
Documenta Math. 389

Who Invented the Reverse Mode of Differentiation?

Andreas Griewank

2010 Mathematics Subject Classification: 05C85, 49M99, 65D25,
68Q17
Keywords and Phrases: Adjoints, gradient evaluation, round-off esti-
mation, program reversal

Prologue

Nick Trefethen [13] listed automatic differentiation as one of the 30 great nu-
merical algorithms of the last century. He kindly credited the present author
with facilitating the rebirth of the key idea, namely the reverse mode. In fact,
there have been many incarnations of this reversal technique, which has been
suggested by several people from various fields since the late 1960s, if not ear-
lier.
Seppo Linnainmaa (Lin76) of Helsinki says the idea came to him on a sunny

afternoon in a Copenhagen park in 1970. He used it as a tool for estimating
the effects of arithmetic rounding errors on the results of complex expressions.
Gerardi Ostrowski (OVB71) discovered and used it some five years earlier in the
context of certain process models in chemical engineering. Here and throughout
references that are not listed in the present bibliography are noted in paren-
theses and can be found in the book [7].
Also in the sixties Hachtel et al. [6] considered the optimization of electronic

circuits using the costate equation of initial value problems and its discretiza-
tions to compute gradients in the reverse mode for explicitly time-dependent
problems. Here we see, possibly for the first time, the close connection between
the reverse mode of discrete evaluation procedures and continuous adjoints of
differential equations. In the 1970s Iri analyzed the properties of dual and
adjoint networks. In the 1980s he became one of the key researchers on the
reverse mode.
From a memory and numerical stability point of view the most difficult aspect

of the reverse mode is the reversal of a program. This problem was discussed
in the context of Turing Machines by Benett (Ben73), who foreshadowed the
use of checkpointing as a tradeoff between numerical computational effort and
memory requirement.

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

390 Andreas Griewank

Motivated by the special case of back-propagation in neural networks, Paul
Werbos (Wer82) compared the forward and reverse propagation of derivatives
for discrete time-depedent problems with independent numbers of input, state,
and output variables. He even took into account the effects of parallel compu-
tations on the relative efficiency.

Many computer scientists know the reverse mode as the Baur-Strassen

method (BS83) for computing gradients of rational functions that are eval-
uated by a sequence of arithmetic operations. For the particular case of matrix
algorithms Miller et al. proposed the corresponding roundoff analysis [10].
Much more general, Kim, Nesterov et al. (KN+84) considered the composi-
tion of elementary functions from an arbitrary library with bounded gradient
complexity.

Bernt Speelpenning (Spe80) arrived at the reverse mode via compiler opti-
mization when Bill Gear asked him to automatically generate efficient codes for
Jacobians of stiff ODEs. I myself rediscovered it once more in the summer of
1987 when, newly arrived at Argonne, I was challenged by Jorge Moré to give
an example of an objective function whose gradient could not be evaluated at
about the same cost as the function itself.

One of the earliest uses of the reverse mode was in data assimilation in
weather forecasting and oceanography. This was really just a history match by
a weighted least squares calculation on a time-dependent evolution, where the
parameters to be approximated include the present state of the atmosphere.
The recurrent substantial effort of writing an adjoint code for geophysical mod-
els eventually spawned activities to generate adjoint compilers such as Tape-
nade (HP04) and TAF (GK98).

The first implementations of the reverse mode based on the alternative soft-
ware technology of operator overloading was done in PASCAL-SC, an extension
of PASCAL for the purposes of interval computation. The corresponding veri-
fied computing community has later included the revers mode in their analysis
and some but not all of the software [8].

Relevance to Optimization

The eminent optimizer Phil Wolfe made the following observation in a TOMS
article (Wol82):

There is a common misconception that calculating a function of n
variables and its gradient is about (n + 1) times as expensive as
just calculating the function. This will only be true if the gradi-
ent is evaluated by differencing function values or by some other
emergency procedure. If care is taken in handling quantities, which
are common to the function and its derivatives, the ratio is usually
1.5, not (n + 1), whether the quantities are defined explicitly or
implicitly, for example, the solutions of differential equations . . .

