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2. Mahler’s Measure for Polynomials

in Several Variables

David W. Boyd

If P (x1, . . . , xk) is a polynomial with complex coefficients, the Mahler measure
of P , M(P ), is defined to be the geometric mean of |P | over the k-torus,
Tk. We briefly describe Mahler’s motivation for defining this function and his
applications of it to polynomial inequalities. We then describe how this function
occurs naturally in the study of Lehmer’s problem concerning the set of all
measures of one-variable polynomials with integer coefficients. We describe
work of Deninger which shows how Mahler measure arises in the study of the
far-reaching Bĕılinson conjectures and leads to surprising conjectural explicit
formulas for some measures of multivariable polynomials. Finally we describe
some of the recent work of many authors proving some of these formulas by a
variety of different methods.

1 Introduction

Let P (x1, . . . , xk) be a polynomial with complex coefficients. If P is not iden-
tically zero, the Mahler measure of P is defined by

M(P ) = exp

(∫ 1

0

· · ·
∫ 1

0

log |P (exp(2πit1), . . . , exp(2πitk))|dt1 · · · dtk

)
. (1)

So M(P ) is the geometric mean of |P | over the k-torus, Tk. We define
M(0) = 0. An obvious but important property of M is that

M(PQ) = M(P )M(Q). (2)

For many questions, it is more natural to consider the quantity

m(P ) =

∫ 1

0

· · ·
∫ 1

0

log |P (exp(2πit1), . . . , exp(2πitk))| dt1 · · · dtk,

which we call the logarithmic Mahler measure of P .
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46 David W. Boyd

In [M148], Mahler introduced M(P ) in order to give a simple proof of the
so-called Gel’fond–Mahler inequality for multivariable polynomials. This is a
result that has important applications in transcendental number theory. Let
H(P ), the height of P be defined to be the maximum of the absolute value
of the coefficients of P . Then (2) together with some straightforward upper
bounds for the coefficients of P in terms of M(P ) give the inequality

H(P )H(Q) ≤ 2nH(PQ),

where n is the total degree of PQ. One should compare the simple and elegant
proof of this inequality in [M148] with the elaborate proof given in [27].

Of course Mahler did not call the quantity M(P ) the Mahler measure or
Mahler’s measure, but simply referred to it as the measure, one of the ways
to measure the size of P . The term “Mahler’s measure” seems to have first
been adopted in the early 1980s, see e.g. [8, 25].

It should be noted that for single variable polynomials, M(P ) had appeared
in the literature before Mahler began to call it the “measure”. For example, it
appears in an influential paper of Lehmer [33] where it is called Ω(P ). Lehmer
did not use the integral definition (1), but defined Ω(P ) in terms of the zeros
of P (x). The relationship between the two definitions is a famous formula of

Jensen, that if P (x) = a0
∏k

j=1(x− αj), then

M(P ) = |a0|
k∏

j=1

max(|αj |, 1).

If P (x) is monic and has all its roots on the unit circle then clearly M(P ) = 1.
In this case, a theorem of Kronecker shows that all the roots of P (x) are
roots of unity, polynomials that were not interesting for the questions that
concerned Lehmer. So he searched for polynomials for which M(P ) is small,
but greater than 1. For non-reciprocal polynomials the smallest value he was
able to find was for P (x) = x3 − x− 1 which has one root θ0 outside the unit
circle θ0 = 1.3247 . . . , so M(P ) = θ0. Its reciprocal, Q(x) = x3 + x2 − 1 has a
pair of complex roots outside the unit circle each of modulus

√
θ0 and also has

M(Q) = θ0. The proof that θ0 is indeed the smallest measure of non-reciprocal
polynomials was provided by Smyth [42] in his PhD thesis.

