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1 The men behind the ellipsoids

Before giving the mathematical description of the Löwner–John ellipsoids and
pointing out some of their far-ranging applications, I briefly illuminate the
adventurous life of the two eminent mathematicians, by whom the ellipsoids
are named: Charles Loewner (Karel Löwner) and Fritz John.

Karel Löwner (see Figure 1) was born into a Jewish family in Lány, a small
town about 30 km west of Prague, in 1893. Due to his father’s liking for German

Figure 1: Charles Loewner in 1963 (Source: Wikimedia Commons)
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style education, Karel attended a German Gymnasium in Prague and in 1912
he began his studies at German Charles-Ferdinand University in Prague, where
he not only studied mathematics, but also physics, astronomy, chemistry and
meteorology. He made his Ph.D. in 1917 under supervision of Georg Pick on a
distortion theorem for a class of holomorphic functions.

In 1922 he moved to the University of Berlin, where he made his Habil-
itation in 1923 on the solution of a special case of the famous Bieberbach
conjecture. In 1928 he was appointed as non-permanent extraordinary profes-
sor at Cologne, and in 1930 he moved back to Prague where he became first
an extraordinary professor and then a full professor at the German University
in Prague in 1934. After the complete occupation of Czech lands in 1939 by
Nazi Germany, Löwner was forced to leave his homeland with his family and
emigrated to the United States. From this point on he changed his name to
Charles Loewner. He worked for a couple of years at Louisville, Brown and
Syracuse University, and in 1951 he moved to Stanford University. He died
in Stanford in 1968 at the age of 75. Among the main research interests of
Loewner were geometric function theory, fluid dynamics, partial differential
equations and semigroups. Robert Finn (Stanford) wrote about Loewner’s sci-
entific work: “Loewners Veröffentlichungen sind nach heutigen Maßstäben zwar
nicht zahlreich, aber jede für sich richtungsweisend.”1

Fritz John2 was born in Berlin in 1910 and studied mathematics in Göttingen
where he was most influenced by Courant, Herglotz and Lewy. Shortly after
Hitler had come to power in January 1933, he – as a Non-Aryan – lost his
scholarship which gave him, in addition to the general discrimination of Non-
Aryans, a very hard financial time. In July 1933, under supervision of Courant
he finished his Ph.D. on a reconstructing problem of functions, which was sug-
gested to him by Lewy. With the help of Courant he left Germany in the
beginning of 1934 and stayed for one year in Cambridge. Fortunately, in 1935
he got an assistant professorship in Lexington, Kentucky, where he was pro-
moted to associate professor in 1942. Four years later, 1946, he moved to New
York University where he joined Courant, Friedrichs and Stoker in building the
institute which later became the Courant Institute of Mathematical Sciences.
In 1951 he was appointed full professor at NYU and remained there until his
retirement 1981. He died in New Rochelle, NY, in 1994 at the age of 84. For
his deep and pioneering contributions to different areas of mathematics which
include partial differential equations, Radon transformations, convex geome-
try, numerical analysis, ill-posed problems etc., he received many awards and
distinctions.

For detailed information on life and impact of Karel Löwner and Fritz John
we refer to [16, 25, 27, 35, 36, 37, 39, 40].

1“Compared to today’s standards, Loewner’s publications are not many, yet each of them
is far reaching.”

2For a picture see the article of Richard W. Cottle [13] in this volume.
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2 The ellipsoids

Before presenting the Löwner–John ellipsoids let me briefly fix some notations.
An ellipsoid E in the n-dimensional Euclidean space R

n is the image of the
unit ball Bn, i.e., the ball of radius 1 centered at the origin, under a regular
affine transformation. So there exist a t ∈ R

n, the center of the ellipsoid, and
a regular matrix T ∈ R

n×n such that

E = t + T Bn = {t + T y : y ∈ Bn}
= {x ∈ R

n : ||T−1(x− t)|| ≤ 1},
(1)

where || · || denotes the Euclidean norm.
By standard compactness arguments it can be easily seen that every convex

body K ⊂ R
n, i.e., convex compact set with interior points, has an inscribed

and circumscribed ellipsoid of maximal and minimal volume, respectively.