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

Who Invented the Reverse Mode of Differentiation? 391

Obviously this Cheap Gradient Principle is of central importance for the
design of nonlinear optimization algorithms and, therefore, fits very well into
this volume. Even now it is generally not well understood that there is no
corresponding Cheap Jacobian Principle, which one might have hoped to obtain
by computing Jacobians row-wise. On the other hand, many of the authors
mentioned above noted that Hessian times vector products and other higher

order adjoint vectors can be obtained roughly with the same complexity as the
underlying scalar and vector functions.
The salient consequence of the cheap gradient principle for nonlinear opti-

mization is that calculus-based methods can, in principle, be applied to large-
scale problems in thousands and millions of variables. While there are chal-
lenges with regards to the memory management and the software implementa-
tion, we should not yield to the wide spread engineering practice of optimizing
only on reduced order models with derivative free direct search methods. On a
theoretical level there has been a lot of activity concerning the use of continuous
and discrete adjoints in PDE constrained optimization [1] recently .
If everything is organized correctly, the cheap gradient principle generalizes

to what one might call the holy grail of large scale optimization, namely

Cost(Optimization)

Cost(Simulation)
∼ O(1)

By this we mean that the transition from merely simulating a complex system
(by evaluating an appropriate numerical model) to optimizing a user specified
objective (on the basis of the given model) does not lead to an increase in
computational cost by orders of magnitude. Obviously, this is more a rule of
thumb than a rigorous mathematical statement.
The selective name-dropping above shows that, especially from 1980 onwards,

there have been many developments that cannot possibly be covered in this
brief note. Since we do not wish to specifically address electronic circuits or
chemical processes we will describe the reverse mode from Seppo Linnainmaa’s
point of view in the following two sections. In the subsequent sections we
discuss temporal and spatial complexity of the reverse mode. In the final
section we draw the connection to the adjoint dynamical systems, which go
back to Pontryagin.

Round-off Analysis á la Linnainmaa

Seppo Linnainmaa was neither by training nor in his later professional career
primarily a mathematician. In 1967 he enrolled in the first computer science
class ever at the University of Helsinki. However, since there were still only
very few computer science courses, much of his studies were in mathematics.
Optimization was one of the topics, but did not interest him particularly. His
supervisor Martti Tienari had worked for Nokia until he became an associate
professor of computer science in 1967. The local system was an IBM 1602 and
for heavy jobs one had to visit the Northern European Universities Computing

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

392 Andreas Griewank

Figure 1

Center at Copenhagen, which had an IBM 7094. All computer manufacture
had their own floating point system.
After finishing his Master Thesis concerning the Estimation of Rounding

Errors in 1970 he obtained, four years later, the first doctorate ever awarded
in computer science at Helsinki University. In 1977 he got a Finnish grant as a
visiting scholar with William Kahan at Berkeley, whose group was instrumental
in developing the later IEEE Standard 754. Linnainmaa does not think that
the results of his thesis had any specific impact on the development of the
standard.
Moreover, he did not market his approach as a method for cheaply evaluating

gradients either, so there was little resonance until I called him up from Argonne
in the late eighties. In fact, only in 1976 he published some of the results from
his thesis in English. In Figure 1 one sees him holding up a reprint of this
BIT paper inside his house in Helsinki in March this year. After continuing his
work in numerical analysis he became, a few years later, primarily interested in
artificial intelligence. Curiously, as he describes it, this meant at that time the
simulation and optimization of complex transport systems, so he might have
felt at home in todays Matheon application area B. Later on he worked in other
areas of artificial intelligence and was a long time employee of the Technical
Research Centre of Finland.
His motivation was classical numerical analysis in the sense of floating point

arithmetic. On the right-hand side of Figure 1, we took from his BIT paper
the interpretation of a simple evaluation process

u2 = ϕ2(u0, u1); u3 = ϕ3(u1, u2); u4 = ϕ4(u2, u3);

as a computational graph, drawn bottom up. Here the binary functions ϕi()

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

Who Invented the Reverse Mode of Differentiation? 393

for i = 2, 3, 4 might be arithmetic operations and the arcs are annotated by the
partial derivatives dij .