In contrast to the case of non-reciprocal polynomials, Lehmer produced the
remarkable reciprocal polynomial

P (x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

which has one zero σ1 outside the unit circle, with σ1 = 1.1762808 . . .
(“Lehmer’s constant”), so M(P ) = 1.1762808 . . . . Lehmer stated that he was
unable to find a smaller value of the measure. Given that this example was
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2. Mahler’s Measure 47

found in 1933, it would seem likely that a smaller value would have been found
in subsequent years, but this record still stands today in spite of extensive
computation [7, 10, 36, 37]. Lehmer asked whether one could do any better
than this, a question now called “Lehmer’s problem”, and the optimistic an-
swer that indeed σ1 is the smallest measure of a one-variable polynomial is
known as “Lehmer’s conjecture”, even though Lehmer never made this con-
jecture explicitly. It has been proved by Mossinghoff, Rhin and Wu [37] that
no polynomial of degree ≤ 56 achieves a smaller value of M(P ) > 1. John
Brillhart, one of Lehmer’s students, told me that he once asked Lehmer how
he had found Lehmer’s constant and he replied “Oh, just fooling around”. I
suspect there was more to it than that!

Interestingly, a number of years before Smyth’s paper [42], in a paper that went
unnoticed for many years, Breusch [20] showed that for P non-reciprocal, one
has

M(P ) ≥M(x3 − x2 − 1/4) = 1.1796 . . . ,

which proves Lehmer’s conjecture for non-reciprocal polynomials. In contrast
to Smyth’s result, this result is not sharp since the polynomial that gives the
lower bound does not have integer coefficients. However, note that the lower
bound Breusch obtains is slightly larger than Lehmer’s constant which does
show that one must look to reciprocal polynomials to obtain small measures.
Breusch’s paper was rediscovered in 2005 by Wladyslaw Narkiewicz while he
was searching for another paper in the same volume in which that paper ap-
pears. As it happened, at the time I learned of this I was visiting Chris Smyth
in Edinburgh and had the dubious privilege of breaking the news to him about
Breusch’s result. Smyth’s approach to the question is quite different from
Breusch’s and it is amusing to speculate whether he would have discovered the
approach that led him to obtain his best possible result if he had known of
Breusch’s paper.

My own interest in Mahler measure and Lehmer’s problem began with my
study of the papers of Dufresnoy and Pisot [24] on a systematic enumeration
of small Pisot numbers by using their association with certain rational func-
tions of one complex variable. The Pisot (or Pisot–Vijayaraghavan) numbers
S are those algebraic integers θ > 1 all of whose other algebraic conjugates lie
inside the unit circle. So, for example, θ0 is a Pisot number1 and is known to
be the smallest such number by a result of Siegel [41]. Now this result is a
special case of Smyth’s theorem. There is a famous algorithm due to Schur for
characterizing the coefficient sequences of holomorphic functions bounded by 1
on the unit circle. Dufresnoy and Pisot extended this to certain meromorphic
functions. They systematically applied this to the study of the Pisot numbers
smaller than the golden ratio. In fact their paper contains most of the ingredi-
ents necessary for designing an algorithm [6] to produce all the Pisot numbers
in an interval [a, b] which contains no limit points of the set S of Pisot numbers.

1The number θ0 is now often referred to as the “plastic number”.
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While studying this algorithm, we were led to the question of whether the
sequence M(1+x+xn) is bounded by

√
2 = 1.4142 . . . . Computation suggested

this sequence in fact converges to

β = M(1 + x+ y) = 1.3813564445 . . . .

Our numerical computation of β was accomplished by expanding the integral
into a geometrically convergent series,

logM(1 + x+ y) =
2

π

∞∑
m=0

(
−1/2

m

)
(−1/4)m(2m+ 1)−2 = 1.014941606 . . .

We were able to settle the question of the convergence of M(1 + x + xn) to
M(1 + x + y) in [5], obtaining an error term that was sufficient to prove the
desired result about M(1 + x + xn). This showed that β is a limit point of
Mahler measures of one-variable non-reciprocal polynomials and it was natural
to ask whether this might be the smallest such limit point. When I brought
this question up at a workshop in Oberwohlfach in the summer of 1979, Michel
Waldschmidt informed me that Mahler had already defined the quantity M(P )
for multi-variable polynomials in the paper [M148] and then I began calling it
“Mahler measure” or “Mahler’s measure”.

