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3. Mahler’s Work and Algebraic Dynamical Systems

Douglas Lind and Klaus Schmidt

After Furstenberg had provided a first glimpse of remarkable rigidity phenom-
ena associated with the joint action of several commuting automorphisms (or
endomorphisms) of a compact Abelian group, further key examples motivated
the development of an extensive theory of such actions.

Two of Mahler’s achievements, the recognition of the significance of Mahler
measure of multivariate polynomials in relating the lengths and heights of prod-
ucts of polynomials in terms of the corresponding quantities for the constituent
factors, and his work on additive relations in fields, have unexpectedly played
important roles in the study of entropy and higher order mixing for these
actions.

This article briefly surveys these connections between Mahler’s work and dynam-
ics. It also sketches some of the dynamical outgrowths of his work that are very
active today, including the investigation of the Fuglede–Kadison determinant of
a convolution operator in a group von Neumann algebra as a noncommutative
generalisation of Mahler measure, as well as Diophantine questions related to
the growth rates of periodic points and their relation to entropy.

1 Dynamical background

In order to describe the connections between Mahler’s work and dynamical
systems, we have to recall some background information.

Let X be a compact Abelian group, and let µ denote the normalised Haar
measure on X, so that µ(X) = 1. We write Aut(X) for the group of continuous
algebraic automorphisms of X. Halmos [14] observed 75 years ago that, if
A ∈ Aut(X), then the measure ν defined by ν(E) = µ(A(E)) is also a nor-
malised, translation-invariant measure on X, and hence ν = µ by uniqueness of
Haar measure. In other words, A preserves the measure µ.

Example 1.1 (Toral automorphisms). Let T = R/Z, and let Tn denote the
n-dimensional torus. Then every A ∈ GL(n,Z) gives an automorphism of
Tn, and all continuous group automorphisms of Tn arise this way. Hence
Aut(Tn) ∼= GL(n,Z).
An explicit example to keep in mind is the matrix A = [ 0 1

1 1 ] acting on T2.
Together with its square, the Arnold cat map A2 = [ 1 1

1 2 ] (cf., e.g., [1, 9]), this
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toral automorphism has given rise to a vast amount of literature — mathematical,
numerological and phenomenological — which we cannot explore here, but which
certainly makes for fascinating reading.

Rather than exploring intricacies of individual toral automorphisms, we shall
concentrate here on dynamical systems arising from the simultaneous action of
several automorphisms of a compact Abelian group X, and on