Figure 2: Maximal inscribed ellipse of a flat diamond, and minimal circum-
scribed ellipse (circle) of a regular triangle

To prove, however, that these extremal volume ellipsoids are uniquely de-
termined requires some work. In the planar case n = 2, this was shown by
F. Behrend3 in 1937/38 [7, 8]. O.B. Ader, a student of Fritz John in Kentucky,
treated a special 3-dimensional case [1], and the first proof of uniqueness of
these ellipsoids in general seems to have been given by Danzer, Laugwitz and
Lenz in 1957 [14] and independently by Zaguskin [45].

In his seminal paper Extremum problems with inequalities as subsidiary con-
ditions [26], Fritz John extends the Lagrange multiplier rule to the case of
(possibly infinitely many) inequalities as side constraints. As an application of
his optimality criterion he shows that for the minimal volume ellipsoid t+T Bn,
say, containing K it holds

t +
1

n
T Bn ⊂ K ⊆ t + T Bn. (2)

In other words, K can be sandwiched between two concentric ellipsoids of ratio
n. According to Harold W. Kuhn [30], the geometric problem (2) and related
questions from convex geometry were John’s main motivation for his paper [26].
John also pointed out that for convex bodies having a center of symmetry, i.e.,

3Felix Adalbert Behrend was awarded a Doctor of Science at German University in Prague
in 1938 and most likely, he discussed and collaborated with Karel Löwner on the ellipsoids.
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Figure 3: Minimal volume ellipses together with their concentric copies scaled
by 1

2 for the triangle and by 1√
2

for the square

there exists a c ∈ R
n such that K = c −K = {c − y : y ∈ K}, the factor 1/n

can be replaced by 1/
√
n and that both bounds are best possible as a simplex

and a cube show (see Figure 3).
Actually, his optimality criterion gives more information about the geom-

etry of minimal (or maximal) volume ellipsoids and together with a refine-
ment/supplement by Keith Ball from 1992 [3] (see also Pe lczyński [38] and
[4, 21, 29]) we have the following beautiful characterization:

Theorem 2.1 (John). Let K ⊂ R
n be a convex body and let K ⊆ Bn. Then

the following statements are equivalent:

i) Bn is the unique minimal volume ellipsoid containing K.

ii) There exist contact points u1, . . . , um ∈ bdK ∩ bdBn, i.e., lying in the
boundary of K and Bn, and positive numbers λ1, . . . , λm, m ≥ n, such
that

m
∑

i=1

λi ui = 0 and In =
m
∑

i=1

λi(ui u
⊺

i ),

where In is the (n× n)- identity matrix.

For instance, let Cn = [−1, 1]n be the cube of edge length 2 centered at the
origin. Cn is contained in the ball of radius

√
n centered at the origin, i.e.,√

nBn, which is the minimal volume ellipsoid containing Cn. To see this, we
observe that the statement above is invariant with respect to scalings of Bn.
Thus it suffices to look for contact points in bdCn ∩ bd

√
nBn satisfying ii).

Obviously, all the 2n vertices ui of Cn are contact points and since
∑

ui = 0
and

∑

(ui u
⊺

i ) = 2n In we are done. But do we need all of them? Or, in
general, are there upper bounds on the number of contact points needed for
the decomposition of the identity matrix in Theorem 2.1 ii)? There are! In
the general case the upper bound is n(n + 3)/2 as it was pointed out by John.
For symmetric bodies we can replace it by n(n + 1)/2. Hence we can find at
most n(n+ 1)/2 vertices of the cube such that the unit ball is also the minimal
volume ellipsoid of the convex hull of these vertices. For the number of contact
points for “typical” convex bodies we refer to Gruber [22, 23].
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For maximal volume inscribed ellipsoids we have the same characterization
as in the theorem above. Hence we also see that Bn is the maximal volume
ellipsoid contained in Cn. Here we take as contact points the unit vectors (see
Figure 3).

