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It is difficult to trace back the history of the shortest path problem. One can
imagine that even in very primitive (even animal) societies, finding short paths
(for instance, to food) is essential. Compared with other combinatorial opti-
mization problems, like shortest spanning tree, assignment and transportation,
the mathematical research in the shortest path problem started relatively late.
This might be due to the fact that the problem is elementary and relatively
easy, which is also illustrated by the fact that at the moment that the problem
came into the focus of interest, several researchers independently developed
similar methods.
Yet, the problem has offered some substantial difficulties. For some consider-

able period heuristical, nonoptimal approaches have been investigated (cf. for
instance Rosenfeld [1956], who gave a heuristic approach for determining an
optimal trucking route through a given traffic congestion pattern).

Path finding, in particular searching in a maze, belongs to the classical graph
problems, and the classical references are Wiener [1873], Lucas [1882] (describ-
ing a method due to C.P. Trémaux), and Tarry [1895] – see Biggs, Lloyd, and
Wilson [1976]. They form the basis for depth-first search techniques.
Path problems were also studied at the beginning of the 1950’s in the con-

text of ‘alternate routing’, that is, finding a second shortest route if the shortest
route is blocked. This applies to freeway usage (Trueblood [1952]), but also to
telephone call routing. At that time making long-distance calls in the U.S.A.
was automatized, and alternate routes for telephone calls over the U.S. tele-
phone network nation-wide should be found automatically. Quoting Jacobitti
[1955]:

When a telephone customer makes a long-distance call, the major
problem facing the operator is how to get the call to its destination.
In some cases, each toll operator has two main routes by which
the call can be started towards this destination. The first-choice
route, of course, is the most direct route. If this is busy, the second
choice is made, followed by other available choices at the operator’s
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discretion. When telephone operators are concerned with such a
call, they can exercise choice between alternate routes. But when
operator or customer toll dialing is considered, the choice of routes
has to be left to a machine. Since the “intelligence” of a machine
is limited to previously “programmed” operations, the choice of
routes has to be decided upon, and incorporated in, an automatic
alternate routing arrangement.

Matrix methods for unit-length shortest path 1946–1953

Matrix methods were developed to study relations in networks, like finding
the transitive closure of a relation; that is, identifying in a directed graph the
pairs of points s, t such that t is reachable from s. Such methods were studied
because of their application to communication nets (including neural nets) and
to animal sociology (e.g. peck rights).
The matrix methods consist of representing the directed graph by a matrix,

and then taking iterative matrix products to calculate the transitive closure.
This was studied by Landahl and Runge [1946], Landahl [1947], Luce and Perry
[1949], Luce [1950], Lunts [1950, 1952], and by A. Shimbel.
Shimbel’s interest in matrix methods was motivated by their applications

to neural networks. He analyzed with matrices which sites in a network can
communicate to each other, and how much time it takes. To this end, let S be
the 0, 1 matrix indicating that if Si,j = 1 then there is direct communication
from i to j (including i = j). Shimbel [1951] observed that the positive entries
in St correspond to pairs between which there exists communication in t steps.
An adequate communication system is one for which the matrix St is positive for
some t. One of the other observations of Shimbel [1951] is that in an adequate
communication system, the time it takes that all sites have all information, is
equal to the minimum value of t for which St is positive. (A related phenomenon
was observed by Luce [1950].)
Shimbel [1953] mentioned that the distance from i to j is equal to the number

of zeros in the i, j position in the matrices S0, S1, S2, . . . , St. So essentially he
gave an O(n4) algorithm to find all distances in a directed graph with unit
lengths.

Shortest-length paths

If a directed graph D = (V,A) and a length function l : A → R are given, one
may ask for the distances and shortest-length paths from a given vertex s.
For this, there are two well-known methods: the ‘Bellman-Ford method’ and

‘Dijkstra’s method’. The latter one is faster but is restricted to nonnegative
length functions. The former method only requires that there is no directed
circuit of negative length.
The general framework for both methods is the following scheme, described

in this general form by Ford [1956]. Keep a provisional distance function d.
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Initially, set d(s) := 0 and d(v) := ∞ for each v 6= s. Next, iteratively,

choose an arc (u, v) with d(v) > d(u) + l(u, v) and reset d(v) := d(u) + l(u, v).
(1)

If no such arc exists, d is the distance function.
The difference in the methods is the rule by which the arc (u, v) with d(v) >

d(u) + l(u, v) is chosen. The Bellman-Ford method consists of considering all
arcs consecutively and applying (1) where possible, and repeating this (at most
|V | rounds suffice). This is the method described by Shimbel [1955], Bellman
[1958], and Moore [1959].
Dijkstra’s method prescribes to choose an arc (u, v) with d(u) smallest (then

each arc is chosen at most once, if the lengths are nonnegative). This was
described by Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957]
and Dijkstra [1959]. A related method, but slightly slower than Dijkstra’s
method when implemented, was given by Dantzig [1958], and chooses an arc
(u, v) with d(u) + l(u, v) smallest.

