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1. Mahler’s Work on the Geometry of Numbers

Jan-Hendrik Evertse

Mahler has written many papers on the geometry of numbers. Arguably, his
most influential achievements in this area are his compactness theorem for
lattices, his work on star bodies and their critical lattices, and his estimates
for the successive minima of reciprocal convex bodies and compound convex
bodies. We give a, by far not complete, overview of Mahler’s work on these
topics and their impact.

1 Compactness theorem, star bodies and their critical lattices

Many problems in the geometry of numbers are about whether a particular
n-dimensional body contains a non-zero point from a given lattice, and quite
often one can show that this is true as long as the determinant of the lattice is
below a critical value depending on the given body. Mahler intensively studied
such problems for so-called star bodies. Before mentioning some of his results,
we start with recalling some definitions. We follow [M87].

Let n > 2 be an integer that we fix henceforth. A distance function on Rn is a
function F : Rn → R such that:

(i) F (x) > 0 for all x ∈ Rn and F (x) > 0 for at least one x;

(ii) F (tx) = |t| · F (x) for x ∈ Rn and t ∈ R;

(iii) F is continuous.

A (symmetric) star body in Rn is a set of the shape

S = {x ∈ Rn : F (x) 6 1},

where F is a distance function. We call S the star body with distance function
F . The boundary of S is {x ∈ Rn : F (x) = 1}, and the interior of S is
{x ∈ Rn : F (x) < 1}. The set S is bounded, if and only if F (x) > 0 whenever
x 6= 0. The star bodies contain as a subclass the symmetric convex bodies,
which correspond to the distance functions F satisfying, in addition to (i), (ii),
and (iii), the triangle inequality F (x + y) 6 F (x) + F (y) for x,y ∈ R.
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Let Λ = {
∑n
i=1 ziai : z1, . . . , zn ∈ Z} be a lattice in Rn with basis {a1, . . . ,an}.

We define its determinant by d(Λ) := |det(a1, . . . ,an)|. Let S be a star body.
We call Λ S-admissible if 0 is the only point of Λ in the interior of S. The star
body S is called of finite type if it has admissible lattices, and of infinite type
otherwise. Bounded star bodies are necessarily of finite type, but conversely,
star bodies of finite type do not have to be bounded. For instance, let S :=
{x = (x1, . . . , xn) ∈ Rn : |x1 · · ·xn| 6 1}. Take a totally real number field K of
degree n, denote by OK its ring of integers, and let α 7→ α(i) (i = 1, . . . , n) be
the embeddings of K in R. Then {(α(1), . . . , α(n)) : α ∈ OK} is an S-admissible
lattice.

Assume henceforth that S is a star body of finite type. Then we can define its
determinant,

∆(S) := inf{d(Λ) : Λ admissible lattice for S}.

Thus, if Λ is any lattice in Rn with d(Λ) < ∆(S), then S contains a non-zero
point from Λ. The quantity ∆(S) cannot be too small. From the Minkowski–
Hlawka theorem (proved by Hlawka [8] and earlier stated without proof by
Minkowski) it follows that ∆(S) > (2ζ(n))−1V (S), where ζ(n) =

∑∞
k=1 k

−n

and V (S) is the volume (n-dimensional Lebesgue measure) of S.

We call Λ a critical lattice for S if Λ is S-admissible and d(Λ) = ∆(S). In
a series of papers [M75, M76, M83, M84, M85] Mahler studied star bodies in
R2, proved that they have critical lattices, and computed their determinant in
various instances. Later, Mahler picked up the study of star bodies of arbitrary
dimension [M87]. We recall Theorem 8 from this paper, which is Mahler’s
central result on star bodies.

Theorem 1.1. Let S be a star body in Rn of finite type. Then S has at least
one critical lattice.

The main tool is a compactness result for lattices, also due to Mahler. We say
that a sequence of lattices {Λm}∞m=1 in Rn converges if we can choose a basis
am,1, . . . ,am,n of Λm for m = 1, 2, . . . such that aj := limm→∞ am,j exists for
j = 1, . . . , n and a1, . . . ,an are linearly independent. We call the lattice Λ with
basis a1, . . . ,an the limit of the sequence {Λm}∞m=1; it can be shown that this
limit, if it exists, is unique. Denote by ‖x‖ the Euclidean norm of x ∈ Rn.
The following result, which became known as Mahler’s compactness theorem
or Mahler’s selection theorem and turned out to be a valuable tool at various
places other than the geometry of numbers, is Theorem 2 from [M87].

Theorem 1.2. Let ρ > 0, C > 0. Then any infinite collection of lattices Λ
in Rn such that min{‖x‖ : x ∈ Λ \ {0}} > ρ and d(Λ) 6 C has an infinite
convergent subsequence.

