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The branch-and-bound method consists of the repeated application of a process
for splitting a space of solutions into two or more subspaces and adopting a
bounding mechanism to indicate if it is worthwhile to explore any or all of the
newly created subproblems. For example, suppose we need to solve an integer-
programming (IP) model. A bounding mechanism is a computational technique
for determining a value B such that each solution in a subspace has objective
value no larger (for maximization problems) than B. For our IP model, the
objective value of any dual feasible solution to the linear-programming (LP)
relaxation provides a valid bound B. We can compute such a bound with
any LP solver, such as the simplex algorithm. The splitting step is called
branching. In our IP example, suppose a variable xi is assigned the fractional
value t in an optimal solution to the LP relaxation. We can then branch by
considering separately the solutions having xi ≤ ⌊t⌋ and the solutions having
xi ≥ ⌊t⌋ + 1, where ⌊t⌋ denotes t rounded down to the nearest integer. The
two newly created subproblems need only be considered for further exploration
if their corresponding bound B is greater than the value of the best known
integer solution to the original model.
Branch and bound is like bread and butter for the optimization world. It

is applied routinely to IP models, combinatorial models, global optimization
models, and elsewhere. So who invented the algorithm? A simple enough
question, but one not so easy to answer. It appears to have three origins,
spread out over four years in the mid to late 1950s.
As the starting point, the notion of branch and bound as a proof system for

integer programming is laid out in the 1957 Econometrica paper “On the solu-
tion of discrete programming problems” by Harry Markowitz and Alan Manne
[17]. Their description of the components of branch and bound is explicit, but
they note in the paper’s abstract that the components are not pieced together
into an algorithm.
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We do not present an automatic algorithm for solving such prob-
lems. Rather we present a general approach susceptible to individ-
ual variations, depending upon the problem and the judgment of the
user.

The missing algorithmic glue was delivered several years later by Ailsa Land
and Alison Doig in their landmark paper “An automatic method of solving
discrete programming problems” [12], published in the same journal in 1960.
The Land-Doig abstract includes the following statement.

This paper presents a simple numerical algorithm for the solution of
programming problems in which some or all of the variables can take
only discrete values. The algorithm requires no special techniques
beyond those used in ordinary linear programming, and lends itself
to automatic computing.

Their proposed method is indeed the branch-and-bound algorithm and their
work is the starting point for the first successful computer codes for integer pro-
gramming. There is a further historical twist however. Sandwiched in between
Markowitz-Manne and Land-Doig is the 1958 Harvard Ph.D. thesis of Willard
Eastman titled Linear Programming with Pattern Constraints [5]. Eastman de-
signed algorithms for several classes of models, including the traveling salesman
problem (TSP). Page 3–5 of his thesis gives the following concise description
of the heart of his technique.

It is useful, however, to be able to establish lower-bounds for the
costs of solutions which have not yet been obtained, in order to
permit termination of any branch along which all solutions must
exceed the cost of some known feasible solution.

His methods, too, are early implementations of branch and bound. So
Markowitz-Manne or Eastman or Land-Doig? Fortunately there is no need
to make a choice: we can give branch-and-bound laurels to each of these three
groups of researchers.

1 Markowitz and Manne (1957)

The Markowitz-Manne paper is one of the earliest references dealing with gen-
eral integer programming. The paper was published in Econometrica in 1957,
but an earlier version appeared as a 1956 RAND research paper [16], where the
order of the authors is Manne-Markowitz. Even further, George Dantzig’s 1957
paper [1] cites the Manne-Markowitz report as having been written on August
1, 1955. This is indeed at the beginning of the field: Dantzig, Fulkerson, and
Johnson’s classic paper on the TSP is typically cited as the dawn of integer
programming and it appeared as a RAND report in April 1954 [2].