As luck would have it, around the time I was working on such matters I had
invited C. J. Smyth to visit me at UBC on a sabbatical from the James Cook
University in Townsville, Australia. When I showed him the interesting case of
M(1 + x+ y), he quickly saw how to expand the integrand in a different series
than the one that I had used, not as quickly convergent, but giving instead the
elegant and intriguing formula [8, 42]

logM(1 + x+ y) =
3
√

3

4π
L(2, χ−3) = L′(−1, χ3). (3)

This formula of Smyth, expressing a logarithmic Mahler measure as the special
value of an L-function, was the inspiration for much subsequent research in the
study of Mahler’s measure.

The constant β appears in a number of apparently unrelated contexts. Amus-
ingly, it appears in a paper of Mahler [M153], without being identified as a
2-variable Mahler measure. It is also the best constant in an inequality for the
size of the largest factor of a one-variable polynomial related to the Gel’fond–
Mahler inequality [11] and in an asymptotic formula for the so-called binomial
circulant determinant, conjectured by Frame [26] and proved in [9].

In the unpublished paper [5], I gave a proof for a more general result:

lim
n→∞

M(P (x, xn)) = M(P (x, y)) (4)

which differs from the proof for M(1 + x + y) in lacking an explicit error
term. This proof is reproduced in an appendix of [8]. In our computations
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2. Mahler’s Measure 49

of small Salem numbers [5] using Salem’s construction, and in our numerical
survey [7, 10] of polynomials with measure at most 1.3, we had obtained many
reciprocal polynomials of one variable with small measure. Multiplying these
by various cyclotomic polynomials, we observed that a lot of the resulting
polynomials fell into patterns of the form P (±xm,±xn), where P (x, y) was
one of the two polynomials

P1(x, y) = xy(xy + y + x+ 1 + 1/x+ 1/y + 1/(xy))

and
P2(x, y) = xy(1 + x+ 1/x+ y + 1/y).

The polynomial P2(x, y) was also discovered at about the same time by Stewart
and te Riele and independently by Smyth. Numerically,

α1 = M(P1(x, y)) ≈ 1.2554338662666087457

and
α2 = M(P2(x, y)) ≈ 1.2857348642919862749.

So there are infinitely many non-reciprocal polynomials with measure arbitrar-
ily close to these two numbers and hence here seem to be two rather small
limit points of measures of one-variable polynomials. We should admit that
the term “limit point” is used here optimistically since although we know that
M(P (x, xn))−M(P (x, y)) converges to zero, we do not have an explicit error
term so there remains open the (remote) possibility that for some P (x, y) this
quantity is identically zero for all sufficiently large n. This question is discussed
by Mossinghoff and the author in [18], a paper in which we compute a list of
48 two-variable polynomials with measures at most 1.37. The two polynomials
P1 and P2 are the only known two-variable polynomials with measure smaller
than 1.3. There are two more smaller than θ0.

The difficulty of producing an explicit error term in (4) can be seen from the
discussion in a recent paper of Condon [22]. In that paper, he derives a complete
asymptotic expansion for m(1+x+xn)−m(1+x+y) in inverse integer powers
of n and describes some experiments with the polynomial P2(x, y) that shows
the subtlety of the question. The difference is that 1 + x + y = 0 vanishes
only at two points on the torus T2 while the polynomial P2(x, y) vanishes on
a one-dimensional subset of the torus. The question is not at all delicate in
the case that P (x, y) does not vanish on the torus since then log |P (x, y)| is a
bounded smooth function and it is easy to see that m(P (x, xn)) is a Riemann
sum form(P (x, y)). In this case, Condon’s analysis gives a complete asymptotic
expansion of the difference m(P (x, xn))−m(P (x, y)).

The formula (4) can be generalized to polynomials in k variables, i.e.

limM(P (xa1 , xa2 , . . . , xak)) = M(P (x1, . . . , xk)), (5)
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where the limit is interpreted either as an iterated limit in which k − 1 of
the variables aj tend to ∞ successively [8] or, more generally, tend to infinity
simultaneously in a suitably controlled manner as shown by Lawton [32]. The
result (5) suggested that the set L of measures of polynomials in arbitrarily
many variables is an interesting object of study and led to the conjectures put
forward in [8].