We recall the quick deduction of Theorem 1.1.
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Proof of Theorem 1.1. By the definition of ∆(S), there is an infinite sequence
{Λm}∞m=1 of S-admissible lattices such that ∆(S) 6 d(Λm) 6 ∆(S) + 1/m
for m = 1, 2, . . .. Since 0 is an interior point of S,there is ρ > 0 such that
{x ∈ Rn : ‖x‖ 6 ρ} ⊆ S. hence ‖x‖ > ρ for every non-zero x ∈ Λm and every
m > 1. Further, the sequence {d(Λm)} is clearly bounded. So by Theorem
1.2, {Λm} has a convergent subsequence. After reindexing, we may write this
sequence as {Λm}∞m=1 and denote its limit by Λ. We show that Λ is a critical
lattice for S.

Choose bases am,1, . . . ,am,n of Λm for m = 1, 2, . . . and a1, . . . ,an of Λ such
that am,j → aj for j = 1, . . . , n. Clearly d(Λ) = limm→∞ d(Λm) = ∆(S). To
prove that Λ is S-admissible, take a non-zero x0 ∈ Λ and assume it is in the
interior of S. Then there is ε > 0 such that all x ∈ Rn with ‖x − x0‖ < ε
are in the interior of S. Write x0 =

∑n
i=1 ziai with zi ∈ Z, and then xm =∑n

i=1 ziam,i for m > 1, so that xm ∈ Λm \ {0}. For m sufficiently large,
‖xm − x0‖ < ε, hence xm is in the interior of S, which is however impossible
since Λm is S-admissible. This completes the proof.

In [M87], Mahler made a further study of the critical lattices of n-dimensional
star bodies. Among other things he proved [M87, Theorem 11] that if S is any
bounded n-dimensional star body and Λ a critical lattice for S, then there are
n linearly independent points of Λ lying on the boundary of S. If P1, . . . , Pn
are such points, then the 2n points ±P1, . . . ,±Pn lie on the boundary of S. A
simple consequence of this is, that any lattice of determinant equal to ∆(S) has
a non-zero point either in the interior or on the boundary of S. Mahler showed
further [M87, Corollary on p. 165] that for any integer m > n there exist an
n-dimensional star body S and a critical lattice Λ of S having precisely 2m
points on the boundary of S.

In an other series of papers on n-dimensional star bodies [M88] Mahler intro-
duced the notions of reducible and irreducible star bodies. A star body S is
called reducible if there is a star body S ′ which is strictly contained in S and
for which ∆(S ′) = ∆(S), and otherwise irreducible. An unbounded star body
S of finite type is called boundedly reducible if there is a bounded star body S ′
contained in S such that ∆(S ′) = ∆(S). Mahler gave criteria for star bodies
being (boundedly) reducible and deduced some Diophantine approximation re-
sults. To give a flavour we mention one of these results [M88, Theorem P, p.
628]:

Theorem 1.3. There is a positive constant γ such that if β1, β2 are any real
numbers and Q is any number > 1, then there are integers v1, v2, v3, not all 0,
such that

|v1v2(β1v1 + β2v2 + v3)| 6 1
7
,

|x1| 6 Q, |x2| 6 Q, |β1v1 + β2v2 + v3| 6 γQ−2.

Idea of proof. Let S be the set of x = (x1, x2, x3) ∈ R3 given by |x1x2x3| 6 1.
By a result of Davenport [3], S is a finite type star body and has determinant
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∆(S) = 7. Mahler [M88, Theorem M, p. 527] proved that S is in fact boundedly
reducible, which implies that there is r > 0 such that the star body S ′ given
by |x1x2x3| 6 1 and max16i63 |xi| 6 r also has determinant 7. Now let Λ be
the lattice consisting of the points

(
rQ−1v1, rQ

−1v2, 7r
−2Q2(β1v1+β2v2+v3)

)
with v1, v2, v3 ∈ Z. This lattice has determinant 7 and so has a non-zero point
in S ′. It follows that Theorem 1.3 holds with γ = r3/7.

For further theory on star bodies, we refer to Mahler’s papers quoted above
and the books of Cassels [2] and Gruber and Lekkerkerker [7].

2 Reciprocal convex bodies

Studies of transference principles such as Khintchine’s for systems of Diophan-
tine inequalities (see [M44, M56]) led Mahler to consider reciprocal lattices and
reciprocal convex bodies (also called polar lattices and polar convex bodies).
We recall some of his results. Here and below, for any real vectors x, y of
the same dimension, we denote by x · y their standard inner product, i.e., for
x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm we put x · y :=

∑m
i=1 xiyi. Then the

Euclidean norm of x ∈ Rm is ‖x‖ :=
√
x · x.