More generally, Linnainmaa assumed that the vector function F̃ : D ⊂ R
n →

R
m in question is evaluated by a sequence of assignments

ui = ϕi(vi) with vi ≡ (uj)j≺i for i = n . . . l

Here the elemental functions ϕi are either binary arithmetic operations or unary
intrinsic functions like

ϕi ∈ Φ ≡ {rec, sqrt, sin, cos, exp, log, . . .}

The precedence relation ≺ represents direct data dependence and we combine
the arguments of ϕi to a vector vi. Assuming that there are no cyclic depen-
dencies, we may order the variables such that j ≺ i ⇒ j < i. Then we can
partition the sequence of scalar variables ui into the vector triple

(x, z,y) = (u0, . . . , un−1, un, . . . , ul−m, ul−m+1, . . . , ul) ∈ R
n+l

such that x ∈ R
n is the vector of independent variables, y ∈ R

m the vector of
dependent variables, and z ∈ R

l+1−m−n the (internal) vector of intermediates.
In a nonlinear optimization context the components of the vector function
F may represent one or several objectives and also the constraints that are
more or less active at the current point. In this way one may make maximal
use of common subexpressions, which can then also be exploited in derivative
evaluations.
In finite precision floating point arithmetic, or due to other inaccuracies, the

actual computed values ũi will satisfy a recurrence

ũi = ũj ◦ ũk + δi or ũi = ϕi(ũj) + δi for i = n . . . l

Here δ ≡ (δi)i=0...l ∈ R
l+1 is a vector of hopefully small perturbations. The

first n perturbations δi are supposed to modify the independents so that ũi−1 =
xi + δi−1 for i = 1 . . . n. Now the key question is how the perturbations will
effect the final result

ỹ ≡ (ũi)i=l−m+1...l ≡ F̃(x, δ)

When the perturbations δi vanish we have obviously F̃(x, 0) = F(x) and, as-
suming all elemental functions to be differentiable at their respective (exact)
arguments, there must be a Taylor expansion

F̃(x, δ) = F(x) +

l
∑

i=0

ūi δi + o(‖δ‖)

Here the coefficients

ūi ≡ ūi(x) ∈ R
m ≡

∂F(x, δ)

∂δi

∣

∣

∣

∣

δ=0

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

394 Andreas Griewank

are variously known as adjoints or impacts factors. They may be thought of
as partial derivatives of the end result ỹ with respect to the intermediates ui

for i = n . . . l and the independents uj−1 = xj for j = 1 . . . n. The latter form
clearly the Jacobian

F′(x) ≡
∂F(x)

∂x
≡

(

ū⊤
j−1

)

j=1...n
∈ R

m×n

Moreover, provided the m dependent variables do not directly depend on each
other so that j ≺ i ⇒ j ≤ l −m, we have

(

ū⊤
l−m+i

)

i=1...m
= I = (e⊤i)i=1...m,

which is used as initialization in the recursive procedures below.
For discretizations of ODEs or PDEs the perturbations δi may also be inter-

preted as discretization errors. Controlling them in view of the adjoints ūi by
mesh adaptions is called the dual weighted residual approach [4]. In that con-
text the ūi are usually computed by solving discretizations of the corresponding
adjoint ODE or PDE, which are always linear. Questions of the commutativity
of discretization and adjoining or at least consistency to a certain order have
been considered by Hager and Walther, for recent developments see [2].
When the perturbations are exclusively produced by rounding and there is

no exponent overflow, we may estimate the perturbations by |δi| ≤ |ṽi|eps,
with eps denoting the relative machine precision. Following Linnainmaa we
obtain from the triangle inequality the estimates

‖F̃(x, δ)− F(x)‖ .

l
∑

i=0

‖ūi‖|δi| . eps

l
∑

i=0

‖ūi‖|ui|

where we have replaced ũi by ui in the last approximate relation. This estimate
of the conditioning of the evaluation process was applied to matrix algorithms
in (Stu80) and [10]. It was also studied by Iri, whose results can be traced
backward from (ITH88). Koichi Kubota [9] developed and implemented a
strategy for adaptive multi-precision calculations based on the impact factors
ūi.

Jacobian accumulation

Now we turn to the aspect of Seppo Linnainmaa’s thesis that is most interesting
to us, namely the fact that he proposed what is now known as the reverse mode
for calculating the adjoint coefficients ūi.
Assuming that all elementary functions ϕi are continuously differentiable at

the current argument, we denote their partial derivatives by di j = ∂ϕi/ ∂uj ∈
R. These scalars di j are directly functions of ui and indirectly functions of the
vector of independents x.

