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The early years

For many of us, modern-day linear programming (LP) started with the work of
George Dantzig in 1947. However, it must be said that many other scientists
have also made seminal contributions to the subject, and some would argue
that the origins of LP predate Dantzig’s contribution. It is matter open to
debate [36]. However, what is not open to debate is Dantzig’s key contribution
to LP computation. In contrast to the economists of his time, Dantzig viewed
LP not just as a qualitative tool in the analysis of economic phenomena, but as
a method that could be used to compute actual answers to specific real-world
problems. Consistent with that view, he proposed an algorithm for solving
LPs, the simplex algorithm [12]. To this day the simplex algorithm remains a
primary computational tool in linear and mixed-integer programming (MIP).
In [11] it is reported that the first application of Dantzig’s simplex algorithm

to the solution of a non-trivial LP was Laderman’s solution of a 21 constraint,
77 variable instance of the classical Stigler Diet Problem [41]. It is reported
that the total computation time was 120 man-days!
The first computer implementation of an at-least modestly general version

of the simplex algorithm is reported to have been on the SEAC computer
at the then National Bureau of Standards [25]. (There were apparently some
slightly earlier implementations for dealing with models that were “triangular”,
that is, where all the linear systems could be solved by simple addition and
subtraction.) Orchard-Hays [35] reports that several small instances having as
many as 10 constraints and 20 variables were solved with this implementation.

The first systematic development of computer codes for the simplex algo-
rithm began very shortly thereafter at the RAND Corporation in Santa Mon-
ica, California. Dantzig’s initial LP work occurred at the Air Force following

Documenta Mathematica · Extra Volume ISMP (2012) 107–121



108 Robert E. Bixby

the end of World War II, influenced in part by military logistics problems that
arose during the war. In 1952 Dantzig moved from the Air Force to the RAND
Corporation, apparently with the specific purpose of focusing on the further
development of his fundamental new ideas. Part of the effort was to build
computer implementations of the simplex algorithm, and Orchard-Hays was
assigned the task of working with Dantzig. The result was a four-year collab-
oration at RAND that laid the foundation for the computational development
of the subject.

The start did not go smoothly. The simplex algorithm was at that point far
from a well-defined computational procedure, and the computers of the day
were nothing like what we think of as a computer today. Their first implemen-
tation used a device known as a Card Programmable Calculator (CPC). As the
name suggests, it wasn’t really a computer, but as Orchard-Hays [35] described
it “an ancient conglomeration of tabulating equipment, electro-mechanical stor-
age devices, and an electronic calculator (with tubes and relays), long since for-
gotten. One did not program in a modern sense, but wired three patch-boards
which became like masses of spaghetti”. The first implementation computed
an explicit inverse at each iteration, and Dantzig was appalled when he saw
the result [35]; the future of the simplex algorithm didn’t look promising. He
then recalled an idea proposed to him by Alex Orden, the product-form of the
inverse. This method, which remained a staple of simplex implementations
for over twenty years, was the starting point for a second and more successful
CPC implementation. It was reportedly capable of handling LPs with up to
45 constraints and 70 variables and was used to solve a 26 constraint, 71 vari-
able instance of the Stigler model. Total computation time was reported to be
about 8 hours, a good portion of that time being spent manually feeding cards
into the CPC. That was 1953.

In 1954–55 the algorithms were improved and re-implemented on an IBM
701, IBM’s first real “scientific computer”. This implementation could handle
LPs with 101 constraints, and was used in extensive computations on a model
devised by the economist Alan Manne. This appears to have been the first real
application of the simplex algorithm.

The 701 implementation was followed in 1955–56 by an implementation for
the IBM 704. This code was capable of handling LPs with up to 255 con-
straints, including explicit constraints for any upper bounds. It became known
as RSLP1, and seems to have been the first code to be distributed for use by a
wider audience. It was later improved to handle 512 constraints, and released
for use by CEIR, Inc. around 1958-59 under the name of SCROL. LP was
coming of age and beginning to enjoy significant use in the oil industry.