Now let n be a fixed integer > 2. Given a lattice Λ in Rn, we define the
reciprocal lattice of Λ by

Λ∗ := {x ∈ Rn : x · y ∈ Z for all y ∈ Λ}.

Then Λ∗ is again a lattice of Rn, and d(Λ∗) = d(Λ)−1. Let C be a symmetric
convex body in Rn, i.e., C is convex, symmetric about 0 and compact. The
set C may be described alternatively as {x ∈ Rn : F (x) 6 1}, where F is a
distance function as above, satisfying also the triangle inequality. We define
the reciprocal of C by

C∗ = {x ∈ Rn : x · y 6 1 for all y ∈ C}.

Then C∗ is again a symmetric convex body. Mahler [M57, p. 97, formula (6)]
proved the following result for the volumes of C and C∗.

Theorem 2.1. There are c1(n), c2(n) > 0 depending only on n with the fol-
lowing property. If C is any symmetric convex body in Rn and C∗ its reciprocal,
then c1(n) 6 V (C) · V (C∗) 6 c2(n).

Mahler proved this with c1(n) = 4n/(n!)2 and c2(n) = 4n. Santaló [16] im-
proved the upper bound to c2(n) = κ2n where κn is the volume of the n-
dimensional Euclidean unit ball Bn := {x ∈ Rn : ‖x‖ 6 1}; this upper bound
is attained for C = C∗ = Bn. Bourgain and Milman [1]. improved the lower
bound to c1(n) = cnκ2n with some absolute constant c. This is probably not
optimal. Mahler conjectured that the optimal value for c1(n) is 4n/n!, which is
attained for C the unit cube maxi |xi| 6 1 and C∗ the octahedron

∑n
i=1 |xi| 6 1.
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Recall that the i-th successive minimum λi(C,Λ) of a symmetric convex body
C in Rn with respect to a lattice Λ in Rn is the smallest λ such that λC ∩ Λ
contains i linearly independent points. Thus, C has n successive minima, and
by Minkowski’s theorem on successive minima [14] one has

2n

n!
· d(Λ)

V (C)
6 λ1(C,Λ) · · ·λn(C,Λ) 6 2n · d(Λ)

V (C)
. (2.1)

Mahler [M57, p.100, (A), (B)] proved the following transference principle for
reciprocal convex bodies.

Theorem 2.2. There is c3(n) > 0 depending only on n with the following
property. Let Λ, C be a lattice and symmetric convex body in Rn, and Λ∗, C∗
their respective reciprocals. Then

1 6 λi(C,Λ) · λn+1−i(C∗,Λ∗) 6 c3(n).

The lower bounds for the products λi(C,Λ)λn+1−i(C∗,Λ∗) are easy to prove,
and then the upper bounds are obtained by combining the lower bound in
Theorem 2.1 with the upper bound in (2.1) and the similar one for C∗ and
Λ∗. With his bound for c1(n), Mahler deduced Theorem 2.2 with c3(n) =
(n!)2. Using instead the bound for c1(n) by Bourgain and Milman, one obtains
Theorem 2.2 with c3(n) = (c′n)n for some absolute constant c′. Kannan and
Lovász [11] obtained λ1(C,Λ)λ∗n(C∗,Λ∗) 6 c′′n2 with some absolute constant
c′′.

Mahler’s results led to various applications, among others to inhomogeneous
results. A simple consequence, implicit in Mahler’s paper [M57] is the following:

Corollary 2.3. There is c4(n) > 0 with the following property. Let C, Λ, C∗
and Λ∗ be as in Theorem 2.2 and suppose that C∗ does not contain a non-zero
point from Λ∗. Then for every a ∈ Rn there is z ∈ Λ such that a+ z ∈ c4(n)C.

Idea of proof. Using that the distance function associated with C satisfies the
triangle inequality, one easily shows that for every a ∈ Rn there is z ∈ Λ
with a + z ∈ nλn(C,Λ) · C. By assumption we have λ1(C∗,Λ∗) > 1, and thus,
λn(C∗,Λ∗) < c3(n).

The second application we mention is a transference principle for systems of
Diophantine inequalities. We define the maximum norm and sum-norm of x =
(x1, . . . , xn) ∈ Rn by ‖x‖∞ := maxi |xi| and ‖x‖1 :=

∑n
i=1 |xi|, respectively.

We denote by AT the transpose of a matrix A.

