
we obtain the isomorphisms without the assumption s = 0 (resp. under the
condition (4.1.1)).

In the case (3.1.1) and K = Ky, the image of M" under the projection M" —
D" given by u +— 0 coincides with the image of H"((Y,M)/(W,W(L)))(=
H"(Y,Wwy,))) ([Br3] Proposition 4.3.1.3). Hence, by Corollary 1.3.3, Theorem
1.6.2, (2.3.2), Lemma 2.3.4, Proposition 2.3.5 and Theorem 3.2.4, we see that
the isomorphisms (3.2.6) and (3.2.7) induce isomorphisms:

(3.2:8) T ()1 ftor = HY (Y, W o)
(3.2.9) T"(d) 1y /tor = Hi~ (Y, Wwd Jaaog)/for i > d.

To prove Theorem 3.1.11, it remains to prove that (3.2.6) and (3.2.7) are in-
duced by (3.1.10).

§33 REVIEW OF THE CONSTRUCTION OF THE COMPARISON MAP.

We will review the construction of the comparison map in Theorems 3.2.2 and
3.2.5. First recall that to give an isomorphism Dg (V) = D7 is equivalent to
give a Bgi-linear isomorphism:

(3.3.1) Byt ®q, V! — By Qk, D?

compatible with ¢, NV, the actions of Gx and Fil after Bsr®p,,. Recall also
that we fixed a uniformizer = of K (in the case K = Ky, we choose p as )
in order to define the functor Dg; (or equivalently the embedding Byt < Bgr)
and to define the filtration on K ®g, D9.

Let (E,, Mg, ) be the PD-envelope of the exact closed immersion (Sy,, N,,) <
(Spec(W,[u]), L(u)) defined by u — m compatible with the canonical PD-
structure on pW,. Here L(u) denotes the log structure defined by N —
Wlu); 1 — u. Since (E,,, Mg, ) is isomorphic to the PD-envelope of (S7, N1) —
(Spec(W,,[u]), L(w)), the lifting of Frobenius of (Spec(W,[u]), L(u)) defined by
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o: W, — W, and u = uP induces tkat of (En, Mg, ), which is compatible
with the PD-structure 0 on the ideal Jg, of O, defining S;. We denote by
i, » the canonical exact closed immersion (Sp, N,,) — (E,, Mg, ). We have

en

['(En,Op,) = Wu, %5 (n € N)]/p" (e = [K : Ko]) and (E,, Mg, ) coincides
with the log scheme appearing before Theorem 3.2.4 when K = Ky and m = p.
Let W, (L) be the “Teichmiiller lifting” ([H-Ka] Definition (3.1)) of the log
structure L on s to Spec(W,,), which already appeared in the definition of D?.
Then, we have a closed immersion ig, o: (Spec(W,,), W, (L)) — (E,, Mg,)
defined by u +— 0, which is compatible with the lifting of Frobenius.

First we review the crystalline interpretation of (B ®x, D)V=. We set
Rpq, = Q, ®z, lim T(E,,OFg,). We define the crystalline cohomology D1
to be

Qp ®z, LiLanrys((Xnv Mn)/(E’V“MEn’jEn’S))
n
=Q, ®z, im HE, (X1, M1)/(En, Mg,, Jg,,9)),

which is an Rg g,-module endowed with ¢ and N satisfying Ny = ppN ([Ts2]
4.3). The projection prg: D9 — D7 induced by the exact closed immersions
{iEg, 0}, which is compatible with ¢, N, has a unique Ky-linear section s: D9 —
D? compatible with ¢ and N, and it induces an isomorphism Rg g, ®k, D? =
D? ([H-Ka] Lemma (5.2), [Ts2] Propositions 4.4.6, 4.4.9).

We define HZ ((X,,M,)/(En, Mg,)) to be the inductive limit of
HE (X, M})/(En, Mg, )), where (X', M') ranges over the base changes
of (X, M) by all finite extensions K’ of K contained in K. We define D” to be
Qp ®z, im, HL (X, M,)/(Ey,, Mg, )), which is also endowed with ¢ and
N ([Ts2] 4.3). In the special case (X, M) = (S,N), we have DI =0 (¢ > 0)
([Ka3] Proposition (3.1), [Ts2] Lemma 1.6.7) and B} = DY by definition
([Br1]§2). Furthermore, there exists a canonical isomorphism (the crystalline
— N-nil

interpretation of BY) +: B = B compatible with the actions of G,

¢ and N ([Ka3] Theorem (3.7)). Here N-nil denotes the part where N is
nilpotent. Let us return to a general (X, M). Then we have a Kiinneth
isomorphism B DRy q, D 5 D ([Ka3]§4, [Ts2]Proposition 4.5.4). By taking
N = 0, we obtain the following crystalline interpretation of (B ®x, D?)V=°
([Ka3]§4, [Ts2]§4.5).

(3.3.2) (B ®K, DI)N=Y % (BS ®np o, DYV —— (DF)N=0,

To compare D with V7, we use syntomic cohomology. The syntomic complex
Sy (r)(x,m) ([Ts2]§2.1) is an object of D (Yg, Z/p™7Z) such that there exists a
canonical distinguished triangle:

(33.3) = Sy ()x.an) = Rucx, ar)won %, v yw

n

p =y
Ru(x'ruMn)/Wn*O(X'ruMn)/Wn ?
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where  wu(x, a,)/w, denotes the canonical ~morphism of topoi
(Xn, M) /W) — (Xn)x.  We define the syntomic cohomology

crys

HYY, S, (7) 577 to be Qp @z, lim,, (i ., HE (Y, Sy (r)(x/,m7))), where K’
ranges over all finite extensions of K contained in K and (X', M’) denotes the
base change of (X, M) by O — Og/. From the above distinguished triangle
(3.3.3), we obtain a natural homomorphism

(33.4) HY(Y,Sq, (T)(Y,M))
(Qp ®ZP Mngrys((Yn7Mn)/Wn))¢:pr — (6(1)]\[:0’55:1’7'.

—

On the other hand, if we set Z/p"Z(r)" = (=2+Z,(r))/p" (r = a(p—1) +b,a >

paal “p
0,0 <b < p—2), we have a canonical map
(3.3.5) Sy (r)(x,m) — " RZ/pVL(r)
in D" (Yey, Z/p"7Z) ([Ts2] §3.1), which induces a homomorphism
(3.3.6) HY(Y,Sq, (") 7n) — V)

by taking H{ (Y,—) and the inductive limit with respect to all finite base
changes of (X, M). We do not identify Z/p"Z(r)" with Z/p"Z(r) by the multi-
plication by p®a! because (3.3.5) is compatible with the products and the Tate
twist if we use the natural maps Z/p"Z(r)' @ Z/p"Z(s) — Z/p"Z(r + s)’ and
Z/p"Z(r) (1) = Z/p"Z(r + 1)'.

THEOREM  3.3.7. ([Ku], [Ka3]Theorem (5.4), [Ts2|Theorem 3.4.4,
[Ts4]Theorem 5.1). Assume (X,M)/(S,N) and r satisfy one of the con-
ditions (3.1.1) and (3.1.2). Then the homomorphism (3.3.6) is an isomorphism
ifq<rorr=d=dimXg.

For the case r = d, note i R'j,Z/p"Z(d) = 0 (i > d), H(Sy(d)x3r) = 0
(i >d+1) ([Ts2] (2.3.3) and Lemma 2.3.4), and pNHdH(S;(d)(? 7)) = 0 for
some N > 0 independent of n ([Ts2] Lemma 2.3.19: H4*1(C,,(d)) = 0 and the
proof of [Ts2] Theorem 2.3.2).

Thus, under the condition (3.1.1) or (3.1.2), we obtain a homomorphism

(3.3.8) V(r) p—rﬁg,g) HI(Y,Sq, (") x71)

oy DN o (B @ DN
if g <rorr=d. By using Q,(—r) C Bg;, we obtain a homomorphism
(3.3.9) By ®g, V! — By ®x, DY,

which is independent of r ([Ts2] Corollary 4.8.8 and Lemma 4.9.1). If K =
Ky in the case (3.1.1) and s = 0 in the case (3.1.2), then (3.3.9) gives the
required isomorphism Dy (V9) = D?. In the case (3.1.2), the result of [Y]
(resp. Theorem 4.1.2) says that (3.3.9) still gives the isomorphism without the
condition s = 0 (resp. under (4.1.1)).
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83.4. PROOF OF THE MAIN THEOREM.

Let us prove the main theorem: Theorem 3.1.11. Let (X, M)/(S,N) be as in
the beginning of §3.1. We fix an integer r > 0 and assume that (X, M)/(S, N)
and r satisfy (3.1.1) and K = Kj, or (3.1.2) with s = 0. (In the case (3.1.2),
we can remove (resp. replace) the condition s = 0 (resp. by (4.1.1)) if we
use [Y] (resp. Theorem 4.1.2).) The remaining problem is only to prove that
the isomorphisms (3.2.6) and (3.2.7) induced by the comparison isomorphism
D¢ (V") = D" (Theorems 3.2.2 and 3.2.5) coincide with the homomorphisms
induced by (3.1.10).

First we define canonical projections f,: Bl — Py and pry: D' 5 P® K, D?
compatible with . Let K’ be any finite extension of K contained in K, let
(S, N’) be the scheme Spec(O-) endowed with the canonical log structure,
and set (X', M') := (X, M) x(s,n) (8, N'). Then we have a commutative
diagram:

(3.4.1) (X5, My) (Y', My)

(Swler/L) (S/,L/)
(Sn7 Nn) ~—— (57 L)

iEp,0

(En7MEn) -~ (Wn(s)v Wn(L)) -~ (Wn(5/)7 Wn(Ll))a

which induces a homomorphism

HY(X5,, M)/ (Bny M, )) — HI((Y', My) /(Wi (s), Wn(L')))
— Wi (k') @w, H((Y, My)/(Wa, Wa(L))).

By taking the inductive limit with respect to K’ and Q, ®z, lim , we obtain
pry: D' — Py @w DY,

This is compatible with ¢ and the action of G, but not with N. In the special
case (X, M) = (S,N) and ¢ = 0, this becomes a ring homomorphism

?02 B:g — PQ
and the above homomorphism Ppr is compatible with fo- By definition, pt,
and f, are compatible with pro: D? — D? and fo: Rgq, — Ko induced by

{ig, 0}
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LEMMA 3.4.2. Let V be a semi-stable p-adic representation of Gk and set
D := Dy (V). Let s be a positive integer such that Fil*™' Dy = 0 and let D' be
the quotient of D corresponding to the quotient V(s)r, (—s) of V (§1.3). Then
the following diagram is commutative:

Fil*(Bf; @k, D)N=0¢=F" —— (Py®p, D)=
fo®1

l g

Fil*(Bf @, D")N=0%=P" = (Py®g, D')¥=P".

