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After a promising start in the 1950s, enthusiasm for the practical potential of
linear programming systems seemed to fade. By the end of the 1970s it was
not unusual to encounter sentiments of the following sort:

We do not feel that the linear programming user’s most pressing
need over the next few years is for a new optimizer that runs twice
as fast on a machine that costs half as much (although this will
probably happen). Cost of optimization is just not the dominant
barrier to LP model implementation. The process required to man-
age the data, formulate and build the model, report on and analyze
the results costs far more, and is much more of a barrier to effective
use of LP, than the cost/performance of the optimizer.

Why aren’t more larger models being run? It is not because they
could not be useful; it is because we are not successful in using them
. . . They become unmanageable. LP technology has reached the
point where anything that can be formulated and understood can
be optimized at a relatively modest cost. [13]

This was written not by a frustrated user, but by the developers of an advanced
LP system at one of the major computer manufacturers. Similar sentiments
were expressed by others who were in a position to observe that the power-
ful techniques of computational optimization were not translating to powerful
applications, at least not nearly as readily as expected.
Advanced software for optimization modeling was a response to this malaise

and a key factor in bringing mathematical programming to a new period of
enthusiasm. This article is intended as a brief introduction and history, par-
ticularly as reflected in writings by some of the pioneers and in my own early
experiences. A detailed survey appears in [14], and extensive observations on
the subject by many of the major participants have been collected in [11] and
[12].
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The history of optimization modeling systems can be viewed roughly as be-
ginning with matrix generators and then expanding to modeling languages,
and this account is organized accordingly. At the end I add a few reflections on
more recent developments. In giving a historical account it is hard to avoid the
use of “mathematical programming” to refer to what has since become more
straightforwardly known as “optimization,” and so these terms appear more-or-
less interchangeably in my account. On the other hand “linear programming”
or “LP” is still the term of choice of the special case of linear objectives and
constraints.

Matrix generators

Almost as soon as computers were successfully used to solve linear programming
problems, communication with the optimization algorithms became a bottle-
neck. A model in even a few kinds of variables and constraints, with perhaps
a half-dozen modest tables of data, already gave rise to too many coefficients,
right-hand sides, and bounds to manage by simply having a person enter them
from a keyboard of some kind. Even if the time and effort could be found to
key in all of these numbers, the process would not be fast or reliable enough
to support extended development or deployment of models. Similar problems
were encountered in examining and analyzing the results. Thus it was evident
from the earliest days of large-scale optimization that computers would have
to be used to create and manage problems as well as to solve them.
Because development focused initially on linear programming, and because

the greatest work of setting up an LP is the entry of the matrix of coeffi-
cients, computer programs that manage optimization modeling projects be-
came known as matrix generators. To make good use of computer resources,
LP algorithms have always operated on only the nonzero coefficients, and so
matrix generators also are concerned not with an explicit matrix but with a
listing of its nonzero elements. The key observation that makes efficient matrix
generators possible is that coefficients can be enumerated in an efficient way:

Anyone who has been taught that linear programming is a way to
solve problems such as Minimize Minimize x1+2x2+4x3+x4+3x5

. . . may wonder how any computer program can help to assemble
such a meaningless jumble of coefficients. The point is that prac-
tical linear programming problems are not like this. Although the
range of problems to which mathematical programming is applied
is very wide and is continuing to expand, it seems safe to claim that
there is some coherent structure in all applications. Indeed, for a
surprisingly wide class of applications the rows (or constraints) can
be grouped into five categories and the columns (or variables) into
three categories . . . When a problem has been structured in this
way, one can see how a computer program can be devised to fill in
the details from a relatively compact set of input data. [1]
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This explanation comes from Martin Beale’s paper “Matrix Generators and
Output Analyzers” in the proceedings of the 6th Mathematical Programming
Symposium, held in 1967. Already at that point much had been learned about
how best to write such programs. In particular Beale describes the practice of
building short character strings to uniquely identify variables and constraints.
These encoded names, typically 8 characters or less, were a central feature
of the (nearly) standard MPS format adopted for the representation of linear
programs.
A skilled programmer could get quite good at writing matrix generators. In

the same article Beale states:

I should like to dispel the illusion that a FORTRAN matrix gener-
ator is necessarily a very cumbersome affair by pointing out that I
once wrote one before breakfast one Sunday morning. (Although it
did contain one mistake which had to be corrected after going on
the computer.)