Corollary 2.4. Let m,n be integers with 0 < m < n and let A be a (n−m)×
m-matrix with real entries where m,n are integers with 0 < m < n. Let ω be
the supremum of the reals η > 0 such that there are infinitely many non-zero
x ∈ Zm for which there exists y ∈ Zn−m with

‖Ax− y‖∞ 6 ‖x‖−
m

n−m (1+η)
∞ . (2.2)
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Further, let ω∗ be the supremum of the reals η∗ > 0 for which there are infinitely
many non-zero u ∈ Zn−m for which there exists v ∈ Zm such that

‖ATu− v‖∞ 6 ‖u‖−
n−m
m (1+η∗)

∞ . (2.3)

Then

ω∗ >
ω

(m− 1)ω + n− 1
, ω >

ω∗

(n−m− 1)ω∗ + n− 1
. (2.4)

These inequalities were proved by Dyson [4]. The special case m = 1 was
established earlier by Khintchine [12, 13] and became known as Khintchine’s
transference principle. Jarńık [9] proved that both inequalities are best possible.

Proof. We prove only the first inequality; then the second follows by symmetry.

Let Q > 1, 0 < η < ω. Put η∗ := η
(m−1)η+n−1 . Consider the convex body CQ

consisting of the points (x,y) ∈ Rm ⊕Rn−m = Rn with ‖x‖∞ 6 Q and ‖Ax−
y‖∞ 6 Q−

m
n−m (1+η). Denote the successive minima of CQ, C∗Q, respectively

with respect to Zn by λi(Q), λ∗i (Q), for i = 1, . . . , n. By the choice of η, there
is a sequence of Q → ∞ such that λ1(Q) 6 1. Let Q be from this sequence.
The body CQ has volume V (CQ) � Q−mη. The reciprocal body C∗Q of CQ is

the set of (u,v) ∈ Rn−m ⊕ Rm with Q‖ATu − v‖1 + Q−
m

n−m (1+η)‖u‖1 6 1.
Combining Theorem 2.2 with the lower bound in (2.1), we infer that

λ∗1(Q)� λn(Q)−1 �
(
V (CQ) · λ1(Q)

)1/(n−1) � Q−mη/(n−1),

where the implied constants depend on m and n. The body λ∗1(Q)C∗Q contains

a non-zero point (u,v) ∈ Zn−m ⊕ Zm, and thus,

‖u‖∞ � Q
m

n−m (1+η)− mη
n−1 =: Q′,

‖ATu− v‖∞ � Q−1−
mη
n−1 = Q′−

n−m
m (1+η∗).

If there is a non-zero u0 ∈ Zn−m with ATu0 = v0 for some v ∈ Zm then (2.3)
holds with all integer multiples of (u0,v0). Otherwise, if we let Q → ∞ then
u runs through an infinite set. The first inequality of (2.4) easily follows.

3 Compound convex bodies

Mahler extended his theory of reciprocal convex bodies to so-called compound
convex bodies, which are in some sense exterior powers of convex bodies.

Let again n > 2 be an integer and p an integer with 1 6 p 6 n − 1. Put

N :=
(
n
p

)
and denote by In,p the collection of N integer tuples (i1, . . . , ip)

with 1 6 i1 < · · · < ip 6 n. Let {e1, . . . , en} be the standard basis of Rn
(i.e., ei has a 1 on the i-th place and zeros elsewhere) and {ê1, . . . , êN} the
standard basis of RN . We define exterior products of p vectors by means of the

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 29–43



1. Mahler’s Work on the Geometry of Numbers 35

multilinear map (x1, . . . ,xp) 7→ x1 ∧ · · · ∧ xp from (Rn)p to RN , which is such
that ei1 ∧ · · · ∧ eip = êj for j = 1, . . . , N if (i1, . . . , ip) is the j-th tuple of In,p
in the lexicographic ordering, and such that x1 ∧ · · · ∧ xp changes sign if two
of the vectors are interchanged.

Let C be a symmetric body in Rn and Λ a lattice in Rn. Then the p-th compound
Cp of C is defined as the convex hull of the points x1 ∧ · · · ∧ xp ∈ RN with
x1, . . . ,xp ∈ C, while the p-th compound Λp of Λ is the lattice in RN generated
by the points x1 ∧ · · · ∧ xp with x1, . . . ,xp ∈ Λ. Then d(Λp) = d(Λ)P where
P :=

(
n−1
p−1
)
. Mahler [M126, Theorem 1] proved the following analogue for the

volume of the p-th compound of a symmetric convex body.

Theorem 3.1. Let C be any symmetric convex body in Rn and p any integer
with 1 6 p 6 n− 1. Then

c1(n, p) 6 V (Cp) · V (C)−P 6 c2(n, p),

where c1(n, p), c2(n, p) are positive numbers depending only on n and p.

