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1 The beginning – linear programming

Column generation refers to linear programming (LP) algorithms designed to
solve problems in which there are a huge number of variables compared to the
number of constraints and the simplex algorithm step of determining whether
the current basic solution is optimal or finding a variable to enter the basis is
done by solving an optimization problem rather than by enumeration.
To the best of my knowledge, the idea of using column generation to solve

linear programs was first proposed by Ford and Fulkerson [16]. However, I
couldn’t find the term column generation in that paper or the subsequent two
seminal papers by Dantzig and Wolfe [8] and Gilmore and Gomory [17,18].
The first use of the term that I could find was in [3], a paper with the title “A
column generation algorithm for a ship scheduling problem”.

Ford and Fulkerson [16] gave a formulation for a multicommodity maximum

flow problem in which the variables represented path flows for each commodity.
The commodities represent distinct origin-destination pairs and integrality of
the flows is not required. This formulation needs a number of variables ex-
ponential in the size of the underlying network since the number of paths in
a graph is exponential in the size of the network. What motivated them to
propose this formulation? A more natural and smaller formulation in terms of
the number of constraints plus the numbers of variables is easily obtained by
using arc variables rather than path variables. Ford and Fulkerson observed
that even with an exponential number of variables in the path formulation,
the minimum reduced cost for each commodity could be calculated by solving
a shortest path problem, which was already known to be an easy problem.
Moreover the number of constraints in the path formulation is the number of
arcs, while in the arc formulation it is roughly the (number of nodes)x(number
of commodities) + number of arcs. Therefore the size of the basis in the path
formulation is independent of the number of commodities and is significantly
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smaller when the number of commodities is large. This advantage in size they
claimed might make it possible to solve instances with a large number of com-
modities with the simplex method. Modestly, they stated that they really had
no idea whether the method would be practical since they had only solved a
few small instances by hand.
It must have been so frustrating to try to do algorithmic research when it

was so difficult to test if your ideas could yield practical algorithms. The value
of some of these brilliant ideas proposed in the infancy of mathematical pro-
gramming would not be proven for decades. Much of this early work was done
at the RAND Corporation with its ‘all star’ team of applied mathematicians in-
cluding Bellman (dynamic programming), Ford and Fulkerson (network flows),
Dantzig (linear programming) and many others. As a sports fan, this reminds
me of the great baseball teams of the New York Yankees, basketball teams of
the Boston Celtics and soccer teams of Manchester United.
I was Ray Fulkerson’s colleague at Cornell in the 1970s. I have no mem-

ory of him giving an opinion of the significance of the arc-path formulation of
the multicommodity flow problem. Even if he thought this was a fundamental
contribution, his modesty would have prevented him from saying so. How-
ever I think that this early work influenced his later contributions on blocking
and anti-blocking pairs of polyhedra [15], which studies polyhedra associated
with combinatorial optimization problems that frequently have an exponential
number of variables and provided a basic theory of integral polyhedra.
Another way to derive Ford and Fulkerson’s path formulation is to begin with

the arc formulation and note that the arc capacity constraints link all of the
variables while the flow balance constraints can be separated by commodity.
For each commodity the extreme points of the flow balance constraints are
the origin-destination simple paths for that commodity. Feasible solutions to
the whole problem are convex combinations of these extreme flows that satisfy
the arc capacity constraints. So if we begin with a so-called master LP that
just contains a few of these extreme flows for each commodity and solve it to
optimality, we can use an optimal dual solution to price out the extreme flows
not yet considered by solving a shortest path problem for each commodity.
This is precisely what Ford and Fulkerson proposed simply beginning with the
path formulation.
This idea can be generalized to yield an algorithm for solving any LP by

partitioning the constraints into a set of master constraints and a set of sub-
problem constraints. The resulting algorithm is what we call Dantzig–Wolfe

decomposition [8]. I think it is rather odd that George Dantzig did not get his
name attached to the simplex method but to this very important contribution
still of surely lessor stature. Dantzig and Wolfe say:

Credit is due to Ford and Fulkerson for their proposal for solv-
ing multicommodity network problems as it served to inspire the
present development.

However the contribution of Dantzig–Wolfe decomposition is very significant
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in its own right since it does not depend on beginning with the exponential
formulation. It could arise from an appropriate partition of the constraints
into a small number that involved all of the variables and the rest that could
be decomposed into individual subproblems involving only a relatively small
subset of the variables. Think, for example, of a multiperiod problem with
a few budget constraints involving variables from all of the periods and sub-
problems for each period, or a resource allocation problem involving a few
constraints coupling all of the variables globally together with subproblems
for each region. For these structures, and other similar ones, using Dantzig–
Wolfe decomposition, a large LP can be decomposed into a master problem
with a small number of constraints and an exponential number of variables
corresponding to the extreme points of the subproblems, the solution of which
represents convex combinations of these extreme points that satisfy the master
constraints. Optimal dual solutions of the master problem provide prices to the
subproblems, whose solutions yield new extreme point variables for the master.