According to Busemann [11], Löwner discovered the uniqueness of the mini-
mal volume ellipsoid but “did not publish his result” (see also [12, p. 90]), and
in honor of Karel Löwner and Fritz John these extremal volume ellipsoids are
called Löwner–John ellipsoids.

Sometimes they are also called John-Löwner ellipsoids (see, e.g., [9]), just
John-ellipsoids, when the emphasis is more on the decomposition property
ii) in Theorem 2.1 (see, e.g., [19, 4]), or it also happens that the maximal
inscribed ellipsoids are called John-ellipsoids and the Löwner-ellipsoids are the
circumscribed ones (see, e.g., [24]).

3 Ellipsoids in action

From my point of view the applications can be roughly divided into two classes,
either the Löwner–John ellipsoids are used in order to bring the body into a
“good position” by an affine transformation or they serve as a “good&easy”
approximation of a given convex body.

I start with some instances of the first class, since problems from this class
were the main motivation to investigate these ellipsoids. To simplify the lan-
guage, we call a convex body K in Löwner–John-position, if the unit ball Bn

is the minimal volume ellipsoid containing K.

Reverse geometric inequalities. For a convex body K ⊂ R
n let r(K)

be the radius of a largest ball contained in K, and let R(K) be the radius of
the smallest ball containing K. Then we obviously have R(K)/r(K) ≥ 1 and,
in general, we cannot bound that ratio from above, as, e.g., flat or needle-like
bodies show (see Figure 2). If we allow, however, to apply affine transformations
to K, the situation changes. Assuming that K is in its Löwner–John-position,
by (2) we get R(K)/r(K) ≤ n and so (cf. [33])

1 ≤ max
K convex body

min
α regular affine transf.

R(α(K))

r(α(K))
≤ n.

The lower bound is attained for ellipsoids and the upper bound for simplices.
The study of this type of reverse inequalities or “affine invariant inequalities”
goes back to the already mentioned work of Behrend [7] (see also the paper of
John [26, Section 3]) and is of great importance in convex geometry.

Another, and more involved, example of this type is a reverse isoperimetric
inequality. Here the ratio of the surface area F(K) to the volume V(K) of a
convex body K is studied. The classical isoperimetric inequality states that
among all bodies of a given fixed volume, the ball has minimal surface area,
and, again, flat bodies show that there is no upper bound. Based on John’s
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Theorem 2.1, however, Ball [2] proved that simplices give an upper bound,
provided we allow affine transformations. More precisely, we have

F(Bn)
1

n−1

V(Bn)
1

n

≤ max
K convex body

min
α regular affine transf.

F(α(K))
1

n−1

V(α(K))
1

n

≤ F(Sn)
1

n−1

V(Sn)
1

n

,

where Sn is a regular n-simplex. For more applications of this type we refer to
the survey [17].

Faces of symmetric polytopes. One of my favorite and most surprising
applications is a result on the number of vertices f0(P ) and facets fn−1(P ),
i.e., (n− 1)-dimensional faces, of a polytope P ⊂ R

n which is symmetric with
respect to the origin. For this class of polytopes, it is conjectured by Kalai that
the total number of all faces (vertices, edges, . . . , facets) is at least 3n − 1, as
for instance in the case of the cube Cn = [−1, 1]n. So far this has been verified
in dimensions n ≤ 4 [41], and not much is known about the number of faces of
symmetric polytopes in arbitrary dimensions. One of the very few exceptions
is a result by Figiel, Lindenstrauss and Milman [15], where they show

ln(f0(P )) ln(fn−1(P )) ≥ 1

16
n.

In particular, either f0(P ) or fn−1(P ) has to be of size ∼ e
√
n. For the proof

it is essential that in the case of symmetric polytopes the factor n in (2) can
be replaced by

√
n. For more details we refer to [5, pp. 274].

