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Introduction

In 1964, thirty years after their introduction, and having lived a quiet life until
then, matroids began to get the attention of optimizers. Just a few years later,
as a result of exciting research achievements as well as enthusiastic promotion,
the theory of matroids and submodular functions had become an integral part
of discrete optimization.

Whitney

Matroid theory starts with the paper [22] of Hassler Whitney in 1935. A
matroid may be defined to be a family of “independent” subsets of a finite
ground set S, satisfying

• Every subset of an independent set is independent

• For any A ⊆ S all maximal independent subsets of A (called bases of A)
have the same cardinality (called the rank r(A) of A).

Of course, if we take S to be the set of columns of a matrix, and the independent
sets to be the ones that are linearly independent, we get a first example, called
a linear matroid. Another important class consists of the graphic ones – here
S is the set of edges of a graph G and a subset is independent if it forms a
forest.
Whitney established some equivalent versions of the axioms, highlighted the

above two examples, and proved several basic results. In particular, he showed
that, given a matroid M , one gets a second dual matroid M∗ by declaring
independent all the sets whose deletion from S do not lower its rank. This
generalizes the notion of duality in planar graphs. In addition, he observed
that the rank function r satisfies what we now call the submodular property:
For all subsets A,B of S

r(A) + r(B) ≥ r(A ∪B) + r(A ∩B).
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There were other researchers who suggested ideas similar to Whitney’s. None
of these early papers appears to contain any suggestion of a connection with
optimization. In retrospect, one might observe that the definition implies that
a certain trivial algorithm solves the optimization problem of finding a largest
independent set.

Rado

In the next twenty years, there was little in the way of followup work to Whit-
ney’s paper. One exception, not widely appreciated at the time, was a paper
[14] of Richard Rado in 1942. Rado gave a matroid generalization of Hall’s
theorem on matching. This famous theorem says that if G is a bipartite graph
with parts S, T , then T can be matched into S if and only if for every subset
A of T , |N(A)| ≥ |A|. (Here N(A) denotes the neighbourset of A.) Rado’s
“Independent Transversal Theorem” is perhaps the first significant result in
matroid theory.

Theorem 1. Let G be a bipartite graph with parts S, T , and let M be a matroid
on S. Then T can be matched to an independent set of M , if and and only if,
for every subset A of T , r(N(A)) ≥ |A|.

Tutte

In the late fifties Bill Tutte published several deep results on matroid theory
[18], [19]. Tutte’s background is interesting. A chemistry student at the begin-
ning of the war, he was recruited to the Bletchley Park codebreaking project.
His brilliant contributions to that effort were kept secret for more than fifty
years. See Copeland [1] for details. At the end of the war Tutte returned to
Cambridge as a mathematician, and a Fellow of Trinity College; the fellow-
ship was a partial reward for his war work. In his thesis he studied “nets”,
a generalizations of graphs, which he has described [21] as being “half-way to
matroids”. He eventually published much of this work in the setting of matroid
theory.

Tutte solved several of the fundamental problems suggested by the work of
Whitney. These included characterizing the matroids that are graphic, those
that arise from matrices over the binary field, and those that are regular (that
is, arise from matrices over every field). These basic results are already of
importance to optimizers. Understanding the graphic matroids, is the key to
understanding which linear programming problems are reducible, by row op-
erations and variable-scaling, to network flow problems. Moreover, as Tutte
showed, the regular matroids are precisely the ones realizable by totally uni-
modular matrices, which Tutte characterized. However, Tutte’s matroid papers
were difficult and their connections with optimization were not immediately
recognized.
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The Sixties

It was in the 1960’s that matroids and submodularity became an important
subject in optimization. The dominant figure of the period was Jack Edmonds.
Not only did he discover beautiful theorems and algorithms. He also cham-
pioned his subject tirelessly, defining a vocabulary that is still in use, and an
agenda – efficient algorithms and polyhedral descriptions – that is still being
followed. By 1969 Edmonds and his work had been featured at a major inter-
national conference, and he had written for its proceedings the milestone paper
[2].