2 Next steps – integer subproblems

The previous work relied only on LP. The multicommodity flow problem re-
quires the generation of integer vectors that are incidence vectors of paths, but
they can be found without the explicit imposition of integrality constraints.
The first column generation work that involved integer variables appears to

have been done by Gilmore and Gomory [17]. They studied the cutting stock

problem: given a positive integer number d(i) of items of integer size a(i), de-
termine the minimum number of stock rolls of integer size b needed to pack all
of the items. Gilmore and Gomory proposed a model in which there is an inte-
ger variable corresponding to every possible way to cut a roll. Since a solution
to the cutting of a single roll is a solution of an integer knapsack problem (a
single constraint integer program (IP)), which can have an exponential number
of solutions, this model contains an exponential number of variables. However,
when the LP relaxation of the model is solved over a subset of variables, opti-
mality can be proved or new columns can be added to improve the solution by
solving an integer knapsack problem with objective function specified by the
dual variables in an optimal LP solution and constraint specified by the item
and role sizes. The knapsack problem can be solved reasonably efficiently by
dynamic programming or branch-and-bound even though it is NP-hard. The
application of this work described in [18] appears to be the first use of column
generation in a practical problem. Gilmore and Gomory’s work on the cutting
stock problem led to their work on the knapsack problem [19], and motivated
Gomory’s work on the group problem [20], which has had a significant impact
on the field of integer programming.
Gilmore and Gomory only use the LP relaxation of their formulation of the

cutting stock problem. They simply propose to round up the variables in an
optimal LP solution to obtain a feasible solution to the IP. But this heuristic
can be justified by the fact that, in general, the optimal LP solution value
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provides a very tight bound on the optimal number of rolls. In fact, it has been
shown empirically in [29] that for a very large number of randomly generated
instances the difference is always less than one. Carefully contrived instances
with a difference greater than one are known [25, 30], but it is not known
whether a difference of two or larger can be obtained. Although rounding up a
fractional solution can increase the objective function by the number of items
(number of basic variables), it has been observed in [4] that the increase is no
more than 4% of the number of items.

The whole point of this discussion is to emphasize that the Gilmore–Gomory
formulation of the cutting stock problem provides a very tight relaxation. This
is typically the case for such formulations leading to a tradeoff between a tight
bound from an exponential formulation that can be challenging to solve and a
compact (polynomial size) formulation with a much weaker bound. Although
not stated by Gilmore and Gomory, and then lost in translation when the
cutting stock problem is presented in basic operations research textbooks, there
is a straightforward compact formulation of the cutting stock problem. Begin
with an upper bound on the number of rolls required and a binary variable for
each roll that is equal to one if the roll is used and zero otherwise. There are
identical knapsack constraints for each potential roll with right-hand side b if
its binary variable equals one, and zero otherwise and additional constraints
requiring that the amount d(i) of the ith item must be cut. The LP relaxation
of this formulation is terrible. It gives no information since it is easy to show
that the bound is the total amount to be cut divided by b. Furthermore if this
LP relaxation is used in a branch-and-bound algorithm, the performance is
terrible not only because of the weak bound, but also because of the symmetry
of the formulation since all rolls are the same. In fact, a compact formulation
similar to the one above was given by Kantorovich [23] who introduced the
cutting stock problem in 1939!

The Gilmore–Gomory formulation applied to the bin packing specialization
of the cutting stock problem in which d(i) = 1 for all i yields a set partitioning
problem: given a ground set S and a set of subsets S(j), j = 1, . . ., n, find
a minimum cardinality set of disjoint subsets whose union is S. In the bin
packing problem S is the set of items and S(j) is a subset that fits into a
bin. |S| = m is typically small, but n is exponential in m. This form of set
partitioning and set covering (disjointness is not required) models arises in
many combinatorial optimization problems. For example, in node coloring S

is the set of nodes and S(j) is a subset of nodes that is a stable set (a set of
nodes that can receive the same color since no pair of them is joined by an
edge). Thus column generation for the LP relaxation of the node coloring set
partitioning formulation involves solving a minimum weight stable set problem,
where the node weights correspond to the dual variables in an optimal LP
solution. Note that the column generation formulation eliminates the symmetry
possessed by a compact formulation in which there is a variable for each node-
color pair. The absence of symmetry is a very important property of the
exponential formulation since symmetry is a major nemesis of branch-and-
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bound algorithms.

These models appear in many practical applications as well. Perhaps the one
that has received the most attention in the literature is airline crew scheduling

[6, 21], but there are many other applications to all kinds of transportation
routing problems, scheduling problems, districting problems, coloring prob-
lems, etc. In the crew scheduling problem S is a set of flights that need to be
flown over a given time horizon, say a day or a week, and S(j) is a subset of
flights that can be flown by a single crew. The cost of using the subset S(j) is
c(j). This cost function complicates the model introduced for bin packing and
graph coloring since the objective function of total minimum cost is no longer a
minimum cardinality objective function and a set of allowable flights is subject
to complex rules concerning safety and other factors. Nevertheless, feasible
subsets, which are called pairings, can be generated as constrained paths in a
network and minimum cost constrained shortest paths for column generation
can be generated as well.