2 Mahler’s measure is an entropy

An important advance in the study of the multi-variable Mahler measure was
the paper of Lind, Schmidt and Ward [34] in which they showed that m(P )
is more than a tool in proving useful inequalities for polynomials, but has an
intrinsic meaning in terms of certain discrete dynamical systems called subshifts
of finite type. Given a (Laurent) polynomial P (x1, . . . , xk) in k variables, one
can define such a dynamical system acting on Zn thought of as the dual to the
torus Tn. Their main result is that the logarithmic Mahler measure m(P ) is
exactly the entropy of this dynamical system.

3 Deninger’s interpretation of Mahler’s measure

For many years, I had tried unsuccessfully to find a formula for m(P2(x, y))
analogous to Smyth’s elegant formula (3). So I was delighted when I was
told by Henri Cohen in December of 1995 that, at the Journées Arithmétiques
in Barcelona earlier that year, Christopher Deninger had announced such a
formula for m(P ) for all P in terms of L-function values. When I contacted
Deninger, he explained that his formula was based on a conjecture of Bĕılinson
and had been proved in general only for P which do not vanish on the torus.
So his general theory did not immediately apply to 1 + x + y + 1/x + 1/y.
However, he was intrigued by the question and within a day had proved a
formula expressing m(P2(x, y)) as a Kronecker–Eisenstein series from which he
could predict that

m(1 + x+ y + 1/x+ 1/y) = rL′(0, E15), (6)

where r is an unspecified rational number, and L(s, E15) is the L-function of
an elliptic curve of conductor N = 15. The initially mysterious appearance
of this elliptic curve is explained by the fact that the algebraic curve given by
1 + x+ y+ 1/x+ 1/y = 0 defines just such an elliptic curve. Using the system
PARI/GP it is easy to compute L′(0, E15) and comparing with the value of
m(P2) that we had previously computed to many decimal places, we found
that r = 1 to the precision of the computation.

Following this remarkable prediction we embarked on an extensive computa-
tion starting from a dozen or so values of m(P (x, y)) that we had previously
computed accurately. This led eventually to an infinite number of conjectures
analogous to (6) all of the form m(P (x, y)) = rL′(0, E) where r is an explicit
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2. Mahler’s Measure 51

rational number of small height and E is an elliptic curve which is a factor
of the Jacobian of the algebraic curve P (x, y) = 0; see [12]. In particular, we
produced conjectures for families of polynomials such as

m(k + x+ y + 1/x+ 1/y) = rkL
′(0, Ek), (7)

where Ek is (for k 6= 0, 4) the elliptic curve defined by k+x+y+1/x+1/y = 0.

Fernando Rodriguez Villegas took an immediate interest in this and suggested
computations for a much wider variety of polynomials than I had initially
contemplated. He also clarified the necessary conditions for such formulas to
hold and showed how they were connected to Bĕılinson’s conjecutures. Indeed,
for families of polynomials such as the family in (7) he showed that m(P ) is
essentially the regulator map r({x, y}) for the K-group K2(Ek). He pointed
out that (7) should hold if k2 is an integer and proved it in case k2 = 8, 18 and
32 using known cases of Bĕılinson’s conjectures (for CM curves).

An intriguing feature of families such as (7) is that the same conductor may
appear for different values of the parameter k since the curves in question are
isogenous. For example, in (7), Nk = 15 for k = 1, 5 and 16 suggesting the
identities m(5+x+y+1/x+1/y) = 6m(1+x+y+1/x+1/y) and m(16+x+
y + 1/x+ 1/y) = 11m(1 + x+ y + 1/x+ 1/y). Rodriguez Villegas [38], Bertin
[1] and Laĺın–Rogers [30] were able to prove many such non-obvious identities
between logarithmic Mahler measures by using computations in K2(E).