Edmonds, Lehman, and Matroid Partition

Like Tutte, Jack Edmonds had an interesting background; see his own lively
account in [3]. After his undergraduate years, which included study at two
universities and a year out of school, he enrolled in the graduate program in
mathematics at the University of Maryland. He completed a master’s thesis,
in which he proved a fundamental result in topological graph theory, but left
Maryland before completing the doctoral program. He was fortunate to obtain
a position in the Applied Mathematics Division of the National Bureau of
Standards in Washington. Here, in an operations research group headed by
Alan Goldman, he was exposed to problems in combinatorial optimization.
Edmonds has written “That is where graduate school started for me, with
Alan Goldman”.

In 1961, while participating in a workshop at the Rand Corporation, he dis-
covered the key idea that led to his solution of the matching problem. Over
the next couple of years, he worked out algorithms and polyhedral descriptions
for matching and degree-constrained subgraphs (for more on this, see Pulley-
blank [13]). Since Tutte had proved the basic existence theorem in matching
theory, Edmonds was certainly aware of his work. However, he credits Alfred
Lehman for inspiring him to consider matroids as a natural setting for posing
and attacking algorithmic problems. The two met in spring 1964, shortly after
Lehman solved the Shannon switching game, a game played on a graph. In
fact, Lehman [10] had invented and solved a more general game, played on a
matroid. His solution did not however, provide efficient algorithms to decide
which player had the winning strategy.

For one variant of Lehman’s game, the condition for a certain player to have
a winning strategy is that the ground set have two disjoint bases. Edmonds
characterized this property, and more generally solved the problem of finding in
a matroid M a largest set that is the union of k independent sets, at the same
time providing an algorithm. The algorithm is efficient, assuming that there
is an efficient algorithm to recognize independence in M . This and related
results completed the solution of Lehman’s game. Then with Ray Fulkerson,
Edmonds solved a yet more general problem, as follows. Suppose that we are
given matroidsM1, . . . ,Mk on S. Call a set I partitionable if it can be expressed

Documenta Mathematica · Extra Volume ISMP (2012) 143–153



146 William H. Cunningham

as the union of k sets Ii, where Ii is independent in Mi for each i.

Theorem 2 (Matroid Partition Theorem). The maximum size of a set I par-
titionable with respect to M1, . . . ,Mk is equal to the minimum, over subsets A

of S, of

|S\A|+
k∑

i=1

ri(A).

Here ri denotes the rank function of Mi. Their proof is an efficient algorithm
to find the optimal I and A. It is easy to obtain from the Matroid Partition
Theorem a formula for the maximum number of disjoint bases of a given ma-
troid, and for the minimum number of independent sets that cover S. In fact,
the technique provides many applications to packing and covering.

The First Conference

Jack Edmonds organized the first conference on matroids. It was called a “Sem-
inar on Matroids” and was held at NBS August 31 to September 11, 1964. He
has written [4] that, when organizing the meeting, he “could not find more than
six people who had heard the term” matroid. But there, according to Tutte
[21], “the theory of matroids was proclaimed to the world”. Edmonds arranged
for Tutte to give a series of lectures on his work, and to write for publication a
new exposition [20] of his main structural results. Edmonds presented his own
work related to partitioning and Lehman’s game. Participants included Ray
Fulkerson and Gian-Carlo Rota; the latter campaigned to change the term “ma-
troid” to “combinatorial geometry”. Tutte and Edmonds were not convinced,
and the movement was ultimately not successful, but there was a period in the
seventies when it seemed the new term might be winning out. One paper [9]
suggested that was the case, and tut-tutted that the term “matroid” was “still

Figure 1: The Seminar on Matroids, NBS, 1964. First row, second from left,
Ray Fulkerson, third from left, Bill Tutte. (Photo courtesy of William Pulley-
blank)
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Figure 2: The Seminar on Matroids, NBS, 1964. First row, right, Jack Ed-
monds, third from right, Gian-Carlo Rota. (Photo courtesy of William Pulley-
blank)

used in pockets of the tradition-bound British Commonwealth”. (At that time
both Tutte and Edmonds were in Waterloo.)