Orchard-Hays moved from RAND to CEIR in Arlington, Va., in 1956 and
began the development of the LP/90 code for the IBM 7090. It was capable of
handling up to 1024 constraints. LP/90 was released in 1961-62, with improve-
ments continuing into 1963. This code was followed by LP/90/94 for the IBM
7094, released in 1963/64. This code was then taken over by CEIR, Ltd. in the
UK. The LP/90/94 code can fairly be characterized as the culmination of the
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first-generation of LP codes, and this seems to be the last really successful code
over which Orchard-Hays had significant influence. With it a new generation
of developers emerged to continue the computational development of LP and,
in the not-to-distant future, MIP. A key figure in motivating these develop-
ments was E. M. L. (Martin) Beale in the UK. Among those who worked with
Beale and were influenced by his vision of mathematical programming were R.
E. Small and Max Shaw, followed by John Tomlin and John Forrest, both of
whom continue to influence the field to this day.
LP/90/94 was also a milestone because it became, by all accounts, the first

commercially used MIP code based upon branch-and-bound [9]. The conversion
of this code to handle mixed-integer problems seems to have been initiated
around 1964–65 by Beale and Small [4]. They used an approach suggested by
Land and Doig [29] with dichotomous branching as proposed by Dakin [14].
This code was then taken over by Max Shaw in 1965 [39]:

Back in the 60s the IBM 7094 was a 36 bit word machine with
32K words of storage. It was nevertheless a super computer of its
time. A team in the USA at CEIR INC. lead by William Orchard-
Hays wrote a standalone LP system (LP 90/94) that mixed linear
programming with brilliant system design that could solve LP prob-
lems up to 1000 rows or so. This code was written exclusively in
7094 machine code and used all manner of advanced techniques to
maximise computing efficiency. I never met Bill Orchard-Hays and
his team but when I studied their code I was most impressed.

The revised simplex method of George Dantzig was implemented
such that the transformation vectors (we called them etas) were held
on tape and were read forward to update vectors being expressed in
terms of the basis, added to etas for vectors brought into the basis,
and read backward to compute the price or feasibility advantage of
vectors to be brought into the solution.

Shaw reports that this code was used in the first successful applications of
MIP, which included:

• Re-location of factories in Europe by Philips Petroleum

• The selection of ships and transport aircraft to support deployment of
UK military assets

• Refinery infrastructure investments by British Petroleum

• Selecting coal mines for closure by the UK National Coal Board

In his own words:

There was some excitement for customers using the LP 90/94 sys-
tem in 1967-8 as they had never been able earlier to get optimal
results to their mixed-integer models.
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This really demonstrated for the first time, contrary to common belief, that a
search procedure based on branch-and-bound could be used to solve real-world
MIPs to optimality. That was true in spite of the fact that the algorithmic
opportunities on the machines of the day were severely limited. Again, quoting
Shaw:

The version of the 7094 used by CEIR only had tape storage. This
caused us to search to the bottom of each branch of the tree of
bounded solutions until we got an integer value; and then track
back up the tree using the bound obtained from the best integer
solution so far.

The 70s and 80s: The next generation

This brings us to the 1970s. The computational aspects of the subject were now
close to twenty years old and both LP simplex codes and branch-and-bound
codes for MIP, though primitive, were available. It was in a very real sense
the end of the Orchard-Hays era, one strongly influenced by his pioneering
implementations of the simplex algorithm. It also marked the introduction of
the IBM 360 class of computers. The expanded capabilities of these machines
meant not only that problems could be solved more quickly, but perhaps more
importantly that new ideas and methods could be tried that would have been
unworkable on the previous generation of computers. It was also the beginning
of a period of great promise for linear and mixed-integer programming.
For LP, important ideas such as the implicit treatment of bounds within

the simplex algorithm, which reduced the number of explicit constraints in
the model, the use of LU-factorizations, the use of sophisticated LU-updates,
based upon the Forrest-Tomlin [18] variant of the Bartels-Golub [3] update,
and improved variable-selection paradigms such as devex pricing, as proposed
by Paula Harris at British Petroleum [24]. The dual simplex algorithm, pro-
posed by Lemke in 1954 [30] also became a fairly standard part of LP codes,
though its use was restricted almost exclusively to re-optimization within MIP
branch-and-bound trees (amazingly, the ability to explicitly deal with dual in-
feasibilities does not seem to have emerged until the mid-1990s). The basic
form of these algorithms, developed in the early 70s, seems to have remained
more-or-less constant into the mid-1980s. The implementations were almost
exclusively written in assembler code and highly tuned to exploit the specific
characteristics of the target machine.
On the integer programming side there was also major progress. A number

of completely new codes were introduced. These new codes offered a tight inte-
gration between the underlying LP solver and MIP code. And the MIP codes
themselves became much more sophisticated. Tree search moved beyond the
very inefficient LIFO search dictated by earlier computer architectures. So-
phisticated node and variable selection procedures were developed, including
the important notion of pseudo-costs, still heavily in use today. Many of these
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developments are nicely documented in [19] and [28]. The net result was that
MIP was developing into a more powerful tool beginning to see more exten-
sive applications in practice. However, while these codes did continue to be
refined and improved, at a certain fundamental level they also remained in a
largely unchanged form. Indeed, they remained largely unchanged until the
late-1990s! This is a remarkable testimony to their effectiveness. However,
it was also a form of roadblock to further developments in the subject: they
made MIP a viable practical tool for the first time, but they also helped create
totally unrealistic expectations for what remained fundamentally a primitive
technology.