Idea of proof. The quotient V (Cp) · V (C)−P is invariant under linear trans-
formations, so Theorem 3.1 holds for ellipsoids, these are the images of the
Euclidean unit ball Bn := {x ∈ Rn : ‖x‖ 6 1} under linear transformations.
Now the theorem follows for arbitrary symmetric convex bodies C, with dif-
ferent c1(n, p), c2(n, p), by invoking John’s theorem [10], which asserts that
for every symmetric convex body C in Rn there is an ellipsoid E such that
n−1/2E ⊆ C ⊆ E .

Mahler [M126, Theorem 3] deduced from this the following result on the suc-
cessive minima of a compound convex body.

Theorem 3.2. Let C be a symmetric convex body and Λ a lattice in Rn, and let

p be any integer with 1 6 p 6 n−1. Further, let µ1, . . . , µN , where N =
(
n
p

)
, be

the products λi1(C,Λ) · · ·λip(C,Λ) ((i1, . . . , ip) ∈ In,p) in non-decreasing order.
Then for the successive minima of Cp with respect to Λp we have

c3(n, p) 6
λi(Cp,Λp)

µi
6 c4(n, p) for i = 1, . . . , N,

where c3(n, p), c4(n, p) depend on n and p only.

Idea of proof. Constants implied by � and � will depend on n and p only.
Let v1, . . . ,vn be linearly independent vectors of Λ with vi ∈ λiC, where λi =
λi(C,Λ) for i = 1, . . . , n. Then for each tuple (i1, . . . , ip) ∈ In,p we have
vi1 ∧ · · · ∧ vip ∈ λi1 · · ·λipCp. Since the vectors vi1 ∧ · · · ∧ vip are linearly
independent elements of Λp, it follows that λi(Cp,Λp) 6 µi for i = 1, . . . , N .
On the other hand, by the lower bound of (2.1) applied to Cp, Λp we have∏N
i=1 λi(Cp,Λp)� d(Λp)/V (Cp) and by the upper bound of (2.1), µ1 · · ·µN =

(λ1 · · ·λn)P � (d(Λ)/V (C))P . By combining this with Theorem 3.1, one easily
deduces Theorem 3.2.
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Mahler’s results on compound convex bodies are in fact generalisations of
his results on reciprocal bodies. To make this precise, let C be a sym-
metric convex body and Λ a lattice in Rn and let C∗, Λ∗ be their recip-
rocals. Then Λ∗ = d(Λ)−1ϕ(Λn−1) where ϕ is the linear map given by
(x1, . . . , xn) 7→ (xn,−xn−1, . . . , (−1)n−1x1). Further, by an observation of
Mahler [M126, Theorem 4],

c5(n)V (C)−1ϕ(Cn−1) ⊆ C∗ ⊆ c6(n)V (C)−1ϕ(Cn−1)

for certain numbers c5(n), c6(n) depending only on n. Together with these
facts, Theorems 3.1 and 3.2 immediately imply Theorems 2.1 and 2.2 in a
slightly weaker form.

As Mahler already observed in [M126], it may be quite difficult to compute
the compounds of a given convex body, but often one can give an approxi-
mation which for applications is just as good. For instance, let a1, . . . ,an be
linearly independent vectors in Rn and A1, . . . , An positive reals, and consider
the parallelepiped

Π := {x ∈ Rn : |ai · x| 6 Ai for i = 1, . . . , n},

where · denotes the standard inner product. Let 1 6 p 6 n− 1, N =
(
n
p

)
and

define for i = 1, . . . , N ,

âi := ai1 ∧ · · · ∧ aip , Âi := Ai1 · · ·Aip , (3.1)

where (i1, . . . , ip) is the i-th tuple of In,p in the lexicographic ordering. Then
the p-th pseudocompound of Π is given by

Π̂p := {x̂ ∈ RN : |âi · x̂| 6 Âi for i = 1, . . . , N}.

One easily shows (see [M126, p. 377]), that there are positive numbers c7(n, p),

c8(n, p) such that c7(n, p)Πp ⊆ Π̂p ⊆ c8(n, p)Πp, where Πp is the p-th compound

of Π. This implies that Theorem 3.2 holds with Π̂p instead of Πp, with other
constants c3(n, p), c4(n, p).

Mahler’s results on compound convex bodies turned out to be a very impor-
tant tool in Diophantine approximation. First, it is a crucial ingredient in
Schmidt’s proof of his celebrated Subspace Theorem [17, 18], and second it has
been used to deduce several transference principles for systems of Diophantine
inequalities.

We first give a very brief overview of Schmidt’s proof of his Subspace Theorem,
focusing on the role of Theorem 3.2. For the complete proof, see [18].

Subspace Theorem. Let n > 2 and let Li(X) = αi1X1 + · · · + αinXn (i =
1, . . . , n) be linearly independent linear forms with algebraic coefficients in C.
Further, let δ > 0. Then the set of solutions of

|L1(x) · · ·Ln(x)| 6 ‖x‖−δ in x ∈ Zn (3.2)

is contained in finitely many proper linear subspaces of Qn.

