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The starting point of the history of Hilbert’s 17th problem was the oral de-
fense of the doctoral dissertation of Hermann Minkowski at the University of
Königsberg in 1885. The 21 year old Minkowski expressed his opinion that
there exist real polynomials which are nonnegative on the whole R

n and can-
not be written as finite sums of squares of real polynomials. David Hilbert was
an official opponent in this defense. In his “Gedächtnisrede” [6] in memorial
of H. Minkowski he said later that Minkowski had convinced him about the
truth of this statement. In 1888 Hilbert proved in a now famous paper [4] the
existence of a real polynomial in two variables of degree six which is nonnega-
tive on R

2 but not a sum of squares of real polynomials. Hilbert’s proof used
some basic results from the theory of algebraic curves. Apart from this his
construction is completely elementary. The first explicit example of this kind
was given by T. Motzkin [10] only in 1967. It is the polynomial

M(x, y) = x4y2 + x2y4 + 1− 3x2y2.

(Indeed, the arithmetic-geometric mean inequality implies that M ≥ 0 on R
2.

Assume to the contrary that M =
∑

j f
2

j is a sum of squares of real polyno-
mials. Since M(0, y) = M(x, 0) = 1, the polynomials fj(0, y) and fj(x, 0) are
constants. Hence each fj is of the form fj = aj + bjxy + cjx

2y + djxy
2. Then

the coefficient of x2y2 in the equality M =
∑

j f
2

j is equal to −3 =
∑

j b
2

j . This
is a contradiction.)
A nice exposition around Hilbert’s construction and many examples can be

found in [16]. Hilbert also showed in [4] that each nonnegative polynomial in
two variables of degree four is a finite sum of squares of polynomials.
As usual we denote by R[x1, . . . , xn] and R(x1, . . . , xn) the ring of polynomi-

als resp. the field of rational functions in x1, . . . , xn with real coefficients.
The second pioneering paper [5] of Hilbert about this topic appeared in

1893. He proved by an ingenious and difficult reasoning that each nonnegative
polynomial p ∈ R[x, y] on R

2 is a finite sum of squares of rational (!) functions
from R(x, y). Though not explicitly stated therein a closer look at Hilbert’s
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proof shows even that p is a sum of four squares. For Motzkin’s polynomial
one has the identity

M(x, y) =
x2y2(x2 + y2 + 1)(x2 + y2 − 2)2 + (x2 − y2)2

(x2 + y2)2

which gives a representation of M as a sum of four squares of rational functions.
Motivated by his previous work Hilbert posed his famous 17th problem at

the International Congress of Mathematicians in Paris (1900):

Hilbert’s 17th problem:

Suppose that f ∈ R(x1, . . . , xn) is nonnegative at all points of Rn where f is
defined. Is f a finite sum of squares of rational functions?

A slight reformulation of this problem is the following: Is each polynomial
f ∈ R[x1, . . . , xn] which is nonnegative on R

n a finite sum of squares of ra-
tional functions, or equivalently, is there an identity q2f =

∑

j p
2

j , where
q, p1, · · · , pk ∈ R[x1, . . . , xn] and q 6= 0. In the case n = 1 this is true, since the
fundamental theorem of algebra implies that each nonnegative polynomial in
one variable is a sum of two squares of real polynomials. As noted above, the
case n = 2 was settled by Hilbert [5] itself. Hilbert’s 17th problem was solved
in the affirmative by Emil Artin [1] in 1927. Using the Artin-Schreier theory
of ordered fields Artin proved

Theorem 1. If f ∈ R[x1, · · · , xn] is nonnegative on R
n, then there are poly-

nomials q, p1, . . . , pk ∈ R[x1, · · · , xn], q 6= 0, such that

f =
p2
1
+ · · ·+ p2k

q2
.

Artin’s proof of this theorem is nonconstructive. For strictly positive polyno-
mials f (that is, f(x) > 0 for all x ∈ R

n) a constructive method was developed
by Habicht [3]. It is based on Polya’s theorem [13] which states that for each ho-
mogeneous polynomial p such that p(x1, . . . , xn) > 0 for all x1 ≥ 0, · · · , xn ≥ 0
and (x1, . . . , xn) 6= 0, there exists a natural number N such that all coefficients
of the polynomial (x1 + · · · + xn)

Np are positive. A quantitative version of
Polya’s theorem providing a lower estimate for the number N in terms of p was
recently given by Powers and Reznick [14].
There is also a quantitative version of Hilbert’s 17th problem which asks how

many squares are needed. In mathematical terms it can be formulated in terms
of the pythagoras number. For a ring K, the pythagoras number p(K) is the
smallest natural numberm such that each finite sum of squares of elements ofK
is a sum of m squares. If there is no such number m we set p(K) = ∞. Clearly,
p(R[x]) = p(R(x)) = 2. Recall that Hilbert [5] had shown that p(R(x, y)) ≤ 4.
The landmark result on the quantitative version of Hilbert’s 17th problem was
published in 1967 by A. Pfister [11] who proved

Theorem 2. p(R(x1, · · · , xn)) ≤ 2n.
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That is, by Theorems 1 and 2, each nonnegative polynomial f ∈ R[x1, . . . , xn]
is a sum of at most 2n squares of rational functions. Pfister’s proof was based
on the theory of multiplicative forms (see, e.g., [12]), now also called Pfister
forms.
The next natural question is: What is value of the number p(R(x1, . . . , xn))?