The first generation of these new codes, developed and/or released around
1970, included FMPS [40], UMPIRE [17], MPSX [5], MPS III, and APEX.
These were followed by the introduction of MPSX/370 (for the IBM 370)
around 1974 [6], an improved version of MPSX, SCICONIC around 1976, an
improved version of UMPIRE, and finally APEX III, the final version of the
APEX codes, released around 1982. (See [19] and [28] for further details on
these systems.) And in 1980 the Whizard extension of MPS III was developed
at Ketron, which had earlier purchased MPS III from Management Science.
Whizard was developed jointly by Eli Hellerman and Dennis Rarick, but also
worked on extensively by John Tomlin and Jim Welch among others at Ketron
[43]. It was a remarkable LP code for its time, including very efficient LU-
factorization and LU-update capabilities, and among the first really successful
presolve and postsolve capabilities for LP, based to some extent on ideas from
the apparently quite advanced FMPS presolve implementation [43].

During this period, two additional important developments occurred. In
1977, the MINOS code, developed at Stanford primarily by Michael Saunders,
was released. This was primarily a non-linear programming code, but included
a very good, stable implementation of the primal simplex algorithm. Around
the same time, in 1979, the XMP code developed by Roy Marsten, using the
Harwell LA05 linear-algebra routines, was also released [32]. Both codes were
written in portable FORTRAN, and were among the first portable codes in
general use. (Some earlier versions of FMPS and UMPIRE were also written
in FORTRAN.) Moreover, XMP had an additional, important property: it was
written with the idea that it could be embedded in other codes, and thus used
as a LP-solving-subroutine in “larger” LP-based algorithmic procedures. The
most powerful solvers of the day, written largely as closed systems, were not
easily used in this way and represented a serious hindrance most particularly to
research in integer programming. This situation is well described by remarks of
Grötschel and Holland [21], commenting on their use of MPSX/370 in work on
the traveling salesman problem. They note that if the LP-package they were
using had been “better suited for a row generation process than MPSX is, the
total speed-up obtained by faster (cut) recognition procedures might be worth
the higher programming effort”.

Another key development during this period was the introduction around
1980 of the IBM personal computer (PC). Personal computers were not new
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at that time, but the release of the IBM PC marked the beginnings of the
business applications of PCs, and it was the event that led to the realization
that PCs could be used as platforms for the development of practical LP and
MIP codes. It was several years before widely-available MIP codes for PCs were
developed, but LP codes began to emerge rather quickly, probably as early as
1983. Sharda and Somarajan [38] report on several such codes, including early
versions for the still commonly used LINDO code. The first versions of the
XpressMP [15] code were also finding industry use [2] in 1983.
Of course the PCs available in those days were a mere shadow of the pow-

erful desktop computers now available. In [38] computational results were re-
ported for a number of PC codes, including LINDO, comparing these codes to
MPSX/370 on a small set of LP test problems. The PC codes were run on an
IBM PC with an 8087 math co-processor and 640K of RAM. MPSX was run on
an IBM 3081D mainframe. LINDO was written in FORTRAN, as presumably
were most of the PC codes of that time. Based upon the LINPACK benchmarks
for those machines (http://www.netlib.org/benchmark/performance.pdf), one
could estimate that the 3081D was roughly 15 times faster than the PC being
used. The largest instances used in [38] had roughly 1000 constraints and 1000
variables. LINDO solved 14 of the 16 instances, the best of any of the PC codes
tested, taking 5100 seconds in one case, while MPSX was never slower than
13 seconds on any of the models, and solved all 16. Based upon the geometric
means of the ratios of the solution times for LINDO versus MPSX/370, LINDO
was slightly more than 166 times slower! A fair conclusion from these numbers
was that PC codes did, in some cases, provide a useful alternative to the power-
ful mainframe codes of the day, but were still far behind in overall performance,
even taking into account the differences in machine speed. These results seem
to confirm the general feeling at the time that LP codes had reached a final
level of maturity. Machines would no doubt get faster, but after nearly 40 years
of development, the simplex algorithm was viewed as not likely to see further
significant improvements. Events were to prove this belief to be totally wrong.
Two additional developments occurred during this period that would have