Recall D' = Dy, Fil*D} = DY, Fil*™' Dy =0 and N =0 on D'.

Proof. We are reduced to the case D = D’, in which case the claim is trivial
because f is a Py-algebra homomorphism. O

Note that, with the notation of Lemma 3.4.2, the isomorphism in Corollary
1.3.3 is characterized by the following commutative diagram:
(3.4.3)

Ve Fit s, D)0
Vi(s)x Cor%_g_g (Py @K, D)= 5 Fil*(By ®p, D)N=0¢=r",

LEMMA 3.4.4. Let K', (S',N’) and (X', M') be as in the definition of pry,
above. Then the composites of the following two sequences of homomorphisms
coincide:

QN "-(A 1 B) s
H (S (1) (xr, 1)) SR u(xy M) Wi O @R U(x] M)/ (B, M, )+ O

©), pr R W T
— R U(Y’,My/)/(Wn(s’),Wn(L’))*O = H (anY//s’) p_} H (anY’/s’)’

H(Sy () ) S5 iR/ L) B i R p L)

()

— an;//s — HT(WnW;///S/).

’, log
Here the integer m is defined by p®al = p™-unit in Z,, r = a(p — 1) + b,
a,b€7Z,0<b<p—2. The homomorphisms (A), (B), (C), (D), (E) and (F)
are induced by the distinguished triangle (3.3.3), the morphism (E,, Mg,) —
Spec(W,,), the diagram (3.4.1), Theorem 2.1.4, (3.3.5) and (3.1.8) respectively.

Proof. The question is étale local on X’. Etale locally on X', by choosing a
closed immersion of (X', M) into a smooth fine log scheme (Z, Mz) over W
with liftings of Frobenius {F, } of {(Z,, M, )} satisfying the condition [Ts2]
(2.1.1), we can define a complex S, (r) ([Ts2]§2.1) and a natural homomorphism
Sy (r) = S)(r) ([Ts2](2.1.2)). By the definition of the morphisms [Ts2](2.1.2)
and [Ts2](3.1.1) (=(3.3.5)), the homomorphisms p”- (A) and (E) canonically
factor through H"(S) (r)). Hence we may replace H" (S, (r)) with H"(S.(r)).
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We denote by {ai,...,a,}é (resp. {ai,... ,ar}syn) the image of a1 ® --- ® a,
(a; € M'8P) under the symbol map (3.1.4) (resp. (i*M'8P)®" — H"(S! (r))
([Ts2](2.2.1)). Then the local section {a1,... ,a,}syn is sent to {a1,...,ar}tet
by (E) ([Ts2] Proposition 3.2.4 (2)) and hence to p™dlog(ay) A --- A dlog(ar)
by the composite of the second sequence. On the other hand, by the explicit
description of the syntomic symbol map [Ts2] Lemma 2.4.6, which is still valid
for S,,(r)’, and Lemma 2.1.10, the image of {a1, ... , @, }syn under the composite
of the first sequence is also p™dlog(ay) A --- A dlog(a;,). By [Ts2] Proposition
2.4.1 (1), we see that the symbol map (i"”* M'8P)®" — H"(S! (r)) is surjective
by induction on n. O

By taking the inductive limit with respect to K’ and Q, ®z, lim , we obtain
the following commutative diagram from Lemma 3.4.4:
(3.4.5)

Vr(s) HT(?VSQP(S)(Yyﬁ)) (57‘)1\7:0#,:1)5

p~%.(3.3.6)
l Pro

—s /N ~ 3 r—s /N s = s —pS
H (Y Wog | e, —— (i 1™ (V1 (Wawl )G <—— (Po®x, D)7

where s = r or s = d = dim Xx and we assume r > d in the latter case.
The left vertical (resp. lower right) homomorphism is induced by (3.1.10)
(resp. TSSan;,/S — HS(an;/S)). Note an;,/s = TSdew;,/S in the case
s = d. The lower left one is an isomorphism by Lemma 2.3.6. See (2.1.7) for
the relation between ¢ and V’. To prove the commutativity in the case s = d,
we need the remark after Theorem 3.3.7.

On the other hand, we have a commutative diagram:

(3.4.6)

(D' )¥=060" < (B @y, DN 09 7 <E (B e, DYV
—_ if{)@PTO —
Pro fo®1

(P @, D")?=7"

Note that the first line is (3.3.2). Combining the above two commutative
diagrams, we obtain a commutative diagram:

(3.4.7) l l%@l

r—s(y s r\o=p*
Qp ®ZP H (Y7 WWY/E, log) m (PO ®KO D ) .

~

Note that the composite of the lower horizontal map of (3.4.7) with the lower
right one of (3.4.5) coincides with the lower left one of (3.4.5). By Lemma 3.4.2,
(3.4.3) and (3.4.7), we see that the isomorphisms (3.2.6) and (3.2.7) induced
by the comparison isomorphism Dgt (V") = D" are induced by (3.1.10).
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84. THE SEMI-STABLE CONJECTURE IN THE OPEN CASE.

§4.1. STATEMENT OF THE THEOREM.

Recently, G. Yamashita [Y] gave a proof of the semi-stable conjecture via
syntomic cohomology for (X, M)/(S,N) satisfying (3.1.2) in the open case,
i.e. without assuming s = 0. (Moreover he proved it also for cohomologies
with partial compact supports.) In this section, we will give an alternative
proof in the special case that the “horizontal divisors at infinity do not have
self-intersections” i.e. when (X, M)/(S, N) satisfies the following condition:

(4.1.1) There exist a finite number of divisors D; (i € I) on X such that
Xiiv = X — (YU (U;jerD;)) and an étale covering { X\ — X }aea satisfying the
following condition. For each A\ € A, there exists an étale morphism over S:

X — Spec((OK[Tl,... 7T:UJ]/(,J—Vl - Ty, —We))[Ui (’L S I,\),Vl,... ,V}])

for some integers u > 1, ¢t > 0 and e > 1 such that e|[K : Ky] and D; xx X
is the inverse image of {U; = 0} for each ¢ € Iy. Here I) denotes the set of all
i € I such that D; xx X # 0.

THEOREM 4.1.2. Assume that (X, M)/(S,N) satisfies the condition (4.1.1).
Then, for any integer ¢ > 0, the homomorphism (3.3.9) is an isomorphism
preserving the filtrations after taking Bar®p,, . Hence V1 is a semi-stable p-
adic representation and (3.3.9) induces an isomorphism: Dg(V?) = D? in
MK(()D? N)

We will prove this theorem by removing the divisors D; at infinity one by one
and using the Gysin exact sequences.

§42 GYSIN SEQUENCE FOR CRYSTALLINE COHOMOLOGY.

Associated to an effective Cartier divisor X’ on a scheme X, one can construct a
log structure on X’ as follows: If X’ is defined by a global section f € T'(X, Ox),
then f is a non-zero divisor and unique up to multiplication by units. Hence
the fine log structure on X" associated to the pre-log structure Ny — Ox;1 +— f
is independent on the choice of f up to canonical isomorphisms. In the general
case, one obtains a fine log structure by gluing the above log structures étale
locally. For a fine log scheme (X', M), we define the fine log structure associated
to a Cartier divisor X’ C X to be the co-product of M and the log structure
constructed above.

We say that a morphism of fine log scheme f: (X, M) — (Y, N) is syntomic
([Ka3] (2.5)) if it is integral, the underlying morphism of schemes X — Y is
flat and locally of finite presentation, and étale locally on X, there exists a
(Y, N)-exact closed immersion of (X', M) into a smooth fine log scheme (Z, £)
over (Y, ) such that the underlying closed immersion of schemes is transver-
sally regular relative to ) (JEGA IV] Définition (19.2.2). See also Proposition
(19.2.4)). If f is syntomic, for any (¥, N)-exact closed immersion of (X, M)
into a smooth fine log scheme (Z, L) over (Y, N), the underlying closed im-
mersion is transversally regular relative to S. Syntomic morphisms are stable
under base changes and compositions.
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PROPOSITION 4.2.1. Let (S,N) be a fine log scheme endowed with a PD-ideal
(I,7) such that p is nilpotent on Og, let Sy be the closed subscheme of S defined
by a sub PD-ideal of I, and let Ny be the inverse image of N'. Let (X, Mo) be
a syntomic fine log scheme over (So,Np), let X5 C Xy be a Cartier divisor flat
over Sy, and let M, be the inverse image of My on X{.

(1) Etale locally on Xy, there exist an (S, N)-closed immersion of (Xo, Mo)
into a smooth fine log scheme (Y, L) over (S,N') and a Cartier divisor ' C Y
such that X} is the inverse image of V' and Y’ endowed with the inverse image
L' of L is smooth over (S,N).

(2) Suppose that we are given i: (Xo, Mo) < (V,L) and V' as in (1) glob-
ally. Let (D, Mp) (resp. (D', Mp:)) be the PD-envelope of (Xo, Mo) in (Y, L)
(resp. (X5, Mp) in (V', L)) compatible with the PD-structure (I,v). Let Jp
(resp. Jp/) be the PD-ideal of Op (resp. Ops). If V' is defined by a global
section f € T(Y, Oy), then f is a non-zero divisor on Op and we have isomor-
phisms Op/fOp = Ops and J& /I8 = gl (v > 1),

(3) Under the notation of (2), let L° (resp. M) be the log structure on Y
(resp. Xo) defined by the log structure L (resp. Mo) and the Cartier divisor Y’
(resp. X}). Then the PD-envelope of (Xo, M§) in (¥, L°) compatible with the
PD-structure (I,7) has the same underlying scheme as (D, Mp). Furthermore
(Y, L°) is smooth over (S,N), and, for each integer r > 0, we have a canonical
exact sequence:

0I5~ @0, s (log(L/N) =I5~ @0, 03, 5(log(£°/N)

B 5 @0, O3 s(log(L'/N)))[~1] = 0

such that (%) sends wi+dlog(g) Aws to sy for wy € Jg_q} ®0, Qg,/s(log(ﬁ//\f)),

wo € Jg_q} ®0,, ng/‘ls(log(ﬁ/./\f)) and a local equation g = 0 defining J' in Y,

where @3 denotes the image of wy in Joy ¥ ®o,, Qg;/ls(log(ﬁ’//\f)).

Proof. (1) Etale locally on X, there exists an (S, N)-closed immersion i
of (Xy, Mp) into a smooth fine log scheme (Z,Mz) over (S,N), and X}
is defined by the global equation f = 0 for some f € I'(Xp,Ox,). Set
(V, L) := (2, Mz) Xspec(z) SPec(Z[T]) an let Y’ be the closed subscheme of Y
defined by T = 0. Then the closed immersion (X, Mg) < (¥, L) defined by 4
and T — f satisfies the required condition.