Matroid Intersection

There are several theorems essentially equivalent to the Matroid Partition The-
orem, and they are important in their own right. These equivalent statements
serve to emphasize the power of the theorem and algorithm. However, almost
inevitably there have been independent discovery and rediscovery of results. In
fact Rado’s Theorem 1 is one of these. Another of the equivalent theorems is
known as Tutte’s Linking Theorem; see [12]. Tutte called it Menger’s Theorem
for Matroids. But for optimizers, undoubtedly the most important of these
versions is Edmonds’ Matroid Intersection Theorem, which he discovered by
applying the Matroid Partition Theorem to M1 and the dual of M2.

Theorem 3 (Matroid Intersection Theorem). Let M1, M2 be matroids on S.
The maximum size of a common independent set is equal to the minimum over
subsets A of S of

r1(A) + r2(S\A).

This theorem generalizes the famous Kőnig min-max theorem for the maxi-
mum size of a matching in a bipartite graph. Since the more general weighted
version of that problem (essentially, the optimal assignment problem) was well
known to be solvable, Theorem 3 cries out for a weighted generalization. So,
given two matroids on S and a weight vector c ∈ RS , can we find a common
independent set of maximum weight? Or, can we describe the convex hull of
common independent sets? First, let’s back up and deal with a single matroid.
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The Matroid Polytope

By 1964 Jack Edmonds had already solved the weighted matching problem,
in the process, proving the matching polyhedron theorem. The fact that a
greedy algorithm finds an optimal spanning tree of a graph was well known. Its
proof did not require polyhedral methods, but Alan Goldman asked a natural
question – can we describe the convex hull of spanning trees? By this time
Edmonds was well into matroids, and realized (this was also known to Rado
[15]) that the greedy algorithm finds a maximum weight basis of a matroid. So
getting the polytope of independent sets was a breeze.

Theorem 4 (Matroid Polytope Theorem). Let M be a matroid on S with rank
function r. The convex hull of characteristic vectors of independent sets is

P (M) = {x ∈ RS : x ≥ 0, x(A) ≤ r(A) for all A ⊆ S}.

Edmonds proved the theorem by proving that, for any weight vector c ∈ RS ,
the LP problem maximize cTx subject to x ∈ P (M) is solved by the greedy
algorithm. We will see his method in more detail shortly.

Edmonds’ Amazing Theorem

Now suppose we have two matroids M1,M2 on S and we want to describe
the convex hull of common independent sets, which we write, with abuse of
notation, as P (M1 ∩ M2). Clearly, every common extreme point of any two
polyhedra is an extreme point of their intersection. In general, there will be
other extreme points as well. It would be a rare situation indeed for the two
polyhedra to fit together so neatly, that the only extreme points of the intersec-
tion were the common extreme points. But this is the case if the two polyhedra
are matroid polyhedra! In lectures, Edmonds sometimes referred to his result
– indeed, deservedly – as “my amazing theorem”.

Theorem 5 (Matroid Intersection Polytope Theorem). Let M1,M2 be ma-
troids on S. Then

P (M1 ∩M2) = P (M1) ∩ P (M2).

Now, having generalized from one matroid to two, and from maximum car-
dinality to maximum weight, Edmonds went further, generalizing the matroid
concept. The polyhedron P (M) has the property that for every weight vec-
tor c, the greedy algorithm optimizes cTx over P (M). Edmonds discovered a
more general class of polyhedra having this property. And, one that permits
generalization of the Amazing Theorem, too.