The inclusion of such a disclaimer suggests that this activity did pose challenges
to some modelers of optimization problems. In fact matrix generators are
inherently difficult to write, and that difficulty derives most significantly from
the challenges of debugging them. The following account describes procedures
that persisted through much of the 1970s:

. . . the debugging process . . . was basically the same one that
had been used since the introduction of mathematical programming
(MP) systems. When a model run was completed, the complete so-
lution was printed along with a report. The output was examined to
determine if the run passed the “laugh test”, that is, no infeasibles
and no “outrageous” values. If the laugh test failed, the solution
print would be examined by paper clip indexing and manual pag-
ing. Frequently, the solution print was not enough to determine the
problem and the matrix had to be printed. For large mathematical
programs, the two printouts could be 6 inches thick. Nevertheless,
the information needed to detect and correct the error took no more
than a page. The trick was to know where to look and have facility
with 6 inches of printout. [15]

This account, from a project at the U.S. Federal Energy Administration, sug-
gests the kinds of difficulties that prompted the malaise described out the outset
of this article. With computers becoming more powerful and attempts at opti-
mization modeling becoming correspondingly more widespread and ambitious,
the supply of sufficiently skilled debuggers — and debugging time — could not
keep up.
A direct solution, pursued by the FEA project, was to get the computer to do

some of the work of paging through the printout. This led to the development
of progressively more sophisticated systems known as PERUSE and ANALYZE
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[9] that worked with information from the 8-character names and searched for
patterns associated with errors and infeasibility.

Another approach was based on making matrix generators more reliable.
The essence of the debugging problem can be viewed as a gap between repre-
sentations: a high-level, structured concept of the optimization problem, which
is natural for human modelers to work with, is replaced by a computer program
whose output is a list of coefficients in a form suitable for fast processing by
a solver’s algorithms. It is understandably hard for a human analyst to tell
from looking at the coefficient list whether the program is running correctly,
or why the results are wrong. So if the matrix generator can be written in a
higher-level language that deals more directly with the concepts of LP formu-
lation, then at least the chances of errors due to low-level programming bugs
will be reduced. Indeed because such a program deals in terms closer to the
modeler’s original conception, one can expect that it will be easier to write,
verify, maintain, and fix over the lifetime of the model.

The same proceedings in which Beale describes matrix generators pro-
grammed in a general-purpose language (Fortran) contain this abstract of a
talk on a special-purpose matrix-generation language:

The approach used in MaGen is based on a recognition that math-
ematical models consist of activities and constraints on these activ-
ities, and that both the activities and constraints can be grouped
into classes. The generation of the matrix is carried out by FORM
VECTOR statements under control of a DICTIONARY which de-
fines the classes and provides mnemonic names for use in the model,
and a Data section which provides the numerical information. [10]

Languages like MaGen, here described by its creator Larry Haverly, did much
to structure the matrix generation process. They supported the small tables
of data from which LPs were built, and incorporated intuitive syntactic forms
for creation of unique 8-character names by concatenation of table row and
column labels.

My own introduction to matrix generators was through one of these lan-
guages. In 1974 I joined the Computer Research Center set up in Cambridge,
Massachusetts by the National Bureau of Economic Research (NBER). Al-
though the center’s focus was on statistical and data analysis software, it had
recently brought in Bill Orchard-Hays to lead a development effort in the rather
different area of linear programming. Orchard-Hays had taken the unusual
(for the time) job of programmer at the RAND corporation in the early 1950s,
shortly before George Dantzig’s arrival gave impetus to an effort to program
machines to do linear programming. Out of this collaboration came practical
implementations of Dantzig’s simplex method, initially on a card-programmed
calculator and then on the first IBM scientific computer.

The early days of linear programming were an exciting time to be working
with computers:
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mathematical programming and computing have been contempo-
rary in an almost uniquely exact sense. Their histories parallel
each other year by year in a remarkable way. Furthermore, math-
ematical programming simply could not have developed without
computers. Although the converse is obviously not true, still linear
programming was one of the important and demanding applications
for computers from the outset. [17]

These comments are from a detailed retrospective article in which Orchard-
Hays describes implementing a series of progressively more ambitious math-
ematical programming systems over a span of nearly three decades. By the
time that our paths crossed, however, he had more the outlook of a former
revolutionary, as this excerpt from the same article suggests:

. . . the nature of the computing industry, profession, and technol-
ogy has by now been determined – all their essential features have
existed for perhaps five years. One hopes that some of the more
recent developments will be applied more widely and effectively but
the technology that now exists is pretty much what will exist, leav-
ing aside a few finishing touches to areas already well developed,
such as minicomputers and networks.