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 29–43



1. Mahler’s Work on the Geometry of Numbers 37

Outline of the proof. We can make a reduction to the case that L1, . . . , Ln all
have real algebraic coefficients by replacing each Li by its real or imaginary
part, such that the resulting linear forms are linearly independent. Further,
after a normalisation we arrange that these linear forms have determinant 1. So
henceforth we assume that the coefficients of L1, . . . , Ln are real algebraic, with
det(L1, . . . , Ln) = 1. Next, it suffices to consider only x ∈ Zn with Li(x) 6= 0
for i = 1, . . . , n.

Now let x ∈ Zn be a solution of (3.2) and put

Ai := |Li(x)|/|L1(x) · · ·Ln(x)|1/n (i = 1, . . . , n),

A := (A1, . . . , An), Q(A) := max(A1, . . . , An).

With this choice, A1 · · ·An = 1. Assuming that ‖x‖ is sufficiently large, there
is a fixed D > 0 independent of x, such that ‖x‖−D 6 |Li(x)| 6 ‖x‖D for
i = 1, . . . , n. Hence Q(A) 6 ‖x‖2D. Write Li(X) = ai · X where ai is the
vector of coefficients of Li and consider the parallelepiped

Π(A) := {y ∈ Rn : |ai · y| 6 Ai for i = 1, . . . , n}. (3.3)

Since |L1(x) · · ·Ln(x)|1/n 6 ‖x‖−δ/n 6 Q(A)−δ1 with δ1 := δ/2nD, we have

x ∈ Q(A)−δ1Π(A).

Let T (A) denote the vector space generated by Q(A)−δ1Π(A) ∩ Zn. So x ∈
T (A). It clearly suffices to show the following:

for every δ1 > 0 there is a finite collection {T1, . . . , Tt} of proper linear sub-
spaces of Qn such that for every n-tuple A of positive reals with A1 · · ·An = 1,
the vector space T (A) is contained in one of T1, . . . , Tt.

Assume that this assertion is false. Pick many tuples A1, . . . ,Am such that the
spaces T (i) := T (Ai) (i = 1, . . . ,m) are all different. Then one can construct
a polynomial in m blocks of n variables X1, . . . ,Xm with integer coefficients,
which is homogeneous in each block and divisible by high powers of Li(Xj),
for i = 1, . . . , n, j = 1, . . . ,m. All partial derivatives of this polynomial of
order up to a certain bound have absolute value < 1, hence are 0, at many
integral points of T (1)× · · · × T (m). Then by extrapolation, it follows that this
polynomial vanishes with high multiplicity on all of T (1) × · · · × T (m). Now
one would like to apply a non-vanishing result implying that this is impossible,
but such a result can been proved only if the dimensions of T (1), . . . , T (m) are
equal to n− 1. So the above argument works only for those tuples A for which
dimT (A) = n − 1, that is, for which the (n − 1)-th successive minimum of
Π(A) with respect to Zn is at most Q(A)−δ1 .

Now Schmidt could make his proof of the Subspace Theorem work for arbitrary
tuples A by means of an ingenious argument, in which he constructs from the
parallelepiped Π(A) a new parallelepiped Π̂(B̂), in general of larger dimension

N , with B̂ = (B̂1, . . . , B̂N ) satisfying B̂1 · · · B̂N = 1, of which the (N − 1)-th
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successive minimum with respect to ZN is small. In this construction, Mahler’s
results on compound convex bodies play a crucial role.

In what follows, constants implies by �, �, � will depend only on n, δ1 and
L1, . . . , Ln, while δ2, δ3, . . . will denote positive numbers depending only on δ1
and n. Denote the successive minima of Π(A) with respect to Zn by λ1, . . . , λn.
Then clearly,

λ1 6 Q(A)−δ1 .

Further, by (2.1),
λ1 · · ·λn � 1. (3.4)

Let k be the largest index with λk 6 Q(A)−δ1 . Then (3.4) implies that
λn � Q(A)kδ1/(n−k). Hence there is p with k 6 n − p 6 n − 1 such
that λn−p/λn−p+1 � Q(A)−δ2 . Let S(A) be the vector space generated by
λn−pΠ(A) ∩ Zn. This space contains T (A). So it suffices to prove that S(A)
runs through a finite collection of proper linear subspaces of Qn.

Let N :=
(
n
p

)
and consider the p-th pseudocompound

Π̂p(Â) = {ŷ ∈ RN : |âi · ŷ| 6 Âi for i = 1, . . . , N}.