Polymatroids

Edmonds considered nonempty polyhedra of the form P (f) = {x ∈ RS :
x ≥ 0, x(A) ≤ f(A) for all A ⊆ S}, where f is submodular. He called
such a polyhedron a polymatroid. It turns out that any such P (f) can be
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described by an f which is also increasing and satisfies f(∅) = 0. Such functions
are now called polymatroid functions. Of course, matroid rank functions are
polymatroid functions, and matroid polyhedra are polymatroids.

Generalizing his method for matroids, he considered the dual LP problems

max cTx : x ≥ 0, x(A) ≤ f(A) for all A ⊆ S (1)

min
∑

(f(A)yA : A ⊆ S) (2)

subject to
∑

(yA : A ⊆ S, e ∈ A) ≥ ce, for all e ∈ S

yA ≥ 0, for all A ⊆ S.

Now order S as e1 . . . , en such that ce1 ≥ · · · ≥ cem ≥ 0 ≥ cem+1
≥ · · · ≥ cen ,

and define Ti to be {e1, . . . , ei} for 0 ≤ i ≤ n.
The greedy algorithm is: Put xei = f(Ti) − f(Ti−1) for 1 ≤ i ≤ m and
xj = 0 otherwise.
The dual greedy algorithm is: Put yTi

= cei − cei+1
for 1 ≤ i ≤ m − 1,

put yTm
= cem and put all other yA = 0.

The resulting solutions satisfy the LP optimality conditions for (1) and (2).
It is also clear that if f is integral, then so is x, and if c is integral, then so is
y. In particular, this proves a significant generalization of Theorem 4. As we
shall see, it proves much more.

Polymatroid Intersection

Now here is the topper – Edmonds puts all three directions of generalization
together.

Theorem 6 (Weighted Polymatroid Intersection). Let f1, f2 be polymatroid
functions on S, and let c ∈ RS. Consider the LP problem

max cTx (3)

x(A) ≤ f1(A), for all A ⊆ S

x(A) ≤ f2(A), for all A ⊆ S

xe ≥ 0, for all e ∈ S.

and its dual problem

min
∑

(r1(A)y
1
A + r2(A)y

2
A : A ⊆ S) (4)

subject to
∑

(y1A + y2A : A ⊆ S, e ∈ A) ≥ ce, for all e ∈ S

y1A, y
2
A ≥ 0, for all A ⊆ S.
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(a) If f1, f2 are integer-valued, then (3) has an integral optimal solution.

(b) If c is integral, then (4) has an integral optimal solution.

We will sketch Edmonds’ ingenious proof. Consider an optimal solution
ŷ1, ŷ2 of (4). The problem of optimizing over y1 while keeping y2 fixed at ŷ2

is an LP problem of the form (2), which can be optimized by the dual greedy
algorithm. Therefore, we can replace ŷ1 by the output of that algorithm. Now
we can fix y1 and similarly replace ŷ2.

We conclude that (4) has an optimal solution that is an optimal solution to a
problem in which the constraint matrix has a very special structure. Namely, its
columns split into two sets, each of which consists of the characteristic vectors
of a telescoping family of subsets of S. Edmonds proved – it is a nice exercise
– that such a matrix is totally unimodular. It follows that (4) has an optimal
solution that is integral, assuming that c is integral, proving (b). Now with the
benefits of hindsight, we can invoke the theory of total dual integrality, and (a)
is proved. In fact, Edmonds did not have that tool. He used another argument,
again a clever indirect use of total unimodularity, to prove (a).

There are several important consequences of the above theorem. For exam-
ple, taking f1, f2 to be matroid rank functions, we get the Amazing Theorem.
Taking each cj = 1, we get the following important result.

Theorem 7 (Polymatroid Intersection Theorem). Let f1, f2 be polymatroid
functions on S. Then

max(x(S) : x ∈ P (f1) ∩ P (f2)) = min(f1(A) + f2(S\A) : A ⊆ S).

Moreover, if f1, f2 are integer-valued, then x can be chosen integral.

Postlude

In the years since the sixties, much progress has been made, far too much to
summarize here. I mention a few highlights, relating them to the work of the
sixties. The books of Frank [6] and Schrijver [17] can be consulted for more
detail.