(2) Since the question is étale local on AXj, we may assume that we have a

factorization (Xp, M) < (Z,Mz) 5 (,L) such that j is an exact closed
immersion and « is étale, and that )’ is defined by the global equation g = 0
for some g € T'(YV, Oy). Since (Xp, My) is integral over (Sp,Np), we may also
assume that (£, Mz) is integral over (S,N). Let Z’ C Z be the pull-back of
Y’ C Y and let h be the inverse image of g in I'(Z,Oz). Since (£, Mz) and Z’
endowed with the pull-back of Mz are smooth and integral over (S,N), the
morphism (2, Mz) = (S, N) Xgpec(z) SPec(Z[T]) defined by T+~ g is smooth
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and integral on a neighbourhood of Z’. Especially the underlying morphism
of schemes is flat on the neighbourhood. Hence h is a non-zero divisor. Thus,
by the construction of PD-envelopes ([Ka2] (5.6)), we may replace (Y, £) with
(Z, Mz) and assume that ¢ is an exact closed immersion and (Y, £) is integral
over (8,N). Since (Xp, My) is syntomic over (Sp,Np), the closed immersion
Xo = Vo :=) xs & is transversally regular relative to Sg and hence we may
assume that there exists a sequence g1, ... ,gq € I'(Y, Oy) whose image in Oy,
is transversally Oy, -regular relative to Sp, and Xy C )y is defined by the ideal
Y 1<i<q 9i - Oy,. Since Sy — § is a nilimmersion and Y is flat over S, we see
that the sequence g1, ... , gq is transversally Oy-regular relative to S. (Since )
is locally of finite presentation over S, we are reduced to the case S is noetherian
and then to the case Sy is defined by an ideal J of Os such that J? = 0). Let
X be the closed subscheme of ) defined by the ideal >, ;. ;gi - Oy and set
X' = X xy Y'(C )'). Since the image of the sequence g1, - ,gq,9 in Oy,
is transversally Oy, -regular relative to Sp and Sp — S is a nilimmersion, the
sequence gi, ... ,4d, ¢ is transversally Oy-regular relative to S and hence the
image of g1, ... ,gq in Oy is transversally Oy -regular relative to S. Hence the
morphism Y — S[T4,...,Ty] (resp. V' — S[T1,...,Ty]) defined by T; — g;
(resp. T; — the image of g; in Oy) is flat on a neighbourhood of X (resp. X”).
(Since Y and )’ are locally of finite presentation over S, we are easily reduced
to the case S is noetherian, where we can use [EGA IV] Chap. 0 Proposition
(15.1.21).) Furthermore, since Xy = X' x5Sy (resp. X = X' xsSp), D (resp. D)
is isomorphic to the PD-envelope of X in Y (resp. X’ in )’). Hence, by [Be-O]
3.2.1, we have D =2 ) XS[Ty,... ,Td] S<Ty,...,Tqg >, D =y X S[Ty,... , Td] S <
Ti,...,T4 >, which implies the claim.

(3) As in (2), we may assume that ¢ is an exact closed immersion, and (), £)
is integral over (S,N'), and V' C Y is defined by the global equation g = 0 for
some g € I'(Y, Oy). Then (X, M°) — (I, L°) is an exact closed immersion and
we obtain the first claim. For the second claim, we may replace ) with a neigh-
bourhood of . Hence, we may assume (Y, L) = (S, N) Xspec(z)Spec(Z[T]) de-
fined by T+ g is smooth, and there exists a chart P — I'(S,N), Q — T'(), L),
P — Qof (¥,L) = (S,N) such that (¥, L) = (S,N) Xspec(zp)) SPec(Z[Q][T])
is étale and the kernel and the torsion part of the cokernel of P8P — Q8P have
orders invertible on §. Then Q @ N — I'(Y, £°); (0,1) — g becomes a chart of
L°. Hence (Y, L£°) is smooth over (S,N), and we have

Qy/s(log(L%)) = Oy @z PP @ Oy - dlog(g),
Qy/s(log(L)) = Oy @z PP @ Oy - dg,
Qyrys(log(L')) = Oyr @7 PP

Now the claim follows from (2). O

PROPOSITION 4.2.2. Let (S,N,1,7), (So,No), (Xo, My) and X be the same
as in Proposition 4.2.1. Assume that Xy is quasi-compact and separated. Then,
there exist an étale hypercovering X3 of Xo, a simplicial smooth and integral
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fine log scheme (Y*,L*) over (§,N) with a Cartier divisor YV C Y for each
v >0 and an (S, N)-closed immersion of (Xg, M|xs) into (V*,L*) such that
Xy (v > 0) is affine, Y (v > 0) endowed with the inverse image of L”
is smooth over (S,N), V'° is defined by the global equation g = 0 for some
g € T(V°,Oy0), for any non-decreasing map s: {0,1,... ,v} — {0,1,... ,u},
y;b is the pull-back of V), by the morphism Yy — Y corresponding to s, and
Xy = X xx, XY (v > 0) is the pull-back of YV by the closed immersion
XY <> Y.

Proof. We will write X for X to simplify the notation. Since X is quasi-
compact, by Proposition 4.2.1 (1), there exist an étale covering X° — X with
X0 affine, an (S, N)-closed immersion of (X%, M|yo) into a fine log scheme
(V% £°%) smooth and integral over (S,N), and a Cartier divisor }"® c )°
defined by the global equation g = 0 for some g € T'(J?, Oyo) such that X" C
X0 is the pull-back of Y'° by the closed immersion X% < Y% and )’° endowed
with the inverse image of £° is smooth over (S, N). For each v > 0, we define
X" to be the fiber product of v+1 copies of X° over X, which is affine, and X"*
to be X' xx X”. We define (Y(v), L(v)) (resp. V'(v)) to be the fiber product
of v + 1 copies of (V°, L£%) (resp. Y'°) over (S, N) (resp. S), and V¥ to be the
blowing-up of Y(v) along )'(v). We define )’ (v) to be the sum of the pull-
backs of )'° by the v + 1 projections Y(v) — ¥ and Y* to be the complement
of the strict transform of }”(v) C Y(v) on Y¥. We denote by £ and L”
the inverse images of L£(r) on Y¥ and ¥ respectively. We define )’V to be
V'(v) Xy) Y, which is a Cartier divisor on Y. Let prj: J(v) — Y(0<i<
v) be the projection to the (i 4 1)-th component and set g/ := (pr?)*(g). Then
the morphism (Y(v), L(v)) = (S,N)[To, ... ,T,] defined by T; — g/ is smooth
and integral on a neighbourhood of Y’(v) in Y(v), especially, the underlying
morphism of scheme is flat on the neighbourhood. Hence Y is the pull-back
of the blowing-up of S[Ty,...,T,] along Ty =Ty = --- =T, = 0. If we choose
an integer ip such that 0 < iy < v, J¥ is the pull-back of S[T;,,U;, Ui_l(O <
i < wv,i #i9)] — STo,...,T,] where T; = T;,U; (i # ip).This implies that
(v, L7), (Y¥, L") and V" endowed with the inverse images of £” are smooth
and integral over (S, ). We also see that Y’ C V" is defined by the equation
gi, = 0 and g7 is a non-zero divisor on }”. By the universality of blowing-
up, the closed immersion i(v): (X", M|xv) — (Y(v), L(v)) canonically factors
through a closed immersion 7*: (X, M|xv) < (Y, L¥). If we denote by h?
the inverse image of g7 in Oxv, then, for each 4, the closed subscheme X'
of X" is defined by Ay = 0. Hence hy = hj - u; for some u; € O%,. This
implies that 7~ factors through ()”, L"), which we denote by i*. Furthermore
we see that X’ is the pull-back of Y. Let s: {0,1,---,v} = {0,1,...,u}
be a non-decreasing map. By the universality of blowing-up, the composite
of (W%, L) — (Y(u), £(x)) with the morphism (V(2), £(k)) — (V(v), L())
corresponding to s uniquely factors through (J¥, £¥). The inverse images of
97 (0 <i<w)in Oyu are g;‘(i) and coincide up to the multiplication by units.
Hence it further factors through (¥, £¥) and Y’* is the pull-back of Y'*. Thus
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{(Y",L£")},>0 become a simplicial fine log scheme and {i*} are compatible
with the simplicial structures. [J

COROLLARY 4.2.3. Let (S,N,1,7), (So,No), (Xo, My) and (X5, M}) be as in
Proposition 4.2.1 and let Mg be the fine log structure on Xy defined by Mgy and
the Cartier divisor X[ C Xy. Assume that Xy is quasi-compact and separated.
Let u(x, o) /(5.8 denote the morphism of topoi

((XO’MO)/(SaNalvv));ys — (XO)éNta

and define w(x, pm3) /(8.8 and ux; my)/sN) similarly. Then we have a canon-
ical distinguished triangle:

Rty mo) (s8I T = Ruga ag) (s a1
— Rugxy my)jsan I H[=1] =

for each integer r. Here O denotes the structure sheaf on the relevant crystalline
site, J denotes the PD-ideal of O and, for an integer v, JU denotes the r-th
divided power of J if r > 1 and O if r <0.

Proof. Choose (A7, Molxs) — (V*,L£*%), Y'* C Y* and g as in Proposition
4.2.2 Then we can apply Proposition 4.2.1 (3) to (Ay, Molxy) < (I, LY),
Xy and Y for each v > 0. Furthermore, for each non-decreasing map
s:{0,1,... ,v} = {0,1,...,u}, since Y'* is the pull-back of Y’ by the mor-
phism fs: V¥ — V" corresponding to s, the short exact sequences are func-
torial with respect to fs. Hence, by the cohomological descent ([Ka3](2.18)—
(2.21)), we obtain the required distinguished triangles. If we are given another
(g, M0|)20.) < (V*,L£*),Y'* C Y* and §, we define Z¥ to be the blowing-up of
Y x sV along Y’ x )" and let Z” be the complement of the strict transform
of YV x PV UV x Y on Z¥. Let Mzv be the inverse image of the log struc-
ture of (Y¥, L") x(s.a) (Y, L") to 27, and let 2’V C Z¥ be the pull-back of
V' xY'". Then, similarly as the proof of Proposition 4.2.2, using ¢ and §, we see
that {(Z¥, M zv)}, >0 naturally become a simplicial fine log scheme, there exists
a closed immersion (XY x x, &Y, the inverse image of M) < (2%, Mzv) in-
ducing a morphism between simplicial fine log schemes, and this closed immer-
sion with ZV C Z" satisfies the conditions in Proposition 4.2.2. Furthermore,
we have natural morphisms (2*, Mz.) — (V*, £*) and (2°, Mz.) — (V*, L*)
compatible with the closed immersions, and isomorphisms 2’V & Y xy,, Z¥ &
YV ox y» 2. Hence the distinguished triangle is independent of the choice of
Ay ete. O