fundamental effects on the future of LP (and hence MIP). In 1979, L. Khachiyan
[27] showed for the first time that LPs could be solved in polynomial time. This
was not an unexpected result, given the fact that LP was known to be in NP
and co-NP; nevertheless, it was a fundamental advance, not least of which
because of its important theoretical implications in the theory of combinatorial
optimization [22]. The applicability to LP computation was however limited
and this use of Khachiyan’s algorithm was quickly abandoned.

Modern LP codes

The work of Khachiyan was followed in 1984 by the paper of N. Karmarkar [26].
Karmarkar used projective transformations to demonstrate a polynomial-time
bound for LP that was not only far better than the bounds for Khachiyan’s
method, it also corresponded to a computational approach that was applicable
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in practice. Karmarkar’s paper led to a remarkable flurry of theoretical work
in linear programming and related areas that, in many ways, continues to this
day in convex programming and related subjects [37].
On the computational side, AT&T developed the KORBX system [8], in

what turned out to be a largely unsuccessful attempt to commercially exploit
Karmarkar’s breakthrough. However, at the same time, researchers were quick
to recognize the connections between Karmarkar’s theoretical contribution and
earlier work of Fiacco and McCormick on log-barrier methods. This realization
eventually led to the development of a class of algorithms known as primal-dual
log-barrier algorithms. These results are well documented on the computational
side in the work of Lustig, Marsten, and Shanno [31], who developed the OB1
FORTAN code implementing early versions of this log-barrier algorithm. This
code was generally available around 1991 and together with the improvements
happening during that same period with simplex algorithms – in codes such as
CPLEX and OSL – this spelled the end for the KORBX code. While OB1 itself
also failed to be commercially successful, it nevertheless was the leading barrier
code of its day and generated an enormous amount of interest and activity.

The period around 1990 was a remarkably active period in LP. The work of
Karmarkar had stimulated a rebirth of interest in LP, both on the theoretical
and computation sides. Not only did this lead to a better understanding and
improved implementations of barrier algorithms, it also led to a rebirth of
interest in simplex algorithms and is responsible to a degree for some of the
early developments in the CPLEX LP code, first released in 1988. At about
the same time, IBM also released its OSL code, the designated replacement for
MPSX/370, developed primarily by John Forrest and John Tomlin. These two
codes – CPLEX and OSL – were the dominant LP codes in the early 1990s,
and included implementations of both primal and dual simplex algorithms as
well as, eventually, barrier algorithms. For the CPLEX code, many of these
developments are documented in [7]. Among the most important advances that
occurred during this time were the following:

• The emergence of the dual simplex algorithm as a general purpose solver
(not just restricted to use in branch-and-bound algorithms)

• The development of dual steepest-edge algorithms (using a variant pro-
posed in [16])

• Improved Cholesky factorization methodology for barrier algorithms and
the introduction of parallelism in these algorithms

• Vastly improved linear algebra in the application of simplex algorithms
for large, sparse models [20].

In [7] I reported in detail on the overall improvements in the CPLEX LP
code from 1988 through 2002, and subsequently updated these results in 2004.
The following is a summary of these results:
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Improvement factor

Algorithmic improvement (machine independent)
Best of barrier, primal simplex, and dual simplex: 3300×

Machine improvement: 1600×
Total improvement (3300 · 2000): 5,280,000×

These results show that in a period of sixteen years, from 1988 to 2004, by
at least some measure, the average speed of at least one LP code – indepen-
dent of any machine effects – improved by a factor of roughly 3300, far in
excess of the improvements in the speed of computing machines over that same
period; moreover, combining the effects of the algorithms and the machines
gives an improvement factor exceeding six orders of magnitude, nothing short
of remarkable.