The first published paper that appears to discuss such a model in detail
is [5]. It reports on crew scheduling methods used by airlines in the 1960s,
several of whom were already using a set partitioning model. Some were trying
to solve the IP by optimization algorithms using branch-and-bound or cutting
planes. They recognized that the algorithms could only deal with a small
number of pairings. So pairings were generated up front and then a subset
was heuristically chosen to include in the IP model. A significant improvement
to the approach of a single round of pairing generation followed by a single
round of optimization was proposed in [27]. Given a feasible solution, a better
solution might be found by a neighborhood search that selects a small subset
of flights, generates all of the pairings that only cover these flights and then
solves a set partitioning problem defined by these flights and pairings. If an
improvement is found, this solution replaces the current pairings that cover
these flights. The neighborhood search can be iterated until no improvements
are found. This quasi-column generation process was used by many airlines
throughout the 1980s and even later [1]. Nevertheless it could only achieve a
local optimum, and although the solution quality might be good, optimality
could not be claimed. Other approaches solved the full LP relaxation by some
form of column generation, but only provided a subset of columns to the IP
solver. Even without an exponential number of columns these IP can be difficult
to solve. Standard branching on binary variables is not very effective since the
branch with the binary variable at zero hardly restricts the problem.

A branching rule proposed in [28], unrelated to column generation at the
time, called follow-on branching, helped to alleviate this difficulty. In a sim-
plified version of the rule, two adjacent arcs in the flight network associated
with a fractional pairing are identified and then, on one branch, pairings that
contain both of these flights are excluded, and on the other branch, pairings
that contain one of them are excluded. It can be shown that such a pair of arcs
exists in a fractional solution, and the fractional solution is excluded on both
branches. This rule divides the solution space much more evenly than variable
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branching. As we shall see, generalizations of this rule are very useful when
column generation is incorporated in a branch-and-bound search.

3 Branch-and-price: solving integer programs by column gener-

ation

If a tree search (branch-and-bound) algorithm for an IP with an implicit expo-
nential number of variables is designed to produce an optimal solution or even
one with a prescribed optimality tolerance, it is necessary to do column gener-
ation throughout the tree. To the best of our knowledge, the first appearance
in the literature of column generation within branch-and-bound is in [13].

There are interesting challenges in applying column generation to problems
associated with nodes within the search tree. Foremost is that standard branch-
ing on variables, besides being inefficient, can complicate column generation.
Consider a set partitioning problem where we branch on a single binary vari-
able corresponding to some subset. The branch where the variable is fixed to
one does not create a problem since we now have a smaller set partitioning
problem. But in the branch where the variable is set to zero we need to impose
on the column generation solver a constraint saying that this subset is not fea-
sible. Such constraints will significantly hamper the efficiency of the column
generator.
However, a generalized version of the follow-on branching idea for crew

scheduling makes it possible to preserve the efficiency of the column generation
solver and also reasonably balances the solutions between the two newly cre-
ated nodes. Consider a fractional column (subset) in an optimal solution of the
LP relaxation. It can be shown that there are two elements in the column such
that there is another fractional column containing only one of these elements.
On one branch we exclude columns containing only one of these elements and
on the other branch we exclude columns containing both. Not allowing only
one of the elements to appear, i.e., both must appear together, amounts to
combining the elements, while not allowing both to appear together involves
adding a simple constraint. For example, in a node coloring problem where
the elements are nodes and a feasible subset is a stable set, both appearing
together is accomplished by replacing the two nodes by a super node with an
edge from the super node to all other nodes that were connected to one or both
or the original nodes, and not allowed to appear together is accomplished by
adding an edge between the two nodes. We can think of this type of branching
as branching on the variables from the original compact formulation instead
of branching on the variables in the exponential set partitioning formulation.
For example in the node coloring problem, the branching is on node variables.
On one branch we require two nodes to have the same color and on the other
the two nodes must get different colors. Early use of this branching rule are
given in [10] for urban transit crew scheduling, [14] for vehicle routing, [2] for
airline crew scheduling, [31] for bin packing, [11] for a survey of routing and
scheduling applications and [26] for node coloring. Vanderbeck and Wolsey [34]
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studies column generation branching with general integer variables.

Barnhart et al. [7] unified this early literature by presenting a general
methodology for column generation in IP and named the general technique
branch-and-price. Vanderbeck [32] presents a general treatise on branching in
column generation and gives some interesting new branching ideas in [33]. In
the last decade there have been many successful applications of branch-and-
price algorithms to practical problems and a completely different use in choos-
ing neighborhoods for local search algorithms [22]. More information about
column generation and branch-and-price algorithms can be found in Desrosiers
and Lübbecke [12], who present a primer on column generation, in a chapter of
a collection of articles on column generation [9], and Lübbecke and Desrosiers
[24], who present a survey of techniques and applications of column generation
in IP.
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