The distinguished triangle in Corollary 4.2.3 is functorial with respect to
(Xo, Mo) = (So,No) — (S,N,I,v) and X as follows: Suppose that we
are given another (Xo, Mo) — (So, No) — (S,N,1,%) and X}, a morphism
a: (Xo, Mo) — (Xo, My) and a PD-morphism 3: (S,N) = (S, N) inducing a
morphism Sy (So,No) = (So, Np) in a compatible manner in the obvious sense.
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We further assume that X = X} x x, Xo. Then the distinguished triangles in
Corollary 4.2.3 for (Xo, Mo)/(S, N, I,7), X} and for (Xo, Mo)/(S,N,1,7), X}
are compatible with the morphisms between the each component induced by
a and f: Choose (Xg, M§) — (V*,L*), V'* C Y* for (Xy, My)/(S,N), and
(X3, M) < (V*,L*), V'* C Y* for (Xy, My)/(S,N) as in Proposition 4.2.2.
Let Z¥ be the blowing-up of Y xg PV along V" xg V", let Z¥ be the com-
plement of the strict transform of PV xg ¥ U x5 V" on Zv, and let 2"
be the inverse image of V" xs Y". Let Mzv be the inverse image of the log
structure on (J¥, L") X(s.n) (Y7, LY) to Z¥. Then similarly as in the proof of
Corollary 4.2.3, we see that {(£2¥, M z+)},>0 naturally become a simplicial fine
log scheme smooth and integral over (S’ N ), there exists a closed immersion of
(XY X x, XY, the inverse image of M) into (27, M zv) over (S, N) compatible
with the simplicial structures, and this closed immersion with Z’V C Z" satisfies
the conditions in Proposition 4.2.2. Furthermore we have a natural morphism
to the closed immersion (X3, Mg) < (V*,L£*) (resp. (X3, M§) < (V*,L*))
such that Z’ is the pull-back of )’ (resp. Y’*). This implies the required
functoriality.

§43 GYSIN SEQUENCE FOR SYNTOMIC COHOMOLOGY.

Let the notation and the assumption as in §4.1. Assume that [ is non-empty
and choose one ig € I. We will change the notation as follows: We write M°
for M, and M will denote the log structure defined by the union of the special
fiber of X and the divisors D; (i € I,i # ig). We define (X', M") to be D;,
endowed with the inverse image of M. Then (X, M), (X, M°) and (X', M)
satisfies the condition (4.1.1). Note that X’ is a Cartier divisor on X and M°
is the co-product of M and the log structure on X defined by X’ (cf. §4.2).
We can construct Gysin sequence for syntomic cohomology as follows. We
choose an affine étale covering X° — X, a closed immersion of (X°, M|xo)
into a fine log scheme (Z°, M o) smooth over Spec(W) endowed with a Cartier
divisor Z° defined by a global equation g = 0 and with a compatible system of
liftings of Frobenius {Fyo : (29, Mzo) — (29, Mzo)}n>1 such that X' x x X0
is the pull-back of Z"® and F},(g) = ¢ - (1 + py) for some y € Ozo. Here the
subscript n denotes the reduction mod p™. Such a covering and an embedding
exist by a similar argument as the proof of Proposition 4.2.1 (1). Starting
from this embedding, we can construct an étale hypercovering X®* — X, a
closed immersion (X°®, M®) — (Z°*,Mz.) and a Cartier divisor Z’®* C Z* as
in Proposition 4.2.2 endowed with a compatible system of liftings of Frobenius
on {(Z%, Mzs)}n>1. By taking the PD-envelope of (Xn,My) in (Zy, Mzs)
compatible with the canonical PD-structure on pW,, and applying Proposition
4.2.1 (3), we obtain a short exact sequence on the étale site of the simplicial
scheme X7 for each > 0. By using the property F,(g) = g” - (1 + py), we
see that the short exact sequences are compatible with the Frobenius induced
by Fzs and obtain a short exact sequence:

Oﬁs:(”')(x‘,M'),(Z‘,MZ.)_>$;(7')(X‘,M°‘),(Z‘,M;.)_>S§(7'_1)()(/',]\/1/'),(2",MZ,.)[_1]%0'

DOCUMENTA MATHEMATICA - EXTRA VOLUME KaTo (2003) 833-890



872 TAKESHI TSuJI

Here S;(s) denotes the syntomic complex defined in [Ts2] §2.1, and S7(s)
denotes the complex obtained by replacing p® — ¢ with p**! — py in the defi-
nition of &, (s). By taking the derived direct image by the morphism of topoi
(X))o — (X1)%. We obtain the required distinguished triangle:

(4.3.1) = Sy () (x,m) = Sy () x,mey = Sy (r = 1) xr 1]

on (Xj)¢. We can verify the independence and the functoriality similarly as
in the crystalline case by taking care of liftings of Frobenius.
We define V! ,(r) to be the syntomic cohomology H?(Y,Sg, (r)x M))

syn,1
(cf.§3.3) of (X, M). We define V! ,(r) and VI 5(r) to be the syntomic

syn,2
cohomology of (X,M°) and (X’, M’) respectively. Then, by taking Q ®
lim  lim ., H*((X1 Xgpec(ox) SPec(Ok’))st, —) of the triangle (4.3.1) for the
base changes of (X,,, M), (X,,M?) and (X},, M]) by Ox — Ok, we obtain
a complex:

(432) - VO

syn,1

(r)y — V1

n2(r) = Vins(r = 1) = Vit (r) = -+

syn,3 syn,1

84.4 COMPATIBILITY OF GYSIN SEQUENCES 1.

We will prove the compatibility of Gysin sequences with the isomorphisms
(3.2.1), (3.3.2) and the homomorphism (3.3.4). We follow the notation in
§3.3. We denote by D? (resp. DY, resp. Dj) for the crystalline cohomology D?
(resp. DY, resp. D7) for (X, M)/(S,N) defined in §3.2 (resp. §3.3, resp. §3.3).
We denote by D2, DI and Dj for the cohomologies of (X, M°)/(S, N), and DY,
DY and Dj for the cohomologies of (X', M')/(S,N). We denote by D(—1),
DI(—1) and Dj(—1) the same modules as DI, DI and Dj whose Frobenius
endomorphisms ¢ are replaced with pyp. By taking Q ® lim  of the Gysin se-
quences for the crystalline cohomologies over the bases (W,,, W, (L), pW,,~)

and (E,, Mg, ,Jg,,0), we obtain an exact sequence:

(441) [N Dg N Dg N Dg_l(—l) N Diﬁ_l .

and a complex:

4.4.2 cee DI DI DIy s DI
1 2 3 1

LEMMA 4.4.3. Let D; (i = 1,2) be finitely generated free Rp q,-modules en-
dowed with ¢ g-semilinear endomorphisms @p, whose linearizations Rg , @Ry,
D; — D; are isomorphisms. Let D; be the reduction of D; with respect to
Rpq, — Ko induced by {ig, o} (§83.3) and let pp, be the o-semilinear automor-
phism of D; induced by @p,. Suppose that we are given an Rg g,-linear homo-
morphism f: D1 — Da compatible with pp, and Ko-linear sections s;: D; — D;
of the canonical surjections p;: D; — D; compatible with pp, and ¢p,. Let
g: D1 — Dy be the Ky-linear homomorphism induced by f. Then we have
fosi=s50g.
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Proof. We apply [Ts2] Lemma 4.4.11. Let I, be as in loc. cit. For any a € Dy,
f(sl(cp;)’f(a))) is a lifting of g(apfff(a)) = @BZ(g(a)) € Dy in Dy. Hence, by
loc. cit., s2(g(a)) = v, (f(s1(pp) (@) = f(s1(a)) mod I,Ds. Since Ny, (I, @
Q) =0 and D; is a free R g,-module, this implies s2(g(a)) = f(s1(a)). O

By functoriality, the projections Df — DY (cf. §3.3) are compatible with (4.4.1)
and (4.4.2). On the other hand, by a similar argument as the proof of the
functoriality of the Gysin sequences, we also see that the sequences (4.4.1)
and (4.4.2) are compatible with the Frobenius endomorphisms. Hence, from
Lemma 4.4.3, we obtain the following:

LEMMA 4.4.4. The isomorphisms Rp g, ®k, D} = D} (i =1,2,3) (§3.3) are
compatible with the sequences (4.4.1) and (4.4.2).

Note that this and the exactness of (4.4.1) implies that (4.4.2) is also exact.
We denote by Dip ; the de Rham cohomology HY(Xf, Q% (log(Mk))) en-
dowed with the Hodge filtration (cf. (3.2.1)), which is canonically isomor-
phic to the projective limit of the crystalline cohomology of (X,, M,) over
(Sn, Npn, pOs, ,v) with respect to n tensored with K over Og. We denote by
Dig o and D{p, 5 the de Rham cohomology of (X, M) and (Xj¢, M) respec-
tively. Recall that the Hodge spectral sequences for D{p, ; degenerate (cf. [Ts2]
Proposition 4.7.9). We denote by Dig 5(—1) the same K-vector space as D{p
whose filtration is defined by Fil"(Dig 5(—1)) = Fil"~'Diy 5. Then, by taking
Q @ lim, of the Gysin sequence for the crystalline cohomc;logy over the base
(Sn, Npn,pOs, ,7), we obtain an exact sequence of filtered K-vector spaces:

(4.4.5) S DgR,l - DgR,2 - Dgﬁ,lzz(*l) - Dgltt,ll o

By functoriality, the projections D — Dfg ; induced by {ig, ~} (§3.3) are

compatible with the exact sequences (4.4.2) and (4.4.5). Hence by combining
with Lemma 4.4.4, we obtain the following compatibility:

LEMMA 4.4.6. The isomorphisms pr: K@y, D] = Dy , (3.2.1) are compatible
with the exact sequences (4.4.1) and (4.4.5).

By taking Q ® lim, lim,, of the Gysin sequence for the base changes of
(Xn, M), (Xpn, M2) and (X, M) by (S',N') = (S,N) over (E,, Mg, ), we
obtain a complex:

(4.4.7) -~-—>5‘{—>fg—>5§71(—1)—>5‘f+1—>-~- )

Here S’ = Spec(O-) and N is the log structure defined by the closed point. By
functoriality, the natural homomorphisms D! — D are compatible with (4.4.2)
and (4.4.7). Hence, by Lemma 4.4.4, we obtain the following compatibility:

—

LEMMA 4.4.8. The isomorphisms BE ®@x, D! = D} ([Ts2] Proposition 4.4.6)
are compatible with the sequence (4.4.1) and (4.4.7).
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Note that this lemma and the exactness of (4.4.1) imply the exactness of (4.4.7).
By construction, it is clear that the distinguished triangle (4.3.1) is compati-
ble with the distinguished triangle of Corollary 4.2.3 for (X,,, M,), (X}, M},),

. over (W,,pW,,v). Hence, by the functoriality of the Gysin sequence for
crystalline cohomology, we obtain:

LEMMA 4.4.9. The natural homomorphisms Vi . — Dy (3.3.4) are compatible
with the sequences (4.3.2) and (4.4.7).