Parallel to this, a number of further results were obtained on the shortest
path problem, including a linear programming approach and ‘good characteri-
zations’. We review the articles in a more or less chronological order.

Shimbel 1955

The paper of Shimbel [1955] was presented in April 1954 at the Symposium
on Information Networks in New York. Extending his matrix methods for
unit-length shortest paths, he introduced the following ‘min-sum algebra’:

Arithmetic
For any arbitrary real or infinite numbers x and y

x+ y ≡ min(x, y) and

xy ≡ the algebraic sum of x and y.

He transferred this arithmetic to the matrix product. Calling the distance
matrix associated with a given length matrix S the ‘dispersion’, he stated:

It follows trivially that Sk k ≥ 1 is a matrix giving the shortest
paths from site to site in S given that k − 1 other sites may be
traversed in the process. It also follows that for any S there exists
an integer k such that Sk = Sk+1. Clearly, the dispersion of S (let
us label it D(S)) will be the matrix Sk such that Sk = Sk+1.

This is equivalent to the Bellman-Ford method.
Although Shimbel did not mention it, one trivially can take k ≤ |V |, and

hence the method yields an O(n4) algorithm to find the distances between all
pairs of points.
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1 Shortest path as linear programming problem 1955–1957

Orden [1955] observed that the shortest path problem is a special case of a
transshipment problem (= uncapacitated minimum-cost flow problem), and
hence can be solved by linear programming. Dantzig [1957] described the
following graphical procedure for the simplex method applied to this problem.
Let T be a rooted spanning tree on {1, . . . , n}, with root 1. For each i =
1, . . . , n, let ui be equal to the length of the path from 1 to i in T . Now if
uj ≤ ui + di,j for all i, j, then for each i, the 1− i path in T is a shortest path.
If uj > ui + di,j , replace the arc of T entering j by the arc (i, j), and iterate
with the new tree.
Trivially, this process terminates (as

∑n

j=1 uj decreases at each iteration, and
as there are only finitely many rooted trees). Dantzig illustrated his method
by an example of sending a package from Los Angeles to Boston. (Edmonds
[1970] showed that this method may take exponential time.)
In a reaction to the paper of Dantzig [1957], Minty [1957] proposed an ‘analog

computer’ for the shortest path problem:

Build a string model of the travel network, where knots represent
cities and string lengths represent distances (or costs). Seize the
knot ‘Los Angeles’ in your left hand and the knot ‘Boston’ in your
right and pull them apart. If the model becomes entangled, have an
assistant untie and re-tie knots until the entanglement is resolved.
Eventually one or more paths will stretch tight – they then are
alternative shortest routes.

Dantzig’s ‘shortest-route tree’ can be found in this model by weight-
ing the knots and picking up the model by the knot ‘Los Angeles’.

It is well to label the knots since after one or two uses of the model
their identities are easily confused.

A similar method was proposed by Bock and Cameron [1958].

Ford 1956

In a RAND report dated 14 August 1956, Ford [1956] described a method to
find a shortest path from P0 to PN , in a network with vertices P0, . . . , PN ,
where lij denotes the length of an arc from i to j. We quote:

Assign initially x0 = 0 and xi = ∞ for i 6= 0. Scan the network
for a pair Pi and Pj with the property that xi − xj > lji. For this
pair replace xi by xj + lji. Continue this process. Eventually no
such pairs can be found, and xN is now minimal and represents the
minimal distance from P0 to PN .

So this is the general scheme described above (1). No selection rule for the arc
(u, v) in (1) is prescribed by Ford.
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Ford showed that the method terminates. It was shown however by Johnson
[1973a, 1973b, 1977] that Ford’s liberal rule can take exponential time.

The correctness of Ford’s method also follows from a result given in the
book Studies in the Economics of Transportation by Beckmann, McGuire, and
Winsten [1956]: given a length matrix (li,j), the distance matrix is the unique
matrix (di,j) satisfying

di,i = 0 for all i, (2)

di,k = min
j

(li,j + dj,k) for all i, k with i 6= k.

Good characterizations for shortest path 1956-1958

It was noticed by Robacker [1956] that shortest paths allow a theorem dual to
Menger’s theorem: the minimum length of an P0 − Pn path in a graph N is
equal to the maximum number of pairwise disjoint P0−Pn cuts. In Robacker’s
words:

the maximum number of mutually disjunct cuts of N is equal to
the length of the shortest chain of N from P0 to Pn.