Note that we have used here as our algorithm the best of barrier, primal, and
dual. One can argue whether this is a legitimate approach, but it is the one
that I have used. It means that, for each model in the test set, each of the three
algorithms was run, and the solution time of the fastest of the three was taken
as the solution time for the model. It should also be noted that crossover to a
basis was used in all cases when the barrier algorithm was applied. This was
done in large part because, in all of the major commercial implementations of
barrier algorithms, crossover is considered an integral part of the algorithm. It
serves to compensate for the numerical difficulties often encountered by barrier
algorithms. In addition, the vast majority of LPs that are solved from scratch
in practice are the root solves of MIPs, and a basis is then essential to exploit
the advanced-start capabilities of simplex algorithms in the branch-and-bound
(or now more correctly, branch-and-cut) search tree. Using barrier algorithms
within the tree is generally impractical.

The above results represent a fundamental change in a subject that twenty-
five years ago was considered fully mature. It is interesting to also examine in
more detail what is behind these numbers. One finds that of the three listed al-
gorithms, primal simplex is now rarely the winner. Dual and barrier dominate;
moreover, because of current trends in computing machinery, with individual
processors making relatively little progress, and most increased power coming
from increasing the number of cores per CPU chip, the ability to exploit paral-
lelism is becoming more and more important. Barrier algorithms can and have
been very effectively parallelized, while there has been essentially no success
in parallelizing simplex algorithms. The result is that barrier algorithms are
increasingly the winning algorithm when solving large linear programs from
scratch. However, since crossover to a basis is an essential part of barrier al-
gorithms, and this step is fundamentally a simplex computation and hence
sequential, the fraction of time taken by crossover is ever increasing.

The improvements we have seen in LP computation are clearly good news
for the application of these technologies. Indeed, this has led to the common
view among practitioners that LP is a “solved problem”: it is now common
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that LPs with several hundred thousand constraints and variables are solved
without difficulty. However, there remains considerable room for improvement.
The numerical difficulties that are often encountered with barrier algorithms
and particularly in the subsequent crossover step represent a major hurdle;
moreover, for integer programming (a subject we will return to shortly) com-
putational tests show that, in current practice, roughly 2% of real-world MIPs
are blocked in their solution by the difficulty of the underlying LPs. This com-
bined with the fact that since 2004 there have been essentially no improvements
in the standard LP algorithms, means that LP is threatening in the future to
again become a significant bottleneck in our ability to solve real-world problems
of interest.

Modern MIP codes

Let me now return to the topic of computation in MIP. While LP is a funda-
mental technique in the modern application of quantitative techniques to the
solution of real-world problems, in the context of optimization, it is MIP that
dominates.
As previously noted in this paper, MIP codes passed an important milestone

in the early 1970’s with the introduction of several powerful new codes – notably
SCICONIC, MPSX/370 and MPS III with Whizard – using what were then
state-of-the art implementations of simplex algorithms tightly integrated with
LP based branch-and-bound, and combined with a wide variety of generally
simple, but very effective heuristic techniques to improve the overall search.
That was an important step forward in the field. However, the dominance of
these codes also led to stagnation in the field.
In the years between mid-60s and the late 90s, there was a steady stream

of fundamental theoretical work in integer programming and related areas of
combinatorial optimization. Important parts of this work were motived by the
seminal paper of Dantzig, Fulkerson and Johnson in 1954 [13].
Other fundamental contributions in this period included the work of Gomory

on pure integer programs, the work on Edmonds on matching and polyhedral
combinatorics, subsequent work by Padberg, Grötschel, Wolsey and others de-
veloping and applying cutting-plane techniques (with roots in the paper of
Dantzig, Fulkerson and Johnson [13] as well as the work of Edmonds), and a
substantial body of theory of disjunctive programming developed primarily by
Balas. In addition, there were very important papers by Crowder, Johnson, and
Padberg for 0/1 pure integer programs [10] and Van Roy and Wolsey for general
MIP [42] that demonstrated the practical effectiveness of cutting-plane tech-
niques and MIP presolve reductions in solving collections of real-world MIPs,
MIPs that appeared intractable using traditional branch-and-bound. Indeed,
in both of these cases, existing commercial codes (in the first case MPSX/370
and in the second SCICONIC) were directly modified to demonstrate the ef-
ficacy of these ideas. In spite of that fact, there was no real change in the
generally available commercial codes. They got faster, but only because ma-
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chines got faster and LP algorithms improved. The basic MIP algorithms in
use remained largely those developed in the 70s.