The partial ordering ≺ allows us to interpret the variables ui as nodes of
a directed acyclical graph whose edges can be annotated by the elementary
partials di j . For the tiny example considered above this so-called Kantorovich
graph (see [3]) is depicted on the right-hand side of Figure 1. It is rather

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

Who Invented the Reverse Mode of Differentiation? 395

important to understand that DAGs are not simply expression trees, but that
there may be diamonds and other semi-cycles connecting certain pairs of nodes
uj and ui. It is intuitively clear that the partial derivative of any dependent
variable yi ≡ vl−m+i with respect to any independent variable xj ≡ uj−1 is
equal to the sum over all products of partials di j belonging to edge disjoint
paths that connect the pair (xj ,yi) in the computational graph. The resulting
determinant-like expression is usually called Bauer’s formula ([3]). In the tiny
example above we obtain the two gradient components

∂u4/ ∂u0 = d4 2 d2 0+d4 3 d3 2 d2 0; ∂u4/ ∂u1 = d4 2 d2 1+d4 3 d3 2 d2 1+d4 3 d3 1

In general, the direct application of Bauer’s formula to accumulate complete
Jacobians involves an effort that is proportional to the length of an explicit al-
gebraic representation of the dependents y in terms of the independents x. As
this effort typically grows exponentially with respect to the depth of the compu-
tational graph, one can try to reduce it by identifying common subexpressions,
which occur even for our tiny example. Not surprisingly, absolutely minimizing
the operations count for Jacobian accumulation is NP hard (Nau06).
However, if the number m of dependents is much smaller than the num-

ber n of independents, Jacobians should be accumulated in the reverse mode
as already suggested by Linnainmaa. Namely, one can traverse the computa-
tional graph backward to compute the adjoint vectors ūi defined above by the
recurrence

ūj =
∑

i≻j

ūi di j ∈ R
m for j = l −m. . . 0

This relation says that the (linearized) impact of the intermediate or inde-
pendent variable uj on the end result y is given by the sum of the impact
factors over all successors {ui}i≻j weighted by the partials di j . Note that the
ūj are computed backward, starting from the terminal values ūl−m+i = ei for
i = 1 . . .m. For the tiny example depicted above, one would compute from
ū4 = 1 the adjoint intermediates

ū3 = 1 · d4 3; ū2 = 1 · d4 2 + ū3 d3 2; ū1 = ū2 d2 1 + ū3 d3 1; ū0 = ū2 d2 0

Note that there is a substantial reduction in the number of multiplications
compared to Bauer’s formula above and that the process proceeds backward,
i.e., here downward through the computational graph, which was drawn buttom
up for the evaluation itself. Since function evaluations are usually defined in
terms of predecessor sets {j : j ≺ i} rather than successor sets {i : i ≻ j}, the
accumulation of adjoints is usually performed in the incremental form

v̄i += ūi ∇ϕi(vi) ∈ R
m×ni for i = l . . . n

where ∇ϕi(vi) ≡ (di j)j≺i is a row vector and the matrices of adjoints v̄i ≡
(ūj)j≺i ∈ R

m×ni are assumed to be initialized to zero for i ≤ l −m. For the
tiny example above we obtain the statements

v̄4 += 1 · (d4 2, d4 3); v̄3 += ū3 (d3 1, d3 2); v̄2 += ū2 (d2 0, d2 1)

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

396 Andreas Griewank

where v̄4 ≡ (ū2, ū3), v̄3 ≡ (ū1, ū2) and v̄2 ≡ (ū0, ū1).

Temporal complexity

The mathematically equivalent incremental form shows very clearly that each
elemental function ui = ϕi(vi) spawns a corresponding adjoint operation v̄i +=
ūi ∇ϕi(vi). The cost of this operation scales linearly with respect to m, the
number of dependent variables. Hence, for a fixed library Φ there is a common
constant ω such that for all i

OPS{+= ūi ∇ϕi(vi)} ≤ mω OPS{ui = ϕi(vi)}.

Here OPS is some temporal measure of computational complexity, for example
the classical count of arithmetic operations. This implies for the composite
function F and its Jacobian that

OPS{F′(x)} ≤ mω OPS{F(x)}

The constant ω depends on the complexity measure OPS and the computing
platform. If one considers only polynomial operations and counts the number
of multiplications, the complexity ratio is exactly ω = 3. This is exemplified
by the computation of the determinant of a dense symmetric positive matrix
via a Cholesky factorization. Then the gradient is the adjugate, a multiple of
the transposed inverse, which can be calculated using exactly three times as
many multiplications as needed for computing the determinant itself.