84.5. COMPATIBILITY OF GYSIN SEQUENCES 2.

To prove Theorem 4.1.2, we also need to verify the compatibility of the Gysin
sequence (4.3.2) of the syntomic cohomology with that of the étale cohomology.
For simplicity, we omit the log structures from the notation of log schemes; we
simply write X, X° and X' for the log schemes (X, M), (X, M°) and (X', M")
appearing in §4.4. As in [O], we denote by X, S,... the underlying schemes of

log schemes X, S,... (We do not adopt the notation X, S,... in [Na] Notation
(1.1.2) and [I2]1.2 to avoid the confusion with the notation X°. )

Let Xgiv (vesp. (X©)uriv, resp. X{.,) be the maximal open subschemes of
X (resp. X°, resp. X’) on which the log structure is trivial. We have
(X)triv = Xeriv\X{pjy- We denote by V)7, Vil and V3! the ¢-th étale coho-
mology of (Xiriv)i, ((X®)uiv)z and (X{,;, )7 with coefficients Q, respectively.

Then we have the Gysin exact sequence:
(451) RN qu N V'QQ — ngfl(_l) N V1q+1 .

PROPOSITION 4.5.2. For any integer r > 0, the homomorphisms VS‘;M(T) —
VA(r) defined by p~" - (3.3.6) are compatible with the sequences (4.5.1) and

(4.3.2).

Let ¢ and 7’ denote the closed immersions ¥ — X and Y’ — X’ and let j, j°
and j’ denote the open immersions Xi,iy — X, (X°)triv — X and X[, — X'

triv
respectively. Proposition 4.5.2 follows from the following local version:

ProPOSITION 4.5.3. For any integer r > 0, the following diagram is commu-
tative:

— S;(T)X — S;:(T)Xo — S:(T — 1)X/[—1]
l(3.3.5) l(3.3.5) l
— *RjZ[p"L(r) — i*RjZL/p"ZL(r) — i*RjLZ/pZ(r) (—1)[-1].

Here the right vertical homomorphism is the composite of

(4.5.4)

S =1 = Sy = xRS (r = 1) = RIS () (1),
where the first map is defined by the multiplication by p on Jrl 9 00 and
the identity map on Opr ® Q°.
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We will prove Proposition 4.5.3 in §4.8 after some preliminaries in §4.6 and §4.7.
We will prove it along the following lines. By using the Gysin sequence (4.3.1)
and explicit descriptions of i* Rj,Z/p"Z(r)" and i*RjSZ/p"Z(r) as complexes
in terms of Godment resolutions, we construct a map

(4.5.5) a: Sy(r— V) x — i"RjLZL/P"L(r) (=1)

such that the diagram in Proposition 4.5.3 with (4.5.4) replaced by « is commu-
tative. The main difficulty to compare o with (4.5.4) comes from the fact that
the resolution S,,(r) of Z/p"Z(r)’ relating Z/p"Z(r)" with Sy’ (r) (cf. [Ts2] §3.1)
does not behave well with respect to the closed immersion X’ — X. We over-
come this problem by replacing X’ — X + X° with X' a4 xr X'°, where
X'° is the scheme X’ endowed with the inverse image of Mxo.. Although X'°
is not log smooth, we still have a Gysin sequence for S, (r) (4.7.11) and we can
construct a map

(4.5.6) B: 87 (r—1)x — " RjLZ/p"Z(r) (—1)

in the same way as «, which is easily seen to be equal to a above. (For the
étale side, we need to use the Kummer étale sites of fs log schemes ([Na]).)
For X' X4 X’ + X'°, we also have a Gysin sequence for Sn(r) (4.7.10), which
allows us to compare the morphism 8 with (4.5.4).

§4.6. PRELIMINARIES ON LOG FUNDAMENTAL GROUPS.

We will summarize some basic facts on log fundamental groups ([12]84) which
we use in the proof of the compatibility of Gysin sequences for syntomic and
étale cohomologies. We leave the most of their proofs to the readers. We
continue to omit the log structures in the notation of log schemes.

A logarithmic point s is Spec(k) for a separably closed field k with a saturated
log structure such that the multiplication by n is bijective on My/k* for any
positive integer n prime to the characteristic of k. A log geometric point of an fs
log scheme S is a morphism s — S for a log geometric point s ([Na] Definition
(2.5), [12] Definition 4.1).

LEMMA 4.6.1. Let T — S be a Kummer étale morphism ([Na] Definition
(2.1.2), [12] 1.6) and let § — S be a log geometric point. If the image of §
in S is contained in the image of T in S, then there exists a lifting s — T.

Using the fact that a Kummer étale closed immersion is an open immersion,
we can prove the following lemma in the same way as [SGA1] 5.3, 5.4.

LEMMA 4.6.2. Let T — S be a Kummer étale separated morphism of fs log
schemes, let U be an fs log scheme over S and let ¢: 4 — U be a log geometric
point of U. Then the map Homg(U,T) — Homg(u,T); f — f o ¢ is injective.

Let S be a locally noetherian fs log scheme and let 5 — S be a log geometric
point. Then the category Kcov(S) of Kummer étale covers of S ([I2] 3.1) with
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the fiber functor Fz: Kcov(S) — (Sets) satisfies the axioms (G1) to (G6) of
[SGA1] V§4. We define the log fundamental group of S at § to be Aut(Fj3)
([12]4.6). By Lemma 4.6.2, we see that the fiber functor F;(—) is canonically
identified with Homg(5, —).

We consider an equi-characteristic connected normal scheme X with an fs log
structure such that there exists a global chart a: N — I'(X, Mx) whose com-
posite with T'(X, Mx) — T'(X, Ox) sends N\{0} to 0.

Let « = Spec(k) be the generic point of X with the inverse image log structure.
Let k%P be a separable closure of k and let T be Spec(k*P) endowed with the
inverse image of M,,. Choose a chart « as above and define a log geometric point
Z of X to be Spec(k®®P) with the log structure associated to N — kia # 0+~ 0.
Here N = UneN’nek*%N. We define the morphism £ — T — = — X by the

natural inclusion N — N and the chart av. 7 is independent of the choice of the
chart o up to non-canonical isomorphisms over . N

For n € N invertible in k, let ¢, denote the image of £ € N in I'(Z, Mj).
Then the homomorphism Aut(z/z) — Z/(1) := Um, o ep- An(K°°P) defined by
o+ (o(ty)t; })p>1 is an isomorphism. Any automorphism of  over z induces
an automorphism of T over z and thus we obtain a surjective homomorphism
Aut(Z/z) — Aut(T/z) = Gal(k*°P/k)° with kernel Aut(z/z) = Z/(1). Here
(—)° denotes the the opposite group.

We define k" to be the union of all finite extensions &’ of k contained in
k%P such that the normalizations of the underlying scheme of X in k' are
unramified. We define " and 2 similarly as Z and # using k" instead of
k%P, We have a canonical surjective homomorphism Aut(i/z) — Aut(z /z)
inducing an isomorphism Z’/(1) & Aut(#/Z) = Aut(z™/z"). We also have a
natural surjection Aut(z%/x) — Aut(z"/z) = Gal(k™/k)°.

The fiber functor F;: Kcov(X) — (Sets) is explicitly pro-represented as follows.
For each finite extension k&’ of k contained in k", let X be a strict étale cover of
X whose function field is &/, and for a positive integer n invertible on X, we de-
fine X, to be the Kummer étale cover Xy xspec(z[NDSpec(Z[%N}) of X. Then,
the inclusions k' < k%P and %N <3 N define a morphism & — Xy . If &'/ is
Galois and p1,, (k°°P) C ¥/, then Xy ,,/ X is Galois i.e. Aut(Xy ,,/X) acts transi-
tively on F3(Xy n) = Homx (%, X ). We assert that Fj is pro-represented by
{Xp n}ie limy,,  Homx(Xk n,Y) — Homy(2,Y) is an isomorphism for any
Y € Kcov(X). The injectivity follows from Lemma 4.6.2. For the surjectivity,
by Lemma 4.6.1 and Lemma 4.6.3 below, we may replace Y by Xy ,, with &'/k
Galois and p, (k*P) C k’. In this case Homx (Xy/ n, Xp'.r,) — Homx (2, Xp/ )
is surjective.

LEMMA 4.6.3. For any Kummer étale cover Y — X, there exists n € N in-
vertible on X and a strict étale cover X' — X such that Y xx X, — X, is
trivial. Here X, = Xy Xgpec(z[N]) Spec(Z[%N]).

The automorphism group Aut(Z/x) naturally acts on the fiber functor
F;: Kcov(X) — (Sets) and we obtain a homomorphism Aut(zZ/x)° — 71 (X, Z).
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PROPOSITION 4.6.4. The above homomorphism factors through an isomor-
phism Aut(z% /x)° = 71 (X, T).

Proof. Since Fj is pro-represented by {X/ ,} and & — X}, factors through
% we see that the action of Aut(Z/x) on Fj factors through Aut(a¥r/z).
For m € N invertible on X, we denote by t,, the image of (%,1) by the

(non-canonical) isomorphism N & (k)" = M~;. We have a bijection as sets
Aut(z™ /) — Gal(k™ /k) x Z/(1)(k™) sending o to the pair of o*: k™ — kU*
and (0* ()t )m. On the other hand, we have Aut(F3)° = im,, , Aut(Xp n),
where (k’,n) ranges over all finite Galois extensions k' of k contained in k"
and n € N invertible on X such that u,(k"™) C k’. For such (k',n), we
have a bijection Aut(Xy ,) — Gal(k'/k) X p,(k") sending 7 to the pair of
Tk — K and 7%(],)(t,) ", where ¢/, denotes the image of L by the chart
IN = I'(Xp n, Mx,, ). Hence Aut(z"/2)° = my(X,2). O

Next we consider an equi-characteristic connected regular scheme Z with the
fs log structure associated to a regular divisor defined by the equation ¢ = 0 for
some t € T'(Z,0z), and assume that X is the divisor with the inverse image of
My. Set Ziiy = Z\X. Then the functor Kcov(Z) — Etcov(Zyiv); W — W Xz
Ziviv induces an equivalence of categories from Kcov(Z) to the subcategory
consisting of étale covers of Z,;, tamely ramified along X ([I2] Theorem 7.6).
Let z = Spec(K) be the generic point of Z, choose a separable closure K5°P of
K and set Z := Spec(K®°P). Let K" be the union of all finite extensions K’ of
K contained in K®°P such that the normalizations of Zi.;, in K’ are unramified
and tamely ramified along X. Set z"" := Spec(K™).