Markowitz-Manne, or Manne-Markowitz, discuss in detail two specific ap-
plications: a production-planning problem and an air-transport problem. A
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Left: Harry Markowitz, 2000 (Photograph by Sue Clites). Right: Alan Manne
(Stanford University News).

fascinating thing is their inclusion of two appendices, one for each of the mod-
els, having subsections labeled “Proof” and “Verification” respectively. The
“Proofs” consist of branch-and-bound subproblems and the “Verifications” ex-
plain why steps taken in the creation of the subproblems are valid.

The general mixed IP model considered by Markowitz-Manne is to maximize
a linear function π over a set D(0) wherein some or all variables take on integral
values. For a nonempty set S in the same space as D(0), π(S) is defined to be
max(π(X) : X ∈ S) if the maximum exists and otherwise π(S) ≡ ∞. Quoting
from their paper, Markowitz-Manne lay out the following branch-and-bound
framework.

At each step s we have:

(a) a best guess X(s)
(b) one or more sets D1(s), . . . , DK(s) such that

D(0) ⊃ Dk(s) k = 1, . . . ,K,

π
(

D(0)
)

= π
(

D1(s) ∪D2(s) · · · ∪DK(s) ∪X(s)
)

and
(c) polyhedral sets Lk(s), such that

Lk(s) ⊃ Dk(s) k = 1, . . . ,K

Clearly

π
(

∪k Lk(s) ∪X(s)
)

= max
(

π
(

L1(s)
)

, . . . , π
(

LK(s)
)

, π
(

X(s)
)

)

≥ π
(

D(0)
)

≥ π
(

X(s)
)

.

The general strategy is to reduce the size of the sets ∪Dk and ∪Lk,
and to bring together the lower and upper bounds on π(D(0)).
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The “best guess” is the currently best-known solution X(s) ∈ D(0). If X(s)
is itself not optimal, then the union of the sets Dk(s) is known to contain an
optimal solution. The sets Lk(s) are LP relaxations of the discrete sets Dk(s),
thus the upper bound

max
(

π
(

L1(s)
)

, . . . , π
(

LK(s)
)

, π
(

X(s)
)

)

on the IP objective can be computed via a sequence of LP problems.
In just a few lines, Markowitz-Manne summed up much of the branch-and-

bound theory we use today! Indeed, they incorporate the idea of improving the
LP relaxations Lk(s) from one step to the next, as is now done in sophisticated
branch-and-cut algorithms. Moreover, their steps to create subregions Dk(s)
involve the concept of branching on hyperplanes, that is, splitting a k− 1 level
subregion into a number of k-level subregions by enforcing linear equations
c(X) = ti for appropriate values of ti.

The “Proof” subsections consist of explicit listings of the sets Dk(s) and
Lk(s) used at each level in the example models, and the “Verifications” sub-
sections explain why the adopted cutting planes are valid and how hyperplanes
are used to subdivide subregions into further subregions. These appendices are
amazingly complete formal proofs of the optimality of proposed solutions to the
two applied problems. It would be beautiful if we could somehow recapture
such formal correctness in current computational claims for optimal solutions
to large-scale IP models.

Julia Robinson and the TSP

Markowitz and Manne carried out their work at the famed RAND Corporation,
home in the 1950s of what was far and away the world’s top center for the study
of mathematical optimization. They introduce their general branch-and-bound
framework as follows [17].

Our procedure for handling discrete problems was suggested by that
employed in the solution of the ‘traveling-salesman’ problem by
Dantzig, Fulkerson, and Johnson.

We have already mentioned that the 1954 TSP work of Dantzig et al. is viewed
as the dawn of IP research. Their LP-approach to the TSP actually goes back
a bit further, to the 1949 RAND report by Julia Robinson [23] and important
follow-up studies in the early 1950s by Isidor Heller [8] and Harold Kuhn [9].
Robinson studied an algorithm for the assignment-problem relaxation of the

TSP while Heller and Kuhn began investigations of linear descriptions of the
convex hull of TSP tours, considering tours as characteristic vectors of their
edge sets. In notes from a George Dantzig Memorial Lecture delivered in 2008
[10], Kuhn writes the following concerning his TSP study.