Submodularity and Convexity

Let us call a function f supermodular if −f is submodular, and call it modular
if it is both submodular and supermodular. It is easy to see that a function f

is modular if and only if it satisfies f(A) = m(A) + k for some m ∈ RS and
k ∈ R. Then we have the beautiful Discrete Separation Theorem of Frank [5].

Theorem 8. Let f, g be functions defined on subsets of S such that f is sub-
modular, g is supermodular, and f ≤ g. Then there exists a modular function
h such that f ≤ h ≤ g. Moreover, if f and g are integer-valued, then h may be
chosen integer-valued.
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In fact, this theorem can be proved from the Polymatroid Intersection The-
orem 7, and conversely. Its first part resembles a well-known result about the
separation of convex and concave functions by an affine function. Actually,
there is a connection. Lovász [11] defined the extension f̂ to RS

+ of a set func-
tion f , using ideas suggested by the dual greedy algorithm. He then proved
that f̂ is convex if and only if f is submodular. Using this, one can derive the
first part of Frank’s theorem from the convexity result.

Submodular Function Minimization

The problem of minimizing a submodular function (given by an evaluation
oracle) is fundamental. Its special cases include finding a minimum capacity
s, t-cut in a directed graph, and (in view of the Matroid Intersection Theorem)
finding the maximum size of a common independent set of two given matroids.

A good characterization of the minimum follows from the work of Edmonds
[2]. One way to describe it is this. One can reduce the problem of minimizing
a submodular function g to the problem of minimizing f(A) + u(S\A), where
u ≥ 0 and f is a polymatroid function. But

max(x(S) : x ∈ P (f), x ≤ u) = min(f(A) + u(S\A) : A ⊆ S).

This is a special case of the Polymatroid Intersection Theorem 7, but it can
easily be proved directly. Now suppose we have A and x giving equality above.
Then x ∈ P (f) can be certified by expressing it as the convex combination
of a small number of extreme points of P (f), and each extreme point can be
certified by the polymatroid greedy algorithm.

So much for characterizing the minimum. What about an algorithm to find
the minimum? The first efficient algorithm was found by Grötschel, Lovász and
Schrijver [7], based essentially on the equivalence, via the ellipsoid method, of
separation and optimization. More recently, Iwata, Fleischer, and Fujishige
[8] and Schrijver [16] gave combinatorial algorithms. Both use explicitly the
method of certifying membership in P (f) described above.

Weighted Polymatroid Intersection

The problem of finding an efficient algorithm for weighted polymatroid inter-
section, and other closely related models such as optimal submodular flows,
was left open by Edmonds. (He, and also Lawler, did solve the special case
of weighted matroid intersection.) Efficient combinatorial algorithms now ex-
ist. One may summarize their development as follows. Lawler and Martel and
also Schönsleben gave efficient algorithms for the maximum component-sum
problem. Cunningham and Frank combined this with a primal-dual approach
to handle general weights. These algorithms need as a subroutine one of the
above algorithms for submodular function minimization.
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Matroid Intersection and Matching

Weighted versions of matroid intersection and matching have a common special
case, optimal bipartite matching. In addition they share similar attractive
results – polyhedral descriptions, and efficient solution algorithms. It is natural,
therefore, to ask whether there exists a common generalization to which these
results extend. Several candidates have been proposed. The most important
one, proposed independently by Edmonds and Lawler, has several equivalent
versions, one of which goes as follows. Given a graph G and a matroid M on
its vertex-set, a matroid matching is a matching of G whose covered vertices
form an independent set in M . It turned out that finding a maximum-weight
matroid matching, even when the weights are all 1, is a hard problem. However,
in the late seventies Lovász found an efficient algorithm and a min-max formula
for the case where M arises from a given linear representation. Recently, Iwata
and Pap independently have found efficient algorithms for the weighted version,
answering a question that was open for more than thirty years.
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