We will give a way to construct a path from Z to Z. For a finite extension K’
of K contained in K", we denote by Zx, a Kummer étale cover of Z whose
function field is K’. Then we have a natural morphism zZ — Zg- and the fiber
functor Fz: Kcov(Z) — (Sets) is pro-represented by {Zk-}. By Lemma 4.5.1,
im ., Homz(Z, Zg) is non-empty. An element ¢ = {¢px} k- of this set defines
a path from Z to Z; it induces a map

Homy (2, W) < lim Homyz(Zg, W) =5 Homz (2, W)
K'CKvur

for W € Kcov(Z). For any o € Aut(z% /), there exists a unique automorphism
ok of Zy such that g o o = g+ oo for each finite Galois extension K’ of
K contained in K", and {ok} defines an automorphism 7 € Aut(z""/z). The
homomorphism Aut(z%/z)° = 7(X,#) — 71(Z,Z) = Aut(2"/2)° induced
by the above path sends o to 7. For another ¢’, there exists a unique 7 €
Aut(z"/z) such that ¢’ = oo .

§4.7. THE COMPLEXES S, (r) AND Sy (7).

We keep the notation of §4.5. Working étale locally on X, we assume that X
is affine and we are given a W-closed immersion of X into a fine log scheme
Z smooth over W endowed with a Cartier divisor Z/ C Z defined by a global
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equation ¢ = 0 (g € I'(Z,0%)) and with a compatible system of liftings of
Frobenius {Fyz,: Z, — Z,}n>1 such that X’ is the pull-back of Z’ and Z’
endowed with the pull-back of Mz is smooth over W. We denote by Z° the
scheme Z endowed with the log structure defined by M, and the Cartier divisor
Z' (cf. the beginning of §4.2), and by Z’ (resp. Z’°) the scheme Z’ with the the
inverse image of Mz (resp. Mz.). Note that Z’° is not smooth over W. We
further assume that there exists ¢1,... ,tq € I'(Z, Mz) and t € T'(Z,Oz) such
that Z’ is defined by t =0 in Z, {dlog( (1 <i<d),dt} (resp. {dlog(t;)(1 <
i < d),dlog(t)}, resp. {dlog(t )}) form a basis of Q7 (resp. Qzo /1w, resp.
Qzyw), and Fy (t;) =t7, F (t) = tP for each n > 1. Choose and fix such t;
and t. We have closed immersions X° « Z°, X' < Z’ and X’° < Z'°. Recall
that X’° is X’ with the inverse image of Mxo.

Let U = Spec(A) — X be a strict étale morphism and set U°® = X° xx
U, U := X' xx U and U”° := X'° xx U. By replacing U with a suitable
affine open covering, we assume that U, U° and U’ satisfy the condition [Ts2]
(1.5.2). (See [Ts2] Lemma 1.3.3). We may further assume that U’ also satisfies
the equivalent conditions in [Ts2] Lemma 1.3.2 and T'(U’, My»)/T(U’, O5;)) —
L(U’, My /O5;) is an isomorphism. (See the proof of [Ts2] Lemma 1.3.3 for
the latter.) Let A’ be the coordinate ring of U’. As in [Ts2] 1.4, let A" be the
henselization of A with respect to the ideal pA.

Let U" be Spec(A") with the inverse image of My and set U™ := X° x x U”,
U= X' xx U" and U := X'° x x U". The coordinate ring of U"* = U’ is is
the henselization of A’ with respect to pA’, which we denote by A", Let UL, |
(Uh )iriv and Ut'fw denote the maximal open subschemes of Uh, Uh° and U
respectively on which the log structures are trivial and let Atm, (AR°) 45, and
Ath. denote their coordinate rings. Finally we define (Xiiy)° (resp. (X{;,)°)
to be Xy (resp. X{,;,) endowed with the inverse image of My., and define
(Uh.)° and (U{%)° similarly. Note that the log structure of (Xyiy)° is the one
defined by the divisor X/, < Xtriv-

Now we have the following commutative diagrams:

((Xo)triv)ét — ((Xtriv)o)Két i (Xtriv)ét
(4.7.1) 1 1

’
&€

((X'ériv>o)Két - (thrlv)

(U )uiv)es = (Uh))kee = (Uli)a
(4.7.2) T T

’

(U ))kee 5 (U, )er

Here Két denotes the Kummer étale site ([Na]). Note ét = Két for schemes
with trivial log structures. We have natural morphisms from (4.7.2) to (4.7.1).
We will construct a resolution S,,(r) of Z/p"Z(r)" on each site in the diagram
(4.7.2) in a compatible manner. For (U"®)q;y, (UL,)° and U, we can directly

apply [Ts2]§3.1, but for the other two, we need some modifications.
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Let 7 := Spec(K) be the generic point of U, . Choose an algebraic closure
K of K and set 7 := Spec(K). We define K™ (resp. K°%) to be the union
of all finite extensions £ of K contained in K such that the normalizations of
Uh.. (resp. (U")iiy) in £ are unramified. We define 7/, K', K’, 1/ and K'**
similarly using U/ . We set

Gy = Gal(K™/K) = (UL, 7),
Gy = Gal(K™" /K) 2 71 (U")eaiv, M) = m (Udsy)°, ),
G}y = Gal(K'" /K') = 7 (U, 7).

rivy

See [12]Theorem 7.6 for the last isomorphism in the second line. We define
7'° to be Spec(K’) with the inverse image of M yo and define 7/° and n/o

similarly as # and 2% in §4.6 using K’ and K. We set
5 i At ") 2 m (U 7).

See Proposition 4.6.4 for the second isomorphism.
For a finite extension £ of I contained in K°", denote by V,; a Kummer étale
cover of (U/';,)° whose function field is £. We choose and fix a compatible sys-

triv

tem {f: 7/7\’5 — Ve }ocicour, which gives a path from 77’3 — (UR ) — (Un,)°

to 7 — (Ul,)° (§4.6). It also induces a compatible system {fz: 7 —
Ve }tecker, which gives a path from 7’ to m. These paths induce homomor-
phisms Gj5 — GY and G; — Gy which are compatible with the natural
homomorphisms Gf, — Gy and G5 — Gy;.

We define A® (resp. A ) to be the normalization of A" (resp. Al ) in KU,

triv e triv
Similarly, we define Ah° and (A°)yy (resp. A" and A%, ) using AP, (A"®) gy
and K°" (resp. A", A" and K™). By applying [Ts2]§1.4 and §1.5 to U, U°,

triv
U’" and Ah, Ahe, A’h we obtain a commutative diagram:

uh « U < D
Lo

Ul <« U < D
0 1 )

Uhe « U° < De°

compatible with the actions of Gj; on U* and D* and with the liftings of
Frobenius on D* (x = (),7,0). The upper vertical maps are induced by the path
from 7/ to 77 chosen above.

Since Z° and Z’ satisfy the condition [Ts2] (2.1.1), we can construct resolutions
gn("’)UO,ZO and gn(T)U’,Z’ of Z/an(T)/ on ((Uho)triv)ét (OI‘ ((Ut];iv)o)Két) and
on (U )& as in [Ts2] §3.1. Although Z does not satisfy [Ts2] (2.1.1), the
construction in [Ts2] §3.1 still works as follows.
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LEMMA 4.7.3. (1) The absolute Frobenius of ﬂ/pﬂ is surjective.

(2) The homomorphism FillAcrys(ﬁ) — Al defined by x p~Lo(x)
mod Fil' is surjective.

Proof. (1) For any a € AP, there exists u € (A?)* such that 1 + p*/2a = u?
and hence p'/?a = (u — 1) mod pAP. Set v = (u — 1) -p~'/?P. Then v? € AP
and hence v € AP, Thus we obtain a = v? mod p'/2A4". Set b = (a — vP) -
p~Y/2. Then, by the same argument, there exists w € A" such that b = w?
mod p'/2A". Now we have a = (v + p/?Pw)? mod pAh. (2) By (1), the
homomorphism A.ys(A") — AP is surjective (cf. [Ts2] Lemma A1.1). Hence
the claim follows from the surjectivity of 1 —p~lp: Fil 1AcryS (ﬁ) — Acrys (ﬁ)
(cf. [Ts2] Theorem A3.26 and Proposition A3.33). O

As in [Ts2] §3.1, let E,, be the PD-envelope of U,, < D,, Xw, Z, compatible
with the PD-structure on J5 +pOg . For each t; € I'(Z, Mz), choose and fix
a lifting a; € I'(D, Mp) of the image of ¢; in I'(U, M) such that Fx(a;) = a?

([Ts2] Lemma 3.1.5). Let u; € I'(En,1+ Jz ) be the unique element such
that t; = a; - u; in F(En,MEn). For t € T'(Z,0%), we choose a lifting a €
I'(D,05) = Acrys(A") of the image of ¢ in T(U, Of) = AP. By Lemma 4.7.3

(2), we may assume that a? —¢(p) € pFil' Acyys(A™"). Similarly as [Ts2] Lemma
3.1.4, we see that there exists a PD-isomorphism over Oﬁn:

Op (Vi,... . Va,V) 5 Og Vi ui =1,V it —a

We define J1o" and J1- as in [Ts2] §3.1.

LEMMA 4.7.4. (cf. [Ts2] Lemma 3.1.6). For each r, we have

7= @ gy I -,

n
meNd+1 1<i<d

where m = (my, ... ,mg, m).

Proof. Since we can apply the same argument as the proof of [Ts2] Lemma 3.1.6
to the ring R, := Op (up — 1,... ,uq — 1), it suffices to show the following:
Forz =3, cyam(t—a)™ e Og, = Rn(t — a), we have ¢(z) € p"Og if and
only if p(z,,) € pm&{r="0} R, for all m € N. The sufficiency follows from

p(t—a) =t" —pla) = (t —a+a)’ —p(a)

—pfo= it~ 0"+ X2 ()t ey o - o) €
v=1
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Assume z # 0 and p(z) € p"R,(t — a), and let M be the largest integer such
that xps # 0. Then the coefficient of (¢ — a)!™?) in () is p(zar)p™ ¢ for some
c € Zy N Q. Hence pMop(zar) € p"R,, which implies ¢(zy,) € pmex{r—MOIR
By the sufficiency, we can subtract 7 (t—a)[™], repeat the argument and show
() € prextr—mO R for all m. O

By Lemma 4.7.4, we can construct a complex J[ ®Ozn Q3 W and show

that it gives a resolution of J[r]/ as in [Ts2] Lemma 3.1.7. (Since d(t — a)™ =

(t —a)lm=1dt, it is enough to use dt instead of u;dlog(t;) for the indeterminate
t —a. ) Thus we obtain a resolution S, (r)y.z of Z/p"Z(r)" on (UL, )e by
the same method as [Ts2] §3.1. We have natural maps from the pull—backs of
Sn(r)u.z to Sn(r)ur .z and S, (r)ye zo. We will need the following lemma to
construct the map « (4.5.5).

LEMMA 4.7.5. The natural map S, (r)v.z — eusSn(r)ue,zo is injective. (See
(4.7.2) forey.)