For n ≥ 3 this is still unknown! It is not difficult to prove that the sum
1 + x2

1
+ · · · + x2

n of n+ 1 squares is not a sum of m squares with m < n+ 1.
Therefore

n+ 1 ≤ p(R(x1, . . . , xn)) ≤ 2n.

Using the theory of elliptic curves over algebraic function fields it was shown in
[2] that Motzkin’s polynomial is not a sum of 3 squares. Hence p(R(x1, x2)) = 4.
Artin’s theorem triggered many further developments. The most important

one in the context of optimization is to look for polynomials which are nonneg-
ative on sets defined by polynomial inequalities rather than the whole R

n. To
formulate the corresponding result some preliminaries are needed. Let us write
∑

2

n for the cone of finite sums of squares of polynomials from R[x1, . . . , xn].
In what follows we suppose that F = {f1, . . . , fk} is a finite subset of

R[x1, . . . , xn]. In real algebraic geometry two fundamental objects are asso-
ciated with F . These are the basic closed semialgebraic set

KF = {x ∈ R
n : f1(x) ≥ 0, · · · , fk(x) ≥ 0}

and the preorder

TF :=

{

∑

εi∈{0,1}

fε1
1

· · · fεk
k σε; σε ∈

∑2

n

}

.

Note that the preorder TF depends on the set F of generators for the semial-
gebraic set KF rather than the set KF itself.
Obviously, all polynomials from TF are nonnegative on the set KF , but

in general TF does not exhaust the nonnegative polynomials on KF . The
Positivstellensatz of Krivine-Stengle describes all nonnegative resp. positive
polynomials on the semialgebraic set KF in terms of quotients of elements of
the preorder TF .

Theorem 3. Let f ∈ R[x1, . . . , xn].
(i) f(x) ≥ 0 for all x ∈ KF if and only if there exist p, q ∈ TF and m ∈ N

such that pf = f2m + q.

(ii) f(x) > 0 for all x ∈ KF if and only if there are p, q ∈ TF such that

pf = 1 + q.

This theorem was proved by G. Stengle [19], but essential ideas were already
contained in J.-L. Krivine’s paper [8]. In both assertions (i) and (ii) the ‘if’
parts are almost trivial. Theorem 3 is a central result of modern real algebraic
geometry. Proofs based on the Tarski-Seidenberg transfer principle can be
found in [15] and [9].
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Let us set f1 = 1 and k = 1 in Theorem 3(i). Then KF = R
n and TF =

∑

2

n. Hence in this special case Theorem 3(i) gives Artin’s Theorem 1. The
Krivine–Stengle Theorem 3(i) expresses the nonnegative polynomial f on KF

as a quotient of the two polynomials f2m + q and p from the preorder TF .
Simple examples show that the denominator polynomial p cannot be avoided
in general. For instance, if f1 = 1, k = 1, the Motzkin polynomial M is
nonnegative on KF = R

n, but it is not in the preorder TF =
∑

2

n. Replacing

M by the polynomial M̃(x, y) := x4y2 + x2y4 +1− x2y2 we even get a strictly
positive polynomial of this kind. (One has M̃(x, y) ≥ 26

27
for all (x, y) ∈ R

2.)
Letting f1 = (1 − x2)3, k = n = 1, the semialgebraic set KF is the interval
[−1, 1] and the polynomial f = 1−x2 is obviously nonnegative on KF . Looking
at the orders of zeros of f at ±1 one concludes easily that f is not in TF . In view
of these examples it seems to be surprising that strictly positive polynomials on
a compact basic closed semialgebraic set always belong to the preorder. This
result is the Archimedean Positivstellensatz which was proved by the author
[17] in 1991.

Theorem 4. Suppose that f ∈ R[x1, . . . , xn]. If the set KF is compact and

f(x) > 0 for all x ∈ KF , then f ∈ TF .

The original proof given in [17] (see also [18], pp. 344–345) was based on
the solution of the moment problem for compact semialgebraic sets. The first
algebraic proof of Theorem 4 was found by T. Wörmann [20], see, e.g., [15] or
[9].

By definition the preorder TF is the sum of sets fε1
1

· · · fεk
k

∑

2

n . It is natural
to ask how many terms of this kind are really needed. This question is answered
by a result of T. Jacobi and A. Prestel in 2001. Let g1, . . . , glk denote the first
lk := 2k−1 + 1 polynomials of the following row of mixed products with no
repeated factors of the generators f1, . . . fk:

1, f1, . . . , fk, f1f2, f1f3, . . . , fk−1fk, f1f2f3, . . . , fk−2fk−1fk, f1f2 · · · fk.

Let SF be the sum of sets gj
∑

2

n, where j = 1, . . . , lk. Then Jacobi and Prestel
[7] proved the following

Theorem 5. If KF is compact and f ∈ R[x1, . . . , xn] satisfies f(x) > 0 for all

x ∈ KF , then f ∈ SF .

We briefly discuss this result. If k = 3, then lk = 5 and SF =
∑

2

n +f1
∑

2

n +f2
∑

2

n +f3
∑

2

n +f1f2
∑

2

n, that is, the sets g
∑

2

n for g =
f1f3, f2f3, f1f2f3 do not enter in the definition of SF . If k = 4, then no
products of three or four generators occur in the definition of SF . Thus, if
k ≥ 3, Theorem 5 is an essential strengthening of Theorem 4.
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