We were both keenly aware of the fact that, although the complete set
of faces (or constraints) in the linear programming formulation of
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the Traveling Salesman Problem was enormous, if you could find an
optimal solution to a relaxed problem with a subset of the faces that
is a tour, then you had solved the underlying Traveling Salesman
Problem.

It is clear the researchers knew that LP relaxations could be a source of lower
bounds for the TSP, but neither Heller nor Kuhn consider the bounding prob-
lem as a means to guide a search algorithm such as in branch and bound.

In the case of Robinson’s work, it is tempting to read between the lines and
speculate that she must have had some type of enumerative process (like branch
and bound) in mind. Why else would she use the title “On the Hamiltonian
game (a traveling salesman problem)” for a paper covering a solution method
for the assignment problem? It is difficult to guess what she had in mind, but
the introduction to the paper suggests she was trying for a direct solution to
the TSP rather than an enumerative method through bounding.

An unsuccessful attempt to solve the above problem led to the solu-
tion of the following . . .

The “problem” in the quote is the TSP and the “following” is a description of
the assignment problem.
Thus, it appears that early TSP researchers had bounding techniques at their

disposal, but were hopeful of direct solution methods rather than considering
a branch-and-bound approach.

Bounds and reduced-cost fixing by Dantzig-Fulkerson-Johnson

Dantzig et al. began their study of the TSP in early 1954. Their successful
solution of a 49-city instance stands as one of the great achievements of integer
programming and combinatorial optimization. But the main body of work did
not make use of the LP relaxation as a bounding mechanism. Indeed, the
preliminary version [2] of their paper describes their process as follows, where
C1 denotes the solution set of the LP relaxation, Tn denotes the convex hull of
all tours through n cities, and dij is the cost of travel between city i and city j.

What we do is this: Pick a tour x which looks good, and consider
it as an extreme point of C1; use the simplex algorithm to move to
an adjacent extreme point e in C1 which gives a smaller value of
the functional; either e is a tour, in which case start again with this
new tour, or there exists a hyperplane separating e from the convex
of tours; in the latter case cut down C1 by one such hyperplane that
passes through x, obtaining a new convex C2 with x as an extreme
point. Starting with x again, repeat the process until a tour x̂ and
a convex Cm ⊃ Tn are obtained over which x̂ gives a minimum of
∑

dijxij.

They do not actually solve the LP relaxations in their primal implementation
of the cutting-plane method, carrying out only single pivots of the simplex
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algorithm. Thus they do not have in hand a lower bound until the process has
actually found the optimal TSP tour.

In a second part of their paper, however, they work out a method that can
take possibly infeasible values for the LP dual variables and create a lower
bound B on the cost of an optimal tour. They accomplish this by taking
advantage of the fact that the variables in the TSP relaxation are bounded
between 0 and 1. The explicit variable bounds correspond to slack and surplus
variables in the dual, allowing one to convert any set of dual values into a dual
feasible solution by raising appropriately either the slack or surplus for each
dual constraint.

Dantzig et al. use this lower bound to eliminate variables from the problem
by reduced-cost fixing, that is, when the reduced cost of a variable is greater
than the difference between the cost of a best known tour and the value of B
then the variable can be eliminated.

During the early stages of the computation, E may be quite large
and very few links can be dropped by this rule; however, in the
latter stages often so many links are eliminated that one can list all
possible tours that use the remaining admissible links.

A general method for carrying out this enumeration of tours is not given, but
in [4] an example is used to describe a possible scheme, relying on forbidding
subtours. Their description is not a proper branch-and-bound algorithm, how-
ever, since the bounding mechanism is not applied recursively to the examined
subproblems. Nonetheless, it had a direct influence on Dantzig et al.’s RAND
colleagues Markowitz and Manne.

2 Eastman (1958)

It is in the realm of the TSP where we find the first explicit description of
a branch-and-bound algorithm, namely Eastman’s 1958 Ph.D. thesis. The
algorithm is designed for small instances of the asymmetric TSP, that is, the
travel cost between cities i and j depends on the direction of travel, either from
i to j or from j to i. The problem can thus be viewed as finding a minimum
cost directed circuit that visits each city.