Denote by λ̂1, . . . , λ̂N the successive minima of Π̂p(Â) with respect to Zn. Then

by Theorem 3.2 we have for the last two minima, λ̂N−1 � λn−pλn−p+2 · · ·λn,

λ̂N � λn−p+1 · · ·λn. Hence

λ̂N−1/λ̂N � λn−p/λn−p+1 � Q(A)−δ2 . (3.5)

Moreover, by (3.4), Theorem 3.2 we have

λ̂1 · · · λ̂N � 1. (3.6)

We still need one reduction step. By a variation on a result of Davenport,
proved by Schmidt (see e.g., [18, p. 89]), for every choice of reals ρ1, . . . , ρN
with

ρ1 > · · · > ρN > 0, ρ1λ̂1 6 · · · 6 ρN λ̂N , ρ1 · · · ρN = 1,

there is a permutation σ of 1, . . . , N such that the parallelepiped

Π̂p(B̂) = {ŷ ∈ RN : |âi · ŷ| 6 B̂i for i = 1, . . . , N},

where B̂i := ρ−1σ(i)Âi for i = 1, . . . , N , has successive minima λ̂′i � ρiλ̂i for

i = 1, . . . , N . Now with the choice

ρi = c/λ̂i (i = 1, . . . , N − 1), ρN = c/λ̂N−1

where
c = (λ̂1 · · · λ̂N )1/N (λ̂N−1/λ̂N )1/N
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has been chosen to make ρ1 · · · ρN = 1, we obtain λ̂′N−1 � c � Q(A)−δ3 in
view of (3.5),(3.6). One can show that

Q(B̂) := max(B̂1, , . . . , B̂N )� Q(A)d

with d depending only on n and p. Thus, λ̂′N−1 � Q(B̂)−δ4 . Further,

B̂1 · · · B̂N = ρ1 · · · ρN (A1 · · ·An)(
n−1
p−1) = 1.

Now by means of the argument sketched above, with the construction of the
polynomial and the application of the non-vanishing result, one can show that
if A = (A1, . . . , An) runs through the tuples of positive reals with A1 · · ·An =

1, then the vector space T (B̂) generated by λ̂′N−1Π̂p(B̂) ∩ ZN runs through

a finite collection. One can show that T (B̂) uniquely determines the space
S(A). Hence S(A) runs through a finite collection. This proves the Subspace
Theorem.

We should mention here that Faltings and Wüstholz [6] gave a very differ-
ent proof of the Subspace Theorem, avoiding geometry of numbers but using
instead some involved algebraic geometry.

Mahler’s results on compound convex bodies have been applied at various
other places, in particular to obtain generalisations of Khintchine’s transfer-
ence principle and Corollary 2.4. Many of these results can be incorporated
into the Parametric Geometry of Numbers, a recent theory which was initi-
ated by Schmidt and Summerer [19, 20]. The general idea is as follows. Let
µ1, . . . , µn be fixed reals which we normalise so that µ1 + · · · + µn = 0 and
consider the parametrised class of convex bodies in Rn,

C(q) := {x = (x1, . . . , xn) ∈ Rn : |xi| 6 eµiq for i = 1, . . . , n} (q > 0).

Further, let Λ be a fixed lattice in Rn and λ1(q), . . . , λn(q) the successive min-
ima of C(q) with respect to Λ. Then one would like to study these successive
minima as functions of q. In particular, one is interested in the quantities

ϕ
i

= ϕ
i
(Λ,µ) := lim inf

q→∞
(log λi(q))/q,

ϕi = ϕi(Λ,µ) := lim sup
q→∞

(log λi(q))/q
(i = 1, . . . , n). (3.7)

That is, ϕ
i

is the infimum of all η such that there are arbitrarily large q for
which the system of inequalities

|x1| 6 e(µ1+η)q, . . . , |xn| 6 e(µn+η)q (3.8)

is satisfied by i linearly independent points from Λ, while ϕi is the infimum
of all η such that for every sufficiently large q, system (3.8) is satisfied by i
linearly independent points from Λ. The quantities ϕ

i
, ϕi are finite, since if

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 29–43



40 J.-H. Evertse

µ > maxj |µj |, then for every sufficiently large q, the body eµqC(q) contains n
linearly independent points from Λ, while e−µqC(q) does not contain a non-zero
point of Λ.

In case that Λ is an algebraic lattice, i.e., if it is generated by vectors with
algebraic coordinates, then by following the proof of the Subspace Theorem
one can show that ϕ

i
= ϕi for i = 1, . . . , n, i.e., the limits exist (this is a special

case of [5, Theorem 16.1], but very likely this was known before). However, for
non-algebraic lattices Λ it may happen that ϕ

i
< ϕi for some i.

Many of the Diophantine approximation exponents that have been introduced
during the last decades can be expressed in terms of the quantities ϕ

i
, ϕi, and

thus, results for these exponents can be translated into results for the ϕ
i
, ϕi.