This is perhaps a reminder that some fundamental aspects of computing and
of optimization have hardly changed since that time, though in other respects
today’s environment is unimaginably different. The Mathematical Program-
ming (now Mathematical Optimization) Society later fittingly named its prize
in computational mathematical programming after Beale and Orchard-Hays.

I was fortunate to learn linear programming from Orchard-Hays’s book [16]
in which it was described how the simplex method was implemented for com-
puters. Had I read one of the standard textbooks I would have learned a quite
impractical version that was motivated by a need to assign little LPs for so-
lution by hand. Among the components of the Orchard-Hays system that I
encountered was a matrix generation and reporting language; working with
two analysts at the U.S. Department of Transportation, I used it to develop
a network LP application involving the assignment of railroad cars to a train
schedule [6].

Modeling languages

The logical alternative to making matrix generation programs easier to debug
was to make them unnecessary to write, by instead designing a kind of language
that expressed the human modeler’s formulation of an optimization problem
directly to a computer system. The result was the concept of a modeling

language.
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Just as there are diverse ways to conceive of an optimization problem, there
are potentially diverse designs for modeling languages. However for general-
purpose modeling – not tied to any one application type or area – the one most
widely implemented and used approach is based on the variables and equations
familiar to any student of algebra and calculus. A generic optimization problem
may be viewed as the minimization or maximization of some function of decision
variables, subject to equations and inequalities involving those variables. So if
you want to

Minimize

n∑

j=1

cjxj

where each xj the quantity of one n of things to be bought, and cj is its unit
cost, then why not present it to the modeling software in a similar way, only
using a standard computer character set? In the resulting algebraic modeling
language, it could come out like this:

minimize TotalCost: sum j in 1..n c[j] * x[j];

Of course for input to computer software one must be quite explicit, so addi-
tional statements are needed to declare that n and the c[j] are data values,
while the x[j] are variables on an appropriate domain — since they represent
things to buy, most likely nonnegative values or nonnegative integers.

Early, less ambitious modeling language designs called for linear expressions
to be written in a simpler syntax, which might express an objective as

min 2.54 x1 + 3.37 x2 + 0.93 x3 + 7.71 x4 + 7.75 x5 + 2.26 x6 + ...

Although superficially this is also algebraic, it is no different in concept from
the aforementioned MPS file or any listing of nonzero coefficients. What most
importantly distinguishes the previous description of TotalCost is that it’s
symbolic, in that it uses mathematical symbols to describe a general form of
objective independently of the actual data. Whether n is 7 or a 7 thousand or
7 million, the expression for TotalCost is written the same way; its description
in the modeling language does not become thousands or millions of lines long,
even as the corresponding data file becomes quite large.
The same ideas apply to constraints, except that they express equality or

inequality of two algebraic expressions. So if in another model one wants to
state that ∑

p∈P

(1/aps)yp ≤ bs for all s ∈ S

it could be written, after some renaming of sets, parameters, and variables to
make their meanings clearer, as

subject to Time {s in STAGE}:

sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];
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Constraints usually occur in indexed collections as in this case, rather than in-
dividually as in our example of an objective. Thus the advantage of a symbolic
description is even greater, as depending on the data one constraint description
can represent any number of constraints, as well as any number of coefficients
within each constraint.

A well-written matrix generator also has the property of data independence,
but the advantages of modeling languages extend further. Most important, a
modeling language is significantly closer to the human analyst’s original con-
ception of the model, and further from the detailed mechanisms of coefficient
generation:

Model building in a strategic planning environment is a dynamic
process, where models are used as a way to unravel the complex
real-world situation of interest. This implies not only that a model
builder must be able to develop and modify models continuously in
a convenient manner, but, more importantly, that a model builder
must be able to express all the relevant structural and partition-
ing information contained in the model in a convenient short-hand
notation. We strongly believe that one can only accomplish this
by adhering to the rigorous and scientific notation of algebra. . . .
With a well-specified algebraic syntax, any mode representation can
be understood by both humans and machines. The machine can
make all the required syntactical and semantic checks to guarantee
a complete and algebraically correct model. At the same time, hu-
mans with a basic knowledge of algebra can use it as the complete
documentation of their model. [2]

This introduction by Bisschop and Meeraus to the GAMS modeling language
reflects a development effort begun in the 1970s, and so dates to the same
period as the quote that led off this article. Although its focus is on the
needs of optimization applications that the authors encountered in their work
at the World Bank, its arguments are applicable to optimization projects more
generally.