In Eastman’s algorithm, the lower bound on the cost of a TSP tour is pro-
vided by the solution to a variant of the assignment problem that provides a
minimum cost collection of circuits such that each city is in exactly one of the
circuits in the collection. If there is only one circuit in the collection, then
the assignment problem solves the TSP. Otherwise, Eastman chooses one of
the circuits having, say, m edges, then in a branching step he creates m new
subproblems by setting to 0, one at a time, each of the variables corresponding
to the edges in the circuit.

Eastman describes and illustrates his process as a search tree, where the
nodes of the tree are the subproblems.
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Willard Eastman (Photograph courtesy of Willard Eastman)

This process can be illustrated by a tree in which nodes correspond
to solutions and branches to excluded links. The initial solution
(optimal for the unrestricted assignment problem) forms the base of
the tree, node 1. Extending from this node are m branches, cor-
responding to the m excluded links, and leading to m new nodes.
Extending from each of these are more branches, corresponding to
links excluded from these solutions, and so forth.

This is very similar to how branch-and-bound search is usually viewed today:
we speak of the size of the search tree, the number of active tree nodes, etc.

Eastman clearly has a full branch-and-bound algorithm for the TSP and he
illustrates its operation on a ten-city example. He also applies his framework
to other combinatorial problems, including a transportation model with non-
linear costs and a machine-scheduling model. His work does not include general
integer programming, but it is an important presentation of branch-and-bound
techniques.

3 Land and Doig (1960)

General mixed integer programming, where only some of the variables are re-
quired to take on integer values, is the domain of Land and Doig. Their branch-
and-bound paper played a large role in the rapid rise of mixed IP as an applied
tool in the 1960s and 70s.
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Left: Ailsa Land, Banff, 1977 (Photograph courtesy of Ailsa Land). Right:
Alison Doig, The Sun, October 21, 1965. (Courtesy of Alison (Doig) Harcourt)

The methods of Markowitz-Manne and Land-Doig are on opposite sides of
the algorithmic spectrum: whereas Markowitz-Manne is best viewed as a flex-
ible proof system, Land-Doig is a detailed algorithm designed for immediate
implementation. In a memoir [13] published in 2010, Land and Doig write the
following.

We were very well aware that the solution of this type of problem
required electronic computation, but unfortunately LSE at that time
did not have any access to such a facility. However, we had no doubt
that using the same approach to computing could be achieved, if
rather painfully, on desk computers, which were plentifully available.
We became quite skillful at doing vector operations by multiplying
with the left hand, and adding and subtracting with the right on
another machine! Storage of bases and intermediate results did not
present a limitation since it was all simply recorded on paper and
kept in a folder.

The reference to “bases” is indicative of the details given in the paper: the
description of the general flow of the algorithm is intertwined with its imple-
mentation via the simplex algorithm, where the variables taking on fractional
values in a solution are known to lie within the set of basic variables in the
final simplex iteration.
The Land-Doig algorithm follows the quick outline for IP branch and bound

we mentioned in the introduction to this article: use the LP relaxation as a
bounding mechanism and a fractional-valued variable as the means to create
subproblems. The algorithm differs, however, in the manner in which it searches
the space of solutions. Indeed, Land-Doig considers subproblems created with
equality constraints xi = k, rather than inequality constraints, at the expense
of possibly building a search tree with nodes having more than two child nodes,
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that is, corresponding to a range of potential integer values k for the branching
variable xi.

Besides the nicely automated method, a striking thing about the paper is
the computational tenacity of the authors. Although they worked with hand
calculators, Land and Doig explored numerous disciplines for running their
algorithm, including a variable selection rule that is similar in spirit to current
“strong-branching” techniques.

Land was also involved in very early work on the TSP, writing a paper with
George Morton in 1955 [19], but combinatorial problems are not considered in
the Land-Doig paper. In an email letter from June 9, 2012, Land confirmed
that at the time she had not considered the application of branch and bound
to the TSP.