The linear dependence on m cannot be avoided in general. To see this,
one only has to look at the trivial example F(x) = b sin(a⊤x) with constant
vectors b ∈ R

m and a ∈ R
n. Here the operations count for F is essentially

n+m multiplications and for F′(x) it is clearly nm multiplications so that for
the multiplicative complexity measure OPS{F′(x)} & 0.5m OPS{F(x)} provided
m ≤ n. Hence, the cheap gradient principle does not extend to a cheap Jacobian
principle. Note that this observation applies to any conceivable method of
computing F′(x) as an array of n×m usually distinct numbers.

The memory issue

For general F the actual runtime ratio between Jacobians and functions may
be significantly larger due to various overheads. In particular, it has been well
known since Benett [5] that executing the reverse loop in either incremental
or nonincremental form requires the recuperation of the intermediate values
ui in the opposite order to that in which they were generated initially by the
forward evaluation loop. The simplest way is to simply store all the interme-
diate values onto a large stack, which is accessed strictly in a first-in last-out
fashion. Speelpenning [12] depicted the sequential storage of all intermediate
operations as shown in Figure 2. This picture quite closely reflects the storage
in other AD-tools such as ADOL-C.

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

Who Invented the Reverse Mode of Differentiation? 397

Figure 2

Since we have to store some information for every single operation performed,
we obtain the spatial complexity

MEM{F′(x)} ∼ OPS{F(x)} & MEM{F(x)}

Note that this memory estimate applies to the vector and scalar cases m > 1
and m = 1 alike. Hence, from a memory point of view it is advantageous to
propagate several adjoints simultaneously backward, for example in an opti-
mization calculation with a handful of active constraints.
Originally, the memory usage was a big concern because memory size was

severely limited. Today the issue is more the delay caused by large data move-
ments from and to external storage devices, whose size seems almost unlimited.
As already suggested by Benett and Ostrowski et al. the memory can be re-
duced by orders of magnitude through an appropriate compromise between
storage and recomputation of intermediates, described as checkpointing in [7].
One possibility in a range of trade-offs is to realize a logarithmic increase for
both spatial and temporal complexity

MEM{F′(x)}

MEM{F(x)}
∼ log(OPS{F(x)}) ∼

OPS{F′(x)}

OPS{F(x)}m

Gradients and adjoint dynamics

Disregarding the storage issue we obtain, for the basic reverse mode for the
scalar case m = 1 with f(x) = F(x), the striking result that

OPS{∇f(x)} ≤ ω OPS{f(x)}

In other words, as Wolfe observed, gradients can ‘always’ be computed at a
small multiple of the cost of computing the underlying function, irrespective
of n the number of independent variables, which may be huge. Since m = 1,
we may also interpret the scalars ūi as Lagrange multipliers of the defining
relations ui − ϕi(vi) = 0 with respect to the single dependent y = ul viewed

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

398 Andreas Griewank

as objective function. This interpretation was used amongst others by the
oceanographer Thacker in (Tha91). It might be used to identify critical and
calm parts of an evaluation process, possibly suggesting certain simplifications,
e.g., the local coarsening of meshes.
As discussed in the prologue, the cheapness of gradients is of great importance

for nonlinear optimization, but still not widely understood, except in the time
dependent context. There we may have, on the unit time interval 0 ≤ t ≤ 1,
the primal dual pair of evolutions

u̇(t) ≡ ∂u(t)/∂t = F(u(t)) with u(0) = x,

˙̄u(t) ≡ ∂ū(t)/∂t = F′(u(t))⊤ū(t) with ū(1) = ∇f(u(1))

Here the state u belongs to some Euclidean or Banach space and ū to its topo-
logical dual. Correspondingly, the right-hand side F(u) and its dual F′(u)⊤ū
may be strictly algebraic or involve differential operators.
Then it has been well understood since Pontryagin that the gradient of a

function y = f(u(1)) with respect to the initial point x is given by ū(0). It can
be computed at maximally ω = 2 times the computational effort of the forward
calculation of u(t) by additionally integrating the second, linear evolution equa-
tion backward. In the simplest mode without checkpointing this requires the
storage of the full trajectory u(t), unless the right-hand side F is largely linear.
Also for each t the adjoint states ū(t) represent the sensitivity of the final value
y = f with respect to perturbations of the primal state u(t). Of course, the
same observations apply to appropriate discretizations, which implies again the
proportionality between the operations count of the forward sweep and mem-
ory need of the reverse sweep for the gradient calculation. To avoid the full
trajectory storage one may keep only selected checkpoints during the forward
sweep as mentioned above and then recuperate the primal trajectory in pieces
on the way back, when the primal states are actually needed.
In some sense the reverse mode is just a discrete analogue of the extremum

principle going back to Pontryagin. Naturally, the discretizations of dynamical
systems have more structure than our general evaluation loop described on
page 4, but the key characteristics of the reverse mode are the same.