A related ‘good characterization’ was found by Gallai [1958]: A length function
l : A → Z on the arcs of a directed graph (V,A) does not give negative-length
directed circuits, if and only if there is a function (‘potential’) p : V → Z such
that l(u, v) ≥ p(v)− p(u) for each arc (u, v).

Case Institute of Technology 1957

The shortest path problem was also investigated by a group of researchers at the
Case Institute of Technology in Cleveland, Ohio, in the project Investigation
of Model Techniques, performed for the Combat Development Department of
the Army Electronic Proving Ground. In their First Annual Report, Leyzorek,
Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957] presented their results.

First, they noted that Shimbel’s method can be speeded up by calculating Sk

by iteratively raising the current matrix to the square (in the min-sum matrix
algebra). This solves the all-pairs shortest path problem in time O(n3 log n).

Next, they gave a rudimentary description of a method equivalent to Dijk-
stra’s method. We quote:

(1) All the links joined to the origin, a, may be given an outward
orientation. [. . . ]

(2) Pick out the link or links radiating from a, aaα, with the small-
est delay. [. . . ] Then it is impossible to pass from the origin to
any other node in the network by any “shorter” path than aaα.
Consequently, the minimal path to the general node α is aaα.
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(3) All of the other links joining α may now be directed outward.
Since aaα must necessarily be the minimal path to α, there is
no advantage to be gained by directing any other links toward
α. [. . . ]

(4) Once α has been evaluated, it is possible to evaluate immedi-
ately all other nodes in the network whose minimal values do
not exceed the value of the second-smallest link radiating from
the origin. Since the minimal values of these nodes are less than
the values of the second-smallest, third-smallest, and all other
links radiating directly from the origin, only the smallest link,
aaα, can form a part of the minimal path to these nodes. Once
a minimal value has been assigned to these nodes, it is possible
to orient all other links except the incoming link in an outward
direction.

(5) Suppose that all those nodes whose minimal values do not ex-
ceed the value of the second-smallest link radiating from the
origin have been evaluated. Now it is possible to evaluate the
node on which the second-smallest link terminates. At this
point, it can be observed that if conflicting directions are as-
signed to a link, in accordance with the rules which have been
given for direction assignment, that link may be ignored. It will
not be a part of the minimal path to either of the two nodes it
joins. [. . . ]

Following these rules, it is now possible to expand from the second-
smallest link as well as the smallest link so long as the value of the
third-smallest link radiating from the origin is not exceeded. It is
possible to proceed in this way until the entire network has been
solved.

(In this quotation we have deleted sentences referring to figures.)

Bellman 1958

After having published several papers on dynamic programming (which is, in
some sense, a generalization of shortest path methods), Bellman [1958] eventu-
ally focused on the shortest path problem by itself, in a paper in the Quarterly
of Applied Mathematics. He described the following ‘functional equation ap-
proach’ for the shortest path problem, which is the same as that of Shimbel
[1955].

There are N cities, numbered 1, . . . , N , every two of which are linked by a
direct road. A matrix T = (ti,j) is given, where ti,j is time required to travel
from i to j (not necessarily symmetric). Find a path between 1 and N which
consumes minimum time.

Bellman remarked:
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Since there are only a finite number of paths available, the problem
reduces to choosing the smallest from a finite set of numbers. This
direct, or enumerative, approach is impossible to execute, however,
for values of N of the order of magnitude of 20.

He gave a ‘functional equation approach”

The basic method is that of successive approximations. We choose

an initial sequence {f
(0)
i }, and then proceed iteratively, setting

f
(k+1)
i = Min

j 6=i
(tij + f

(k)
j ], i = 1, 2, · · · , N − 1,

f
(k+1)
N = 0,

for k = 0, 1, 2 · · · , .

As initial function f
(0)
i Bellman proposed (upon a suggestion of F. Haight)

to take f
(0)
i = ti,N for all i. Bellman noticed that, for each fixed i, starting

with this choice of f
(0)
i gives that f

(k)
i is monotonically nonincreasing in k, and

stated:

It is clear from the physical interpretation of this iterative scheme
that at most (N − 1) iterations are required for the sequence to
converge to the solution.

Since each iteration can be done in time O(N2), the algorithm takes time
O(N3). As for the complexity, Bellman said:

It is easily seen that the iterative scheme discussed above is a fea-
sible method for either hand or machine computation for values of
N of the order of magnitude of 50 or 100.

In a footnote, Bellman mentioned:

Added in proof (December 1957): After this paper was written,
the author was informed by Max Woodbury and George Dantzig
that the particular iterative scheme discussed in Sec. 5 had been
obtained by them from first principles.

Dantzig 1958

The paper of Dantzig [1958] gives an O(n2 log n) algorithm for the shortest
path problem with nonnegative length function. It consists of choosing in (1)
an arc with d(u) + l(u, v) as small as possible. Dantzig assumed

(a) that one can write down without effort for each node the arcs
leading to other nodes in increasing order of length and (b) that it
is no effort to ignore an arc of the list if it leads to a node that has
been reached earlier.