Recently, formulas of the type (7) for various values of k and analogous formulas
for other polynomials began to be proved by a variety of methods. For the
family of polynomials (7), we now have proofs for k = 2 and 8 by Laĺın and
Rogers [30], k2 = −4,−1 and 2 by Rogers and Zudilin [39], k = 1 by Rogers
and Zudilin [40], k = 3 and 12 by Brunault [21], and a different proof for k = 3
by Laĺın, Samart and Zudilin [31]. In particular, Rogers and Zudilin [40] have
now a complete proof of Deninger’s conjecture (6). Their proof is one of the
more intricate of the proofs so far obtained for the family (7). There are also a
number of results for polynomials P (x, y) not in the family (7). In particular
the explicit formula m(P1(x, y)) = L′(0, E14), where E14 is an elliptic curve of
conductor 14, conjectured in [12] was given an elegant proof by Mellit [35].

However, it seems that all the methods of proof discovered so far apply to only
a finite set of polynomials, so, for example, we do not yet have a proof for (7)
for all values of k.

4 Polynomials in more than 2 variables

Prior to Deninger’s paper [23], there were almost no formulas for m(P ) for
polynomials in more than two variables, other than an early formula due to
Smyth [8, 43]:

π2m(1 + x+ y + z) = (7/2)ζ(3).
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However, some of the insights supplied by Deninger and Rodriguez Villegas led
to the elegant result proved by Laĺın in her thesis [28],

π4m((1 + u)(1 + v)(1 + x) + (1− u)(1− v)(y + z)) = 93 ζ(5).

Also, as predicted by Rodriguez Villegas in [38], Bertin [2] has been able to
produce formulas for certain 3-variable polynomials defining K3-surfaces, es-
pecially the 3-variable generalization of (7).

Pk(x, y, z) = k + x+ 1/x+ y + 1/y + z + 1/z, (8)

For example, in [2], she proves

π3m(6 + x+ y + z + 1/x+ 1/y + 1/z) = 24
√

6LF (φ, 3),

where F = Q(
√
−6) and LF (φ, 3) is a Hecke L-series. The recent multi-author

paper [3] extends this work to singular K3-surfaces defined by (8) for further
values of k.

In the report of an early BIRS workshop [16] we mention an interesting lecture
given by Vincent Maillot concerning the Mahler measure of non-reciprocal poly-
nomials in many variables which suggests a refinement of Deninger’s theory.
Based on this prediction, the author and Rodriguez Villegas independently and
jointly computed a few examples of polynomials in 3 or more variables whose
Mahler measure should be given by a special value of an appropriate L-function
(sometimes with some explicit lower order corrections). A few of these exam-
ples are mentioned in [16] and in the slides from a lecture given by the author
in 2006 [14]. Laĺın [29] has been able to prove some results in this direction for
some polynomials in 3 variables.

5 Expository articles on Mahler’s measure and related matters

We refer the reader to a few informative expository articles for more informa-
tion about some recent work: The report [16] on the 2003 BIRS Workshop
“The Many Aspects of Mahler’s Measure” gives some indication of work up to
that point on a number of aspects of Mahler’s measure including its connec-
tions with knot theory and hyperbolic geometry, an important topic that we
have not discussed above. Smyth’s survey [44] is devoted to results concerning
the Mahler measure of one-variable polynomials, and a companion article [45]
surveys the history of the Salem numbers, a closely related subject. The paper
of Bertin and Laĺın [4] is an interesting survey of work on the Mahler measure
of many-variable polynomials.

The account [13] of one of the author’s lectures relates another aspect of this
story, namely the connection between Mahler measure and the geometry of
hyperbolic 3-space via the so-called A-polynomial of a hyperbolic manifold
(The proof of (6) by Rogers and Zudilin mysteriously uses one of these results).
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2. Mahler’s Measure 53

The papers by the author, Rodriguez Villegas and Dunfield [17, 19] explore this
question more systematically. Slides for the author’s lecture at the 2015 Pacific
Northwest Number Theory Conference in Eugene, Oregon [15] give an expanded
version of some of the material discussed above, particularly concerning the
family (7), and contain photos of some of the dramatis personae.
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