I also first encountered modeling languages in the 1970s, while working at
NBER. I do not recall how they first came to my attention, but as the Com-
puter Research Center’s mission was the design and development of innovative
modeling software, ideas for new languages and tools were continually under
discussion; naturally the younger members of the linear programming team
began to consider those ideas in the context of LP software:

Popular computer packages for linear programming do not differ
much in concept from ones devised ten or twenty years ago. We pro-
pose a modern LP system – one that takes advantage of such (rel-
atively) new ideas as high-level languages, interactive and virtual
operating systems, modular design, and hierarchical file systems.
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Particular topics include: computer languages that describe opti-
mization models algebraically; specialized editors for models and
data; modular algorithmic codes; and interactive result reporters.
We present specific designs that incorporate these features, and dis-
cuss their likely advantages (over current systems) to both research
and practical model-building. [7]

This was the abstract to a report on “A Modern Approach to Computer Sys-
tems for Linear Programming,” which I had begun writing with Michael J.
Harrison by the time that I left for graduate school in 1976. Algebraic model-
ing languages played a prominent role in our proposals, and an example from
a prototype language design was included.
“A Modern Approach . . . ” was completed at NBER’s Stanford office and

appeared in the M.I.T. Sloan School’s working paper series. After complet-
ing my PhD studies at Stanford and moving to Northwestern, an attempt to
submit it for publication made clear that some of its central assertions were
considerably less obvious to others than they had been to me. In particular we
had started off the description of our modeling language by stating that,

Models are first written, and usually are best understood, in alge-
braic form. Ideally, then, an LP system would read the modeler’s
algebraic formulation directly, would interpret it, and would then
generate the appropriate matrix.

Reviewers’ reactions to this claim suggested that there were plenty of adher-
ents to the traditional ways of mathematical programming, who would settle
for nothing less than a thorough justification. Thus I came to write a dif-
ferent paper, focused on modeling languages, which investigated in detail the
differences between modeler’s and algorithm’s form, the resulting inherent diffi-
culties of debugging a matrix generator, and many related issues. Additionally,
to confirm the practicality of the concept, I collected references to 13 modeling
language implementations, with detailed comparisons of the 7 that were so-
phisticated enough to offer indexed summations and collections of constraints.
Most have been forgotten, but they did include GAMS, which remains one of
the leading commercial modeling language systems, and LINDO, which gave
rise to another successful optimization modeling company.
The publication of this work as “Modeling Languages versus Matrix Gen-

erators” [3] was still not an easy matter. As I recall it was opposed by one
referee initially and by the other referee after its revision, but never by both
at the same time . . . and so a sympathetic editor was able to recommend it,
and after a further examination the editor-in-chief concurred. It appeared in a
computer science journal devoted to mathematical software, which at the time
seemed a better fit than the journals on operations research and management
science.
Subsequently a chance encounter led to my greatest adventure in modeling

languages. I had known Dave Gay when he was an optimization researcher
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at NBER, but by the time we met at the 1984 TIMS/ORSA conference in
San Francisco he had moved to the Computing Sciences Research Center at
Bell Laboratories. The Center’s researchers had developed Unix and the C
programming language among many innovations, and were given a free hand
in initiating new projects. Dave graciously invited me to spend a sabbatical
year there without any particular commitments, and as it happened my arrival
coincided with the completion of Brian Kernighan’s latest computer language
project. A fresh attempt at designing an algebraic modeling language seemed
like a great fit for the three of us.
Thus did AMPL get its start. We aimed to make it a declarative modeling

language in a rigorous way, so that the definition of a variable, objective, or
constraint told you everything you needed to know about it. In a constraint
such as Time above, you could assign or re-assign any parameter like rate[p,s]
or avail[s], or even a set like STAGE, and the resulting optimization problem
would change implicitly. A lot of our initial work went into the design of
the set and indexing expressions, to make them resemble their mathematical
counterparts and to allow expressions of full generality to appear anywhere in
a statement where they logically made sense.
The naming of software was taken very seriously at Bell Labs, so the choice