For instance, let A be a real (n−m)×m-matrix with 1 6 m < n, and take

Λ = {(x, Ax− y) : x ∈ Zm, y ∈ Zn−m},
µ1 = · · · = µm = n−m, µm+1 = · · · = µn = m.

Define ϕ
i
(A) := ϕ

i
(Λ,µ) for this Λ and µ. Then for the quantities ω, ω∗ from

Corollary 2.4 we have

ϕ
1
(A) = − (n−m)2ω

n+ (n−m)ω
, ϕ

1
(AT ) = − m2ω∗

n+mω∗
,

and the inequalities (2.4) become

ϕ
1
(AT ) 6 1

n−1
· ϕ

1
(A), ϕ

1
(A) 6 1

n−1
· ϕ

1
(AT ).

Studying the successive minima functions λi(q) for arbitrary lattices Λ and
reals µ1, . . . , µn is probably much too hard. In their papers [19, 20] Schmidt
and Summerer considered the special case{

Λ = {(x, ξ1x− y1, · · · ξn−1x− yn−1) : x, y1, . . . , yn−1 ∈ Z},
µ1 = n− 1, µ2 = · · · = µn = −1,

(3.9)

where ξ1, . . . , ξn−1 are reals such that 1, ξ1, . . . , ξn−1 are linearly independent
over Q. That is, they considered the system of inequalities

|x| 6 e(n−1)q, |ξix− yi| 6 e−q (i = 1, . . . , n− 1).

Let ϕ
i
, ϕi be the quantities defined in (3.7), with Λ,µ as in (3.9). In

[19], Schmidt and Summerer showed among other things that for every i ∈
{1, . . . , n−1} there are arbitrarily large q such that λi+1(q) = λi(q). As a con-
sequence, ϕ

i+1
> ϕi for i = 1, . . . , n− 1. They deduced several other algebraic

inequalities for the numbers ϕ
i
, ϕi.

In [20], Schmidt and Summerer continued their research and studied in more
detail the functions

Li(q) := log λi(q) (i = 1, . . . , n).
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To this end, they introduced a class of n-tuples of continuous, piecewise linear
functions on (0,∞) with certain properties, the so-called (n, γ)-systems. The
key argument in their proof is, that there is an (n, γ)-system (P1(q), . . . , Pn(q))
such that |Li(q) − Pi(q)| 6 c(n) for i = 1, . . . , n, q > 0, where c(n) depends
on n only. In the construction of these functions, essential use is made of
Mahler’s results on compound convex bodies. Indeed, for p = 1, . . . , n − 1
let C(p)(q) be the p-th pseudocompound of C(q) and let eMp(q) be the first
minimum of C(p)(q) with respect to the p-th compound Λp of Λ. Further,
put M0(q) = Mn(q) := 0. Schmidt and Summerer showed that the functions
Pi(q) := Mi(q) −Mi−1(q) (i = 1, . . . , n) form an (n, γ)-system. Theorem 3.2
implies that there is c(n) > 0 such that |Li(q)− Pi(q)| 6 c(n) for i = 1, . . . , n,
q > 0. It is important that P1(q) + · · · + Pn(q) = 0, while for the original
functions L1(q), . . . , Ln(q) one knows only that their sum is bounded. It is clear
that for i = 1, . . . , n we have ϕ

i
= πi, ϕi = πi where πi := lim infq→∞ Pi(q)/q

and πi := lim supq→∞ Pi(q)/q.

Schmidt and Summerer analysed (n, γ)-systems, which involved basically com-
binatorics and had no connection with geometry of numbers anymore. As a
result of their (fairly difficult) analysis they obtained several algebraic inequal-
ities for πi, πi (i = 1, . . . , n). These imply of course the same inequalities for
ϕ
i
, ϕi (i = 1, . . . , n). This led to new proofs of older results and also various

new results.

For instance, it is an easy consequence of Minkowski’s theorem on successive
minima that

(n− 1)ϕ
1

+ ϕn 6 0, (n− 1)ϕn + ϕ
1
> 0.

Schmidt and Summerer [20, bottom of p. 55] improved this to

(n− 1)ϕ
1

+ ϕn 6 ϕ1(n− ϕ
1

+ ϕn), (n− 1)ϕn + ϕ
1
> ϕ

n
(n− ϕn + ϕ

1
).

Recently, Roy [15] showed that the functions L1(q), . . . , Ln(q) considered by
Schmidt and Summerer can be approximated very well by piecewise linear
functions from a more restrictive class, the (n, 0)-systems. This smaller class
may be more easy to analyse than the (n, γ)-systems and may perhaps lead to
new insights in the functions Li(q).
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