To complete our story of the evolution of MIP software to the present, let
me now return to some of the important codes that were developed subsequent
to the developments in the 70s. There is a long list, but foremost among these
have been XpressMP, the first MIP version being released in 1989, CPLEX
MIP, with the first release in 1991, and much more recently, the Gurobi [23]
mixed-integer solver, first released in 2009. It should also be mentioned that
during this period there was also another solver that was influential to the
development of the subject, the MINTO code developed at Georgia Tech [34]
and first released around 1991. This code was not intended to be a competitor
to commercial solvers, and it was never really used widely in applications.
However, it was a milestone in the sense that it was the first general purpose
MIP code to make systematic use of cutting-plane techniques, a set of methods
that have subsequently proved to be fundamental in the development of MIP.
Moreover, though this code was a research code, it was clearly well implemented
and provided an important test of the efficacy of these methods.

Another key software development in this period was the introduction of the
concept of a callable library as first realized in the initial versions of CPLEX.
The idea behind this structure, which involved an early example of what was
effectively an object-oriented design, was to treat LP as a kind of black-box
tool that could be used as an embedded solver in the development of other
algorithmic techniques, most importantly in algorithms for solving integer pro-
grams. This callable library approach was enormously successful, and became
the model for essentially all future codes in this domain.

Let me now turn to a discussion of the computational progress that has
occurred since the early 90s. In late 2007, I undertook a massive computa-
tional test using the CPLEX codes that had been released over the years. This
test made use of an extensive library of real-world problems that had been
collected from academic and industry sources over a period of almost twenty
years. From this extensive library, a test set of 1892 representative models was
selected. Using these models, and using a bank of identical computing ma-
chines, I recompiled each of the corresponding twelve CPLEX released versions
– from Version 1.2 (the first version having MIP) through CPLEX 11 – to run
on the target machine. I then ran each of the 1892 models with each different
CPLEX version, using a time limit of 30,000 seconds, roughly 1/3 of a day. I
then compared consecutive versions by taking each model that was solved to
optimality by at least one of the two versions, computing the ratios of the solve
times (using the time limit for models that did not solve to optimality), and
then computing the geometric means of these ratios. The results of these tests
are summarized in the chart below:

This chart can be read as follows. The scale on the left refers to the bars in the
chart and the scale on the right to the piecewise-linear line through the middle.
First looking at the bars, we see, for example that in this test CPLEX 2.1
was approximately 3.1 times faster than CPLEX 1.2, and that each subsequent
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version, with the arguable exception of CPLEX 6.0, represented a significant
improvement over the previous version. Two particular bars in this chart stand
out, the one comparing CPLEX 3.0 to 2.1 and the one comparing CPLEX 6.5
to 6.0. The first of these, representing an improvement factor of nearly 5.5,
corresponds to the maturity of the dual simplex algorithm.

The second and by far the biggest improvement occurred in 1998, a speedup
exceeding a factor of 10.0. How and why did this happen? The way I like to
describe it is as follows. As noted above, the late 90s were preceded by a period
of some thirty years of important theoretical and computational developments,
many clearly relevant to MIP computation, but virtually none of which had
been implemented in commercial codes. The conclusion was clear. It was time
to change that. With CPLEX version 6.5 a systematic program was undertaken
to include as many of these ideas as possible. You see the result in the chart.
The net effect was that in 1998 there was a fundamental change in our ability
to solve real-world MIPs. With these developments it was possible, arguably
for the first time, to use an out-of-the box solver together with default settings
to solve a significant fraction of non-trivial, real-world MIP instances. I would
venture to say that if you had asked any of the top MIP researches in the field
prior to that time if that would have been possible, they would have said no.

The subject had changed, and changed fundamentally. The piecewise-linear
line through the graph is an attempt to capture the overall magnitude of that
change. It was computed by multiplying the effects of the individual improve-
ments, producing a projected, machine-independent improvement of a factor
of over 29,000.

And, this trend has continued. Tests carried out in 2009 using public bench-
marks maintained by Hans Mittelmann at the University of Arizona [33] indi-
cated that Gurobi 1.0, the first release of the Gurobi solver, had performance
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that was roughly equivalent to that of CPLEX 11.0. Since the release of Gurobi
1.0, we have measured the improvements for subsequent releases, up through
the current 5.0 release. Using the standard approach of taking ratios of solve
times and computing geometric means, the total improvement was a factor of
16.2, and this on top of the factor of 29,000 in the period prior to 2009, yielding
a combined machine-independent factor far exceeding that for LP; moreover,
this phenomenon is not restricted to CPLEX and Gurobi. The recent Mittel-
mann benchmarks demonstrate equally impressive performance by other codes,
notably XpressMP and the open-source solver SCIP [1]. It’s a great story for
the future of our subject, and it shows no signs of stopping.
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