of AMPL, from A Mathematical Programming Language (with a nod to APL),
came well after the project had begun. By the late 1980s the concept of mod-
eling languages had become much more established and a paper on AMPL’s
design [4] was welcomed by Management Science. The referees did object that
our reported times to translate sophisticated models were often nearly as great
as the times to solve them, but by the time their reports came in, the translator
logic had been rewritten and the times were faster by an order of magnitude.
AMPL had a long gestation period, being fundamentally a research project

with a few interested users for its first seven years. Bell Labs provided an ideal
environment for innovation but not a clear path for disseminating the resulting
software. There was a strong tradition of disseminating written work, however,
so we proposed to write an AMPL book [5] that happened to have a disk in
the back. It started with a tutorial chapter introducing a basic model type
and corresponding language forms, which expanded to a four-chapter tutorial
covering a greater range of model types and language features. At that point
there seemed no good reason to abandon the tutorial approach, and subsequent
chapters eventually introduced all of the more advanced features using progres-
sively more advanced versions of the same examples. This approach paid off in
popularizing the modeling language approach beyond what a straightforward
user’s manual could have done.
The AMPL book’s design was commissioned by the publisher as part of a

projected series in which volumes on different software systems would be asso-
ciated with different animals, but beyond that we have no specific explanation
for the cat that appears on the cover.

Documenta Mathematica · Extra Volume ISMP (2012) 377–388



386 Robert Fourer

Reflections

Algebraic modeling languages have long since become an established approach
rather than a “modern” departure. Four general-purpose languages – AIMMS,
AMPL, GAMS, MPL – and their associated software have been in active devel-
opment for two decades or more, each by a small company devoted to optimiza-
tion. The similarity of their names notwithstanding, the stories of how these
language came about are all quite different; and although based on the same
underlying concept, they differ significantly in how the concept is presented
to users. Moreover a comparable variety of algebraic modeling languages have
developed for dedicated use with particular solvers.

Freedom from programming the generation of matrix coefficients has indeed
proved to be a powerful encouragement to applied optimization. Modeling
languages have lowered the barrier to getting started, particularly as the popu-
lation of technically trained computer users has expended far beyond the com-
munity of practiced programmers. Applications of optimization models have
spread throughout engineering, science, management, and economics, reflected
in hundreds of citations annually in the technical literature.

Modeling languages’ general algebraic orientation also has the advantage of
allowing them to express nonlinear relations as easily as linear ones. The ben-
efits of avoiding programming are particularly great in working with nonlinear
solvers that require function values and derivative evaluations, which modeling
language systems can determine reliably straight from the algebraic descrip-
tions. In fact the advent of efficiently and automatically computed second
derivatives (beginning with [8]) was a significant factor in advancing nonlinear
solver design.

And what of matrix generators? They have by no means disappeared, and
will surely maintain a place in optimization modeling as long as there are tal-
ented programmers. They have particular advantages for tight integration of
solver routines into business systems and advanced algorithmic schemes. And
modeling languages have greatly influenced the practice of matrix generation
as well, with the help of object-oriented programming. Through the creation
of new object types and the overloading of familiar operators, it has become
possible to use a general programming language in a way that looks and feels
a lot more like a modeling language declaration. Even the symbolic nature of
a model can be preserved to some degree. Thus the process of creating and
maintaining a generator can be made more natural and reliable, though diffi-
culties of disentangling low-level programming bugs from higher-level modeling
errors are still a powerful concern.

Whatever the choice of language, it seems clear that developments over four
decades have realized much of the vision of letting people communicate opti-
mization problems to computer systems in the same way that people imagine
and describe optimization problems, while computers handle the translation to
and from the forms that algorithms require. And still, anyone who has pro-
vided support to modeling language users is aware that the vision has not been
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entirely realized, and that modelers even now need to do a certain amount of
translating from how they think of constraints to how modeling languages are
prepared to accept them. Replies that begin, “First define some additional
zero-one variables . . . ”, or “You could make the quadratic function convex if
. . . ”, remain all too common; the conversions implied by these statements have
been addressed to some extent in some designs, but not yet in a truly thorough
manner applicable both to a broad range of models and a variety of solvers.
In conclusion it is reasonable to say that optimization modeling is considered

challenging today just as it was in the 1970s, but that he experience of creating
an application has changed for the better. Just as in the case of solver software,
improvements in modeling software have occurred partly because computers
have become more powerful, but equally because software has become more
ambitious and sophisticated. The malaise of earlier times seems much less
evident, and there is arguably a better balance between what can be formulated
and understood and what can be optimized.
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