Summary and outlook

The author would have hoped that the cheap gradient principle and other
implications of the reverse mode regarding the complexity of derivative cal-
culations were more widely understood and appreciated. However, as far as
smooth optimization is concerned most algorithm designers have always as-
sumed that gradients are available, notwithstanding a very substantial effort
in derivative-free optimization over the last couple of decades.
Now, within modeling environments such as AMPL and GAMS, even second

derivatives are conveniently available, though one hears occasionally complaints
about rather significant runtime costs. That is no surprise since we have seen

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

Who Invented the Reverse Mode of Differentiation? 399

that without sparsity, complete Jacobians and Hessians may be an order of
magnitude more expensive than functions and gradients, and otherwise, one
finds that the evaluation of sparse derivatives may entail a significant interpre-
tative overhead.
Further progress on the reverse mode can be expected mainly from the de-

velopment of an adjoint calculus in suitable functional analytical settings. So
far there seems to be little prospect of a generalization to nonsmooth problems
in a finite dimensional setting. The capability to quantify the rounding error
propagation and thus measure the conditioning of numerical algorithms, which
played a central role in the evolution of the reverse mode, awaits further ap-
plication. In contrast, checkpointing or windowing as it is sometimes called in
the PDE community, is being used more and more to make the reverse mode
applicable to really large problems.

References

[1] Constrained optimization and optimal control for partial differential equa-
tions. In G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher,
V. Schulz, M. Ulbrich, and St. Ulbrich, editors, International Series of Nu-
merical Mathematics, pages 99–122. Springer, Basel, Dordrecht Heidelberg
London New York, 2012.

[2] Mihai Alexe and Adrian Sandu. On the discrete adjoints of adaptive time
stepping algorithms. Journal of Computational and Applied Mathematics,
233(4):1005–1020, 2009.

[3] Friedrich L. Bauer. Computational graphs and rounding errors. SIAM J.

Numer. Anal., 11(1):87–96, 1974.

[4] R. Becker and R. Rannacher. An optimal control approach to error control
and mesh adaptation in finite element methods. Acta Numerica 2001,
pages 1–102, 2001.

[5] C. H. Bennett. Logical Reversability of Computation. IBM Journal of

Research and Development, 17:525–532, 1973.

[6] F.G. Gustavson G.D. Hachtel, R.K. Brayton. The sparse tableau approach
to network design and analysis. IEEE Transactions of Circuit Theory,
18(1):102 – 113, 1971.

[7] A. Griewank and A. Walther. Principles and Techniques of Algorithmic

Differentiation, Second Edition. SIAM, 2008.

[8] Ralph Baker Kearfott. GlobSol user guide. Optimization Methods and

Software, 24(4–5):687–708, August 2009.

[9] Koichi Kubota. PADRE2 – Fortran precompiler for automatic differenti-
ation and estimates of rounding error. In Martin Berz, Christian Bischof,

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

400 Andreas Griewank

George Corliss, and Andreas Griewank, editors, Computational Differ-

entiation: Techniques, Applications, and Tools, pages 367–374. SIAM,
Philadelphia, Penn., 1996.

[10] Webb Miller and Cella Wrathall. Software for Roundoff Analysis of Matrix

Algorithms. Academic Press, 1980.

[11] U. Naumann. Optimal Jacobian accumulation is NP-complete. Math.

Prog., 112:427–441, 2006.

[12] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given

by Algorithms. PhD thesis, Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana-Champaign, Ill., January 1980.

[13] Nick Trefethen. Who invented the greatest numerical algorithms, 2005.
www.comlab.ox.ac.uk/nick.trefethen.

Andreas Griewank
Institut für Mathematik
Humboldt Universität zu Berlin
Unter den Linden 6
10099 Berlin
Germany
griewank@mathematik.hu-berlin.de

Documenta Mathematica · Extra Volume ISMP (2012) 389–400

www.comlab.ox.ac.uk/nick.trefethen
mailto:griewank@mathematik.hu-berlin.de