Let E°, be the PD-envelope of U°, < D°, x Z2. Choose a lifting a’ €
I'(D°, Mps) of the image of ¢ in I'(U°, M=) such that Fro(a’) = (a")P ([Ts2]
Lemma 3.1.5) and let u € T'(E°,, 1+ Jg= ) be the unique element such that
a-u=tin F(ﬁn,Mfl). We denote the image of u; € I'(E,,1 + Jz.)
(defined above) in T'(E°,,1 + g,
isomorphism:

) by the same letter w;. Then we have an
Oﬁn = Oﬁn@il - 1, sUd — 1,11,7 ].>

Proof Lemma 4.7.5. Tt suffices to prove that the natural map Jg]/ — ng/

and the multiplication by ¢ on JI[%/ are injective. We first prove the claim for

r = 0. Since the map Oz — O factors through Ops (u; — 1,1 — a) =
Ops (u; —1,t —a’) and t —d U, 1t is enough to prove that O — Ops  and
the multiplication by a’ on Ops  are injective. We are easlly reduced to the

case n = 1. Define R and RA,LO as in [Ts2] §1.1 and let z be a generator of the
kernel of W(R-7) — Ah ([Ts2] Corollary A2.2). Then, by [Ts2] Lemma A2.11,
we see that T'(Dy,0p,) = Acrys(AP) /p (vesp. T(D°y, Ops,) = Acrys(A°) /p) is
a free R/2P (resp. RA,LQ/zp)—module with a base {z[P"/|n > 0}. Especially,
the filtration is separated and each graded quotient is isomorphic to Rﬁ/ z =

AR /p (resp. Rps/z = A /p) (Lemma 4.7.3 (1) and [Ts2] Lemma A2.1). Hence
the claim follows from the injectivity of the natural map A?/p — A#°/p and the

multiplication by ¢ on A" /p. Next we consider the case r > 1. Let = € J[ET]/

n+r
and assume that its image in J}[E,] is contained in p”J][ELl/ . Then it is
n+r n+r

7]

contained in p”J% )

and hence z € p”J[ET by the case r = 0. Choose
n+r

ntr
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Yy € J[ET] such that x = p™y and let y° be the image of y in J][EL(]) . Then
n+r n4r
p"y° € p" "l" " Which implies y° € JI e ©(y°) € p"Oxs . . By the
Eon+r Eon+,~ n+r

case r = 0, this implies p(y) € p"Ox . and hence y € Jg]/ . We can prove
n+r n+4r

the second assertion similarly. Note ¢(a’) = (a’)?. O

Now it remains to construct a resolution S, (r)yre ze of Z/p"Z(r) on
((U!+.)° ket To do this we need to construct U’ < D’ for the non-smooth
U’ modifying the construction in [Ts2] §1.4, §1.5.
The underlying scheme of D’ is the same as D’ i.e. Spec(Aeys(A7)). For the
log structure, we use the fiber product Q'° of the diagram of monoids:

. f )

(M, & Mo éMn~ L. = Mz, « D(U", M),

/rour ,,]/Our /our /rour

where f(z) = 2P and the left map is the projection to the first component.

Choose a chart N — M;;; compatible with the chart N — T'(U’°, My ) send-
ing 1 to the image of ¢ (cf. the definition of 2™ in §4.6). The chart induces an iso-
morphism N& (K™™)* & M—— . By I'(U’, My /O, ) &N 2 T(U'°, Myo /Of10)
and the assumption TU', My, )/T(U’,OF) = T(U', My /Of,), we see
LU, My )/T(U",0p) @ N = T(U"”,Mye)/T(U®,0fe.) and hence
LU, My») is generated by the images of ¢ and T'(U’,Mys). This im-
plies that the image of T'(U’°, My+) in M—— = N @ (K/")* is contained in

n/our
N (AR )* N A™). Hence Q° coincides with the fiber product of

Lim(N @ ((Af%,)" NAR)) — N@ (Al )" N A®) « DU, My»)

triv
f

and the morphism Q'° — im Mn’,g: — lim KM factors through lim Al

We define the log structure of D’° to be the one associated to

Q° = lim AP — R 5 W (Repr) C© Aerys (A7),

Using the natural action of G5 on Q° and the multiplication by p on Q’°, we
can define the action of G and the lifting of Frobenius on D’ °.

We define U”° to be Spec(ﬁ) with the log structure associated to
DU, My) — A", We have a natural action of Gi° (through Gf;) on
U and Gg-equivariant morphism U”° — D’° induced by the surjection
Acrys(AH) — ﬁo(cf. Lemma 4.7.3) and Q' — D(U", Myre). . )
We assert that U’ and D’ are fs log schemes and the morphism U’ — D’ is

an exact closed immersion. To prove this, we choose a chart P — T'(U’°, Myo)
such that P — T'(U’°, My»)/T(U’°,O0f;0) is an isomorphism ([Ts2] Lemma
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1.3.2). Then the composite P — T'(U’°, My) — N & (A )* N A can
be lifted to the projective limit LLnf(N ® ((Ah )* N A'M)). Hence P —

L(U’®, My») can be lifted to P — @Q’°. On the other hand, since the im-
age of T(U"°,0f,,) in N @ (A{frliv* N A" is contained in A" | the inverse
image G of {1} under Q° — T'(U"®, My )/T(U"°,0f..) is a group and we
have Q°/G = T'(U"°, My») /T (U, 0f) = P. Hence, by [Ts2] Lemma 1.3.1,
P = T(U®, My») — F(WO,MWO) and P — Q"° — F(ﬁo7Mﬁo) are charts,
and U’ — D’ is an exact closed immersion.

Next we compare U - D'° withU’ — D’ and U° — D°. The fiber product Q'
of lim Ah 5 AP T(U’, M) used in the definition of the log structure of D’

_ - e
is the same as the fiber product of the diagram with A’* replaced by A/ ~NA'™.
Hence, there exists a natural map Q" — Q’° compatible with the actions of G},
and G§7. Using this and the natural map I'(U’, My:) — T'(U’°, Myr»), we

obtain a commutative diagram:

Uhe « U < D
(4.7.6) ! 1 N
uhr «— U < D

compatible with the actions of G;, G§ and the liftings of Frobenius.

Similarly, the fiber product @° of lim, Ao — Ahe + T(U°, Mye) used in the
construction of the log structure of D° is the same as the the fiber product of
the diagram with A"° replaced with (Aho)triv* N AP, On the other hand, we
have (Aho)triv*ﬁAho C lim » —jeour T'(Vz, M), where V7 is as in the construction

of a path from 7° to 7. The fixed system of morphisms {fc: n° — V¢ } induces
a morphism Q° — @Q’° compatible with the actions of G§; and Gf5. Using this
and the natural map I'(U°, My-) — T'(U’°, My ), we obtain a commutative
diagram:

Ut « U° < D°
(4.7.7) T T 1

50 ——0
uhe « U < D

compatible with the actions of Gf7, G, and the liftings of Frobenius.

Now we are ready to construct gn(r)U/oZ/o. Let E’°,, be the PD-envelope of
7:1 — ﬁ; x Zy, which is endowed with an action of G} and a lifting of
Frobenius by a natural way. The diagram (4.7.7) and id: Z° — Z° induce a
PD-morphism E’°,, — E°,, compatible with the actions of G5, and G5 and with
the liftings of Frobenius. If we denote by the images of u;,u € I'(E°,, O%n)

in D(E",, 0% ) by the same symbols, we have (cf. [Ts2] Lemma 3.1.4)

O

e, = Oﬁz (u; — 1,u—1).
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—_~—

Hence, if we define Jg,]; similarly as in [Ts2] §3.1, [Ts2] Lemma 3.1.6 still

holds. Similarly as in [Ts2] Lemma 3.1.7, we obtain a resolution Jgg —

n

Jrl Q‘O/Wn. Thus, as in [Ts2] §3.1, we obtain the required resolution

/0
E’°p

Sn(r)re ze of Z/p"Z(r)" on (U,
mapping fiber of

)°)keét by taking the global section of the

- J2 @ Q%0 = O, © Oy,
The morphism E’°,, — E°, induces a map from the pull-back of S, (r)ye, zo
to gn(r)U/o,Z/o. The comparison with S,, (r)ur,zs is non-trivial. Consider the
morphism D’° x Z° — Spec(Z[N & N]) defined by sending (1,0), (0,1) e NN
to the images of a/ € I'(D°, Mps) and t € [(Z°, Mye) in T(D”° x Z°, M).
Define the log étale morphism Spec(Z|N @ Z]) — Spec(ZIN® N]) by NG N —
N @ Z; (m,n) — (m,m —n), and consider the following cartesian diagrams:

(D° x 2°)~ — (D" xZ°~ — Spec(Z|N&Z])
4 \
D°xz° — D°xZ° — Spec(ZIN®N)]).

Then, the closed immersion U’° < D’° x Z'° naturally factors through (D7° x
Z'°)™ because the images of a/ and t coincide in T(T7°, M). On the other hand,
the vanishing of o’ in [(D’° x Z°, ©) implies that (D7° x 2"°)~ — (D’° x Z°)~
is an isomorphism. Hence E’°,, is isomorphic to the PD-envelope of ﬁ; —
D) x Z!°, and the diagram (4.7.6) and Z° — Z’ induce a PD-morphism
E’, — E’,. Here E',, denotes the PD-envelope of U’,, — D’,, x Z! used
in the construction of S, (r)ys z/. One can verify the compatibility with the
actions of Gy, G7, with the liftings of Frobenius and with the connections.
Thus we obtain a canonical map S, (r)yr,z: — €(7,Sn(r)vre, 270

LEMMA 4.7.8. The map Sn(r)ur 20 — €7,.Sn(r)ure 70 is injective.

Proof. This follows from Og = Op; (u; — 1) and O = O (u; — 1,
u—1). O

Next we discuss on Gysin sequence for S,,(r) on (U, )s. Recall that Z° is
not smooth over W.

LEMMA 4.7.9. (1) The natural map Qzo jw @0, Ozro — Qg0 w is an iso-
morphism.

(2) Let F be an Oz (= Ozreo)-module with an integrable connection V : F —
F® QZ//W. Then the composite

F = F®Ro, Qzyw = FQo, Qzeoyw = F @0, Qzoyw
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is an integrable connection on F as an Ozo-module. Furthermore, the natural
maps FRQY,, — FROL,.. = F®Q%. induce a morphism between the de Rham
complezes: F Q0% — F Q@ N%,.