I only got involved in applying B&B to the TSP when Takis Miliotis
was doing his PhD under my supervision.

The thesis work of Miliotis [18] was carried out in the 1970s and Land herself
authored a computational TSP paper in 1979 [11], but there is no direct con-
nection between Eastman’s work at Harvard and the Land-Doig algorithm for
general integer programming.

4 Coining the term branch and bound

The concise and descriptive name “branch and bound” has likely played a role
in unifying the many diverse implementations of the algorithmic framework. On
this point, however, our three pioneering teams cannot take credit. Markowitz
and Manne modestly refer to their process as “a general approach” or “our
method”. Eastman called his algorithm “the method of link exclusion” in
reference to the fact that his branches are determined by excluding certain
edges, that is, by setting the corresponding variables to the value zero. Land
and Doig provide the following discussion of their procedure’s name [13].

We did not initially think of the method as ‘branch and bound’,
but rather in the ‘geometrical’ interpretation of exploring the con-
vex feasible region defined by the LP constraints. We are not sure
if ‘branch and bound’ was already in the literature, but, if so, it
had not occurred to us to use that name. We remember Steven
Vajda telling us that he had met some French people solving ILPs
by ‘Lawndwa’, and realizing that they were applying a French pro-
nunciation to ‘Land-Doig’, so we don’t think they knew it as branch
and bound either.

It was John Little, Katta Murty, Dura Sweeney, and Caroline Karel who in 1963
coined the now familiar term. Here are the opening lines from the abstract to
their TSP paper [15].

Documenta Mathematica · Extra Volume ISMP (2012) 227–238



236 William Cook

A ‘branch and bound’ algorithm is presented for solving the traveling
salesman problem. The set of all tours (feasible solutions) is broken
up into increasingly small subsets by a procedure called branching.
For each subset a lower bound on the length of the tours therein is
calculated. Eventually, a subset is found that contains a single tour
whose length is less than or equal to some lower bound for every
tour.

In a recent note [20], Murty further pinpointed the naming of the algorithm,
giving credit to his coauthor Sweeney.

Later in correspondence John Little told me that one of his students
at MIT, D. Sweeney, suggested the name “Branch and Bound” for
the method . . .

So while the origin of the algorithm is complicated, the origin of the name is
at least clear!

5 Branch-and-cut algorithms

The Markowitz-Manne framework includes the idea of improving an LP relax-
ation Lk(s) of a subproblem by the addition of linear inequalities satisfied by
all solutions in Dk(s). This incorporates into branch and bound the technique
that was so successful in the Dantzig et al. TSP study. In fact, the Markowitz-
Manne paper may contain the first published use of the term “cutting plane”
to refer to such valid linear inequalities.

We refer to (3.7) as a cutting line (when N > 2, a cutting plane).

Cutting planes, of course, appear in the starring role in the 1958 integer-
programming algorithm of Ralph Gomory [6], but the idea did not work its
way into the Land-Doig computational procedure. Concerning this, Ailsa Land
and Susan Powell [14] make the following remark in a 2007 paper.

While branch and bound began to be built into computer codes, the
cutting plane approach was obviously more elegant, and we spent a
great deal of time experimenting with it. (. . . ) Work was done, but
it was not published because as a method to solve problems branch
and bound resoundingly won.

The combination of branch-and-bound and cutting planes, as outlined in
Markowitz-Manne, eventually became the dominant solution procedure in inte-
ger programming and combinatorial optimization. The first big successes were
the 1984 study of the linear-ordering problem by Martin Grötschel, Michael
Jünger, and Gerhard Reinelt [7] and the late 1980s TSP work by Manfred
Padberg and Giovanni Rinaldi [21, 22],
It was Padberg and Rinaldi who coined the term branch and cut for the pow-

erful combination of the two competing algorithms. Land and Powell conclude
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their 2007 paper with the fitting statement “It is gratifying that the combina-
tion, ‘branch and cut’, is now often successful in dealing with real problems.”
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