Preprocessing in algorithms. Also in various algorithmic related prob-
lems in optimization, computational geometry, etc., it is of advantage to bring
first the convex body in question close to its Löwner–John-position, in order
to avoid almost degenerate, i.e., needle-like, flat bodies. A famous example
in this context is the celebrated algorithm of Lenstra [34] for solving integer
programming problems in polynomial time in fixed dimension. Given a ratio-
nal polytope P ⊂ R

n, in a preprocessing step an affine transformation α is
constructed such that α(P ) has a “spherical appearance”, which means that
R(α(P ))/r(α(P )) is bounded from above by a constant depending only on n.
Of course, this could be easily done, if we could determine a Löwner–John
ellipsoid (either inscribed or circumscribed) in polynomial time. In general
this seems to be a hard task, but there are polynomial time algorithms which
compute a (1 + ǫ)-approximation of a Löwner–John ellipsoid for fixed ǫ. For
more references and for an overview of the current state of the art of computing
Löwner–John ellipsoids we refer to [44] and the references therein.

In some special cases, however, we can give an explicit formula for the min-
imal volume ellipsoid containing a body K, and so we obtain a “good&easy”
approximation of K. This brings me to my second class of applications of
Löwner–John ellipsoids.
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Figure 4: The Löwner–John ellipse of a half-ellipse

Khachiyan’s ellipsoid allgorithm. The famous polynomial time algo-
rithm of Khachiyan for solving linear programming problems is based on the
idea to construct a sequence of ellipsoids of strictly decreasing volume contain-
ing the given polytope until either the center of an ellipsoid lies inside our given
polytope or the volume of the ellipsoids is so small that we can conclude that
the polytope must be empty (roughly speaking). This “ellipsoid method” goes
back to works of N. Z. Shor [43] and Judin and Nemirovskĭı [28] (see also the
articles of Robert E. Bixby [10] and David Shanno [42] in this volume).

Assuming that our polytope P is contained in an ellipsoid t + T Bn, say, we
are faced with the question what to do if t /∈ P . But then we know that one
of the inequalities describing our polytope P induces a hyperplane H passing
through the center t, such that P is entirely contained in one of the halfspaces
H+, say, associated to H. Hence we know

P ⊂ (t + T Bn) ∩H+,

and in order to iterate this process we have to find a “small” ellipsoid containing
the half-ellipsoid (t + T Bn) ∩ H+. Here it turns out that the Löwner–John
ellipsoid of minimal volume containing (t + T Bn) ∩H+ (see Figure 4) can be
explicitly calculated by a formula (see, e.g., [20, p. 70]) and the ratio of the
volumes of two consecutive ellipsoids in the sequence is less than e−1/(2n). To
turn this theoretic idea into a polynomial time algorithm, however, needs more
work. In this context, we refer to [20, Chapter 3], where also variants of this
basic ellipsoid method are discussed.

Extremal geometric problems. In geometric inequalities, where one is
interested in maximizing or minimizing a certain functional among all convex
bodies, the approximation of the convex body by (one of) its Löwner–John
ellipsoids gives a reasonable first (and sometimes optimal) bound. As an ex-
ample we consider the Banach–Mazur distance d(K,M) between two convex
bodies K,M ⊂ R

n. Here, d(K,M) is the smallest factor δ such that there exist
an affine transformation α and a point x ∈ R

n with K ⊆ α(M) ⊆ δ K + x.
This distance is symmetric and multiplicative, i.e.,

d(K,M) = d(M,K) ≤ d(M,L) d(L,K).

Of course, this distance perfectly fits to Löwner–John ellipsoids and by (2) we
have d(Bn,K) ≤ n for every convex body K. So we immediately get that the
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Banach-Mazur distance between any pair of convex bodies is bounded, namely

d(K,M) ≤ d(Bn,K) d(Bn,M) ≤ n2.

But how good is this bound? This is still an open problem and for the current
best lower and upper bounds as well as related questions on the Banach-Mazur
distance we refer to [19, Sec. 7.2].

4 Beyond Ellipsoids

Looking at (2) and Theorem 2.1, it is quite natural to ask, what happens if we
replace the class of ellipsoids, i.e., the affine images of Bn, by parallelepipeds,
i.e., the affine images of the cube Cn, or, in general, by the affine images of a
given convex body L. This question was studied by Giannopoulos, Perissinaki
and Tsolomitis in their paper John’s theorem for an arbitrary pair of convex
bodies [18]. They give necessary and sufficient conditions when a convex body
L has minimal volume among all its affine images containing a given body K
which nicely generalize Theorem 2.1. One consequence is that for every convex
body K, there exists a parallelepiped t + T Cn such that (cf. (2) and see also
Lassak [31])

t +
1

2n− 1
T Cn ⊂ K ⊂ t + T Cn.