He mentioned that, beside Bellman, Moore, Ford, and himself, also D. Gale and
D.R. Fulkerson proposed shortest path methods, ‘in informal conversations’.
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Dijkstra 1959

Dijkstra [1959] gave a concise and clean description of ‘Dijkstra’s method’,
yielding an O(n2)-time implementation. Dijkstra stated:

The solution given above is to be preferred to the solution by L.R.

Ford [3 ] as described by C. Berge [4 ], for, irrespective of the
number of branches, we need not store the data for all branches
simultaneously but only those for the branches in sets I and II, and
this number is always less than n. Furthermore, the amount of work
to be done seems to be considerably less.

(Dijkstra’s references [3] and [4] are Ford [1956] and Berge [1958].)

Dijkstra’s method is easier to implement (as an O(n2) algorithm) than
Dantzig’s, since we do not need to store the information in lists: in order to
find a next vertex v minimizing d(v), we can just scan all vertices. Later, using
the more efficient data structures of heaps and Fibonacci heaps, one realized
that Dijkstra’s method has implementations with running times O(m log n) and
O(m+n log n) respectively, where m is the number of arcs (Johnson [1972] and
Fredman and Tarjan [1987]).

Moore 1959

At the International Symposium on the Theory of Switching at Harvard Uni-
versity in April 1957, Moore [1959] of Bell Laboratories, presented a paper
“The shortest path through a maze”:

The methods given in this paper require no foresight or ingenuity,
and hence deserve to be called algorithms. They would be especially
suited for use in a machine, either a special-purpose or a general-
purpose digital computer.

The motivation of Moore was the routing of toll telephone traffic. He gave
algorithms A, B, C, and D.

First, Moore considered the case of an undirected graph G = (V,E) with no
length function, in which a path from vertex A to vertex B should be found
with a minimum number of edges. Algorithm A is: first give A label 0. Next
do the following for k = 0, 1, . . .: give label k + 1 to all unlabeled vertices that
are adjacent to some vertex labeled k. Stop as soon as vertex B is labeled.

If it were done as a program on a digital computer, the steps given
as single steps above would be done serially, with a few operations
of the computer for each city of the maze; but, in the case of com-
plicated mazes, the algorithm would still be quite fast compared
with trial-and-error methods.
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In fact, a direct implementation of the method would yield an algorithm with
running time O(m). Algorithms B and C differ from A in a more economical
labeling (by fewer bits).

Moore’s algorithm D finds a shortest route for the case where each edge of
the graph has a nonnegative length. This method is a refinement of Bellman’s
method described above: (i) it extends to the case that not all pairs of vertices
have a direct connection; that is, if there is an underlying graph G = (V,E)
with length function; (ii) at each iteration only those di,j are considered for
which ui has been decreased at the previous iteration.

The method has running time O(nm). Moore observed that the algorithm is
suitable for parallel implementation, yielding a decrease in running time bound
to O(n∆(G)), where ∆(G) is the maximum degree of G. Moore concluded:

The origin of the present methods provides an interesting illustra-
tion of the value of basic research on puzzles and games. Although
such research is often frowned upon as being frivolous, it seems
plausible that these algorithms might eventually lead to savings
of very large sums of money by permitting more efficient use of
congested transportation or communication systems. The actual
problems in communication and transportation are so much com-
plicated by timetables, safety requirements, signal-to-noise ratios,
and economic requirements that in the past those seeking to solve
them have not seen the basic simplicity of the problem, and have
continued to use trial-and-error procedures which do not always give
the true shortest path. However, in the case of a simple geometric
maze, the absence of these confusing factors permitted algorithms
A, B, and C to be obtained, and from them a large number of
extensions, elaborations, and modifications are obvious.

The problem was first solved in connection with Claude Shannon’s
maze-solving machine. When this machine was used with a maze
which had more than one solution, a visitor asked why it had not
been built to always find the shortest path. Shannon and I each
attempted to find economical methods of doing this by machine.
He found several methods suitable for analog computation, and I
obtained these algorithms. Months later the applicability of these
ideas to practical problems in communication and transportation
systems was suggested.

Among the further applications of his method, Moore described the example of
finding the fastest connections from one station to another in a given railroad
timetable. A similar method was given by Minty [1958].

In May 1958, Hoffman and Pavley [1959] reported, at the Western Joint Com-
puter Conference in Los Angeles, the following computing time for finding the
distances between all pairs of vertices by Moore’s algorithm (with nonnegative
lengths):
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It took approximately three hours to obtain the minimum paths for
a network of 265 vertices on an IBM 704.
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