Proof. Straightforward. [

By Lemma 4.7.9 above, we can replace 2%, with Q%,. in S,,(r)y,z/, and obtain
a complex on (U{% )¢, which we denote by S, (r)g;, 5. We can construct a short
exact sequence:

(4.7.10) 0— gn(T)U’,Z’ — gn(r)?],ﬁz, — gn(r — l)U’,Z’[—l] — 0

in an obvious way. On the other hand, the PD-morphism E’°,, — E’,, induces
amap Sy (r)g 7 — €47, Sn(r)ure zo compatible with the map in Lemma 4.7.8.
Finally, we discuss on the complex S;'(r). As in [Ts2] §2.1, using the PD-
envelopes of X — Z, X° — Z° and X’ — Z’, we can define complexes
(1) x,z, 8 (1) xe,z0 and Sy (r)x+,z on (X1)et, (X7)et = (X1)er and (X{)st.
We have natural maps from the first complex to the latter two. We also have
natural maps from the sections over Uy, Uy = U; and U] to the global sections
of gn(r)U,Za gn(T)onzo and gn(T)U’,Z’ (Cf [TSZ] (319) and (212)) For
X'° «— Z'°, we define the complex S, (r)xro zo on (X{°)et = (X1)et to be the
one obtained by replacing Q%, with Q%,. in S} (r)x 2z, using Lemma 4.7.9.
We can construct a short exact sequence:

(4711) 0 — S,;:(’I")XI)Z/ e S,;:(T')XIO,ZIO — S:(T — 1)XI’Z/ [—1] — 0

Here 87 (r —1)x/,z is the complex obtained from S;(r — 1) x/ 7/ by replacing
p" 1 — p with p” — pp. We have a natural map from (U, S (1) xso z:2) to the
global section of S, () ,, and (4.7.11) is compatible with (4.7.10). Noting
that the PD-envelope of U’® < Z’° is isomorphic to the PD-envelope of U’ —
Z', one can also construct a natural map from the pull-back of S, (r)xo zo
to Sy'(r)xre,zo and (4.7.11) is compatible with the short exact sequence (cf.

(4.3.1)):
(4712) 00— S;(T)X,Z — S;(T’)Xo7zo — S:(T — 1)X’,Z’[71] — 0.

§4.8. PROOF OF PROPOSITION 4.5.3.

We keep the notation and the assumption in §4.7. We first construct the
morphisms « (4.5.5) and S (4.5.6).

Choose sufficiently large algebraically closed fields 2 of characteristic 0 and €’
of characteristic p. Let S be the set of all isomorphic classes of fs monoids P
such that P* = {1}. For each isomorphic class ¢ € S, choose a representative
P, of ¢ and define the log geometric point 2. to be Spec(?) with Mg, =
Qo UneN,n#O%PC and €, to be Spec(Q') with Mg, = Q' @ UnGN,p’m%Pc- In
the following, we denote by C* the Godement resolution with respect to all log

DOCUMENTA MATHEMATICA - EXTRA VOLUME KaTo (2003) 833-890



886 TAKESHI TSuJI

geometric points whose sources are Q. or €., for some ¢ € S. Note that such
log geometric points form a set.

To simplify the notation, we write © for the operation C*i,:*j,C* and ©’ for
C*i,i"™*j.C*. Denote by iy and ¢}, the closed immersions Uk = Uhrek - UM
and U'®@k = U ®k — U™, and by ju, 5%, ji; the open immersions Ul,, — U™,
(U")triy — UM and Ut’rhiV — U’ Similarly, as above, we denote by Oy and
O}, the operations C*iy.if;ju«C* and C*ig, 571, C*.

Since the derived direct images of Z/p™Z(r)" by the left morphisms in the first
lines of the diagrams (4.7.1) and (4.7.2) are again Z/p"Z(r)’ ([12] Theorem 7.4),
we see that the left and middle vertical morphisms in the diagram in Proposition
4.5.3 are induced by sheafifying the following morphisms of presheaves on X, :
I(U,8(A) = T(U", 0u(A) 5 LU, 00(Su(r)u.2)) + T(U, .85, (r)x.2)

.1,

T(U,0(c.C*(A) ¥ T(U",0u(er.C* (M) %
D(U", 00 (erC* (Sn(r)ve z0))) + DU, .85 (r)xo.z20)

Here A = Z/p"Z(r)" and q.i. means a quasi-isomorphism. See (4.7.1) and
(4.7.2) for € and ey. Let K*, K}, and L}, be the cokernels of the injec-
tive homomorphisms Ax, . — €.C*(A(x,,.,)°)s Agn — sU*C*(A(Ut;:iV)O), and
Sn(r)v.z = euxC*(Sn(r)ue.zo) (Lemma 4.7.5). We have a natural injective
homomorphism from the first line to the second one. Taking its quotient and
using (4.7.12), we obtain

(4.8.1) D(UO(K*) BT (U" 00 (K8) ST ,00 (L)) T (U, inSE(r) xr 2 [~1])

We have quasi-isomorphisms K® <+ 7«1 K® — HY(K*)[-1] & A(=1)x;  [-1]
([I2]Theorem 7.4). Hence varying U and sheafifying, we obtain the required
morphism « (4.5.5).

We can apply the same argument to &: ((X{)%)ket — (Xiw)ét,
e (UM ) kee — (UR,)ew and the resolutions AUt,rhiv — Su(r)ur.z and

A yo = Sn(r)ure zio. We define K'®, K{¢ and L} to be the cokernels of the

triv
injective homomorphisms Ax; —— eLC*(Axy, )o), Aum = e, C* (Arm )o)

and S, (r)ur 2z — €, C*(Sp(r)ure,z0) (Lemma 4.7.8). Then using (4.7.11),
we obtain

(4.8.2)  rLO(K"*)BTW™0L (Ki) ST, 04 (L) T (Ui, S5 (r) xr, 20 [-1])
By [I2]Theorem 7.4 and [Na] Theorem (5.1), we have quasi-isomorphisms
K’ « 1K' — H'(K")[-1] = A(-1)x;_ [-1]. Hence, varying U and
sheafifying, we obtain the required 8. We have a natural map from (4.8.1)
to (4.8.2) and hence the two maps « and § coincide.

Let us compare § with the map (4.5.4). By (4.7.10), we have a morphism
Sn(r — Vyrz7[-1] — LB and the last map of (4.8.2) factors through
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LU™, 04(S,.(r)ur.z/[—1])). We have the following commutative diagram of
complexes on (UL )ei:

Ky = T K7 =2/ (r) (1))
ai | ‘ ai. | ‘ |

Ly = Ty =zp(r) (-1)[-1]

T T ON)

Sn(r— Dy z/[-1] 3—1 Tgl(gn(r_l)U/,Z’[_l])

Il

Z[p"(r —1)'[-1]

Here the morphism (x) is the composite
(4.8.3)
Zfp"(r = 1) = HSu(r — Vvr.z) = H(LY) & HU(KY) = Z/p"(r)'(-1)

Hence to prove the coincidence of 5 and (4.5.4), it suffices to prove the following:
PROPOSITION 4.8.4. The map (4.8.3) is the natural map.

Proof. By the definition of K3 and Lj}, the map (4.8.3) coincides with the
composite of

Z/p"(r — 1) 2 H' (S, (r — Dy z2) = Hl(gn(r)lc},7z,) — R}, S (o g0

o

()
& R'ey Z/p"(r) = Z/p"(r)(-1)

where the second isomorphism is defined by (4.7.10). Note that all sheaves
appearing above are ind locally constant. Let I be the kernel of the surjection

G — G, which is canonically isomorphic to Z(1). Then we have a natural
isomorphism H'(I,Z/p"(r)’) = Hom(Z(1), Z/p"(r)') = Z/p"(r)' (1), and it is
compatible with the isomorphism (%) above. Hence we may replace R'ef;, (—)
with H'(I,—) regarding locally constant sheaves on ((U/% )°)ks and (U )et
as G753 and Gi;-modules. Let o € Z/p™(r — 1) =2 H(S,,(r — 1)y z/). Since
F3 (t) = 7, we see that the image of o in H'(S,(r)gy ) is the class of

(a-dlog(t),0). Choose an isomorphism M-— = N (K/™)* as in the definition

rour
n

of D’° in §4.7. Then the pair (¢,{(1/p",1)}nen) defines an element of Q° and
we denote its image under Q° — T'(D’.., M) — I(E™,, M) by [t]. Since the
images of t and [t] in D(U”,,, M) coincide, there exists a unique u € T'(E",,, 1+
Jg, ) such that u -t = [t] in ['(E"°,, M). We have ¢(u) = u” and dlog(u) =
—dlog(t). Hence (- dlog(t),0) € (S,(r)ure z0)t is the image of —a - log(u) €

(Sn(r)ure.z0)? by the differential map. Hence the image of (« - dlog(t),0) in
HY(I,Z/p"Z(r)") is given by the cocycle o — —(o(—alog(u)) — (—alog(u)))
1)’

a-log(a([t])[t]~1). This completes the proof because I = Z(1) — Z/p"
L(E"°,, J== ) is given by o ~ log(a([t])[t]7}). O

70
E’°p

C

In the case that X does not have a global embedding into Z as in the beginning
of §4.7, we choose a strict étale covering X° — X, and X" — Z°, Z'° C
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Z°, and {Fyo: Z) — Z3)} satisfying the conditions in the beginning of §4.7.
Such a covering and an embedding exist by a similar argument as the proof
of Proposition 4.2.1 (1). From this embedding, we can construct X® — Z*
and Z'* C Z° as in Proposition 4.2.2 endowed with {Fze}. We can verify
that XV — Z¥, Z'" C Z” and {Fz} satisfy the conditions in the beginning
of §4.7 for each v € N. By applying the above argument to each level, we
can construct « and 8 on (X*®)g, which coincide with each other, and show
that 8 coincides with (4.5.4) on (X*®)s. Note that our construction does not
depend on {ti,...,t4,t} chosen in the beginning of §4.7. By taking R#, for
the morphism of topoi : (X°®)5; — (X)z;, we obtain Proposition 4.5.3 for a
general X.

§4.9. PROOF OF THEOREM 4.1.2.

We will prove Theorem 4.1.2 by the induction on the number of elements of
I. In the case that I is empty, the theorem is nothing but Theorem 3.2.2.
Assume that I is non-empty, choose ig € I and we define (X, M), (X, M°) and
(X', M') as in the beginning of §4.3. As the induction hypothesis, we assume
that Theorem 4.1.2 is true for (X, M) and (X', M").

By Lemma 4.4.8, Lemma 4.4.9 and Proposition 4.5.2, for an integer r >
2dim(Xg ), the comparison maps By ®q, V;'(r) = Bs ®k, Di(r) (i = 1,2)
and By ®q, V4 (r—1) = By ®k, D§(r—1) are compatible with the Gysin exact
sequences (4.5.1) and (4.4.1). Since the comparison maps are isomorphisms for
(X, M) and (X', M’) for every ¢ by the induction hypothesis, we see that the
comparison map for (X, M°) is also an isomorphism for every g. Furthermore,
by Lemma 4.4.6, the comparison maps above tensored with Bqr over By send
Fil® to Fil' and are compatible with the Gysin exact sequences (4.5.1) and
(4.4.5). By the induction hypothesis, the comparison maps tensored with Bgg
are filtered isomorphisms for (X, M) and (X’, M’). Hence by five lemma, it
also holds for (X, M°). Thus we see that Theorem 4.1.2 is true for (X°, M°).
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