Observe, that in this more general setting we lose the uniqueness of an opti-
mal solution. Another obvious question is: what can be said about minimal
circumscribed and maximal inscribed ellipsoids when we replace the volume
functional by the surface area, or, in general, by so the called intrinsic vol-
umes? For answers in this context we refer to Gruber [23].

In view of (2), ellipsoids E = T Bn with center 0 may be described by an
inequality of the form E = {x ∈ R

n : p2(x) ≤ 1}, where p2(x) = x⊺T−⊺ T−1x ∈
R[x] is a homogeneous non-negative polynomial of degree 2. Given a convex
body K symmetric with respect to the origin, the center t in (2) of the minimal
volume ellipsoid is the origin and so we can restate (2) as follows: for any 0-
symmetric convex body K there exists a non-negative homogeneous polynomial
p2(x) of degree 2 such that

(

1

n
p2(x)

)
1

2

≤ |x|K ≤ p2(x)
1

2 for all x ∈ R
n, (3)

where |x|K = min{λ ≥ 0 : x ∈ λK} is the gauge or Minkowski function of K.
In fact, this formulation can also be found at the end of John’s paper [26].

Since | · |K defines a norm on R
n and any norm can be described in this

way, (3) tells us, how well a given arbitrary norm can be approximated by a
homogeneous polynomial of degree 2, i.e., by the Euclidean norm. So what can
we gain if we allow higher degree non-negative homogeneous polynomials? In
[6], Barvinok studied this question and proved that for any norm | · | on R

n and
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any odd integer d there exists a non-negative homogeneous polynomial p2d(x)
of degree 2d such that

(

1
(

d+n−1
d

) p2d(x)

)
1

2d

≤ |x| ≤ p2d(x)
1

2d for all x ∈ R
n.

Observe, for d = 1 we get (3) and thus (2) for symmetric bodies, but in general
it is not known whether the factor

(

d+n−1
d

)

is best possible. Barvinok’s proof
is to some extent also an application of John’s theorem as in one step it uses
(2) in a certain

(

d+n−1
d

)

-dimensional vector space. In [6] there is also a variant
for non-symmetric gauge functions (non-symmetric convex bodies) which, in
particular, implies (2) in the case d = 1.

In a recent paper Jean B. Lasserre [32] studied the following even more
general problem: Given a compact set U ⊂ R

n and d ∈ N, find a homogeneous
polynomial g of degree 2d such that its sublevel set G = {x ∈ R

n : g(x) ≤ 1}
contains U and has minimum volume among all such sublevel sets containing
U . It turns out that this is a finite-dimensional convex optimization problem
and in [32, Theorem 3.2] a characterization of the optimal solutions is given
which “perfectly” generalizes Theorem 2.1. In particular, the optimal solutions
are also determined by finitely many “contact points”.
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Astronom. (Czech), 38(4):212–218, 1993.

[38] A. Pe lczyński. Remarks on John’s theorem on the ellipsoid of maximal vol-
ume inscribed into a convex symmetric body in Rn. Note di Matematica,
10(suppl. 2):395–410, 1990.

[39] M. Pinl. Kollegen in einer dunklen Zeit. Jber. Deutsch. Math.-Verein,
72:176, 1970.

Documenta Mathematica · Extra Volume ISMP (2012) 95–106



106 Martin Henk

[40] M. Pinl. Kollegen in einer dunklen Zeit. Schluss. Jber. Deutsch. Math.-
Verein, 75:166–208, 1973.

[41] R. Sanyal, A. Werner, and G.M. Ziegler. On Kalai’s Conjectures Concern-
ing Centrally Symmetric Polytopes. Discrete Comp. Geom., 41(2):183–
198, 2008.

[42] D. Shanno Who invented the interior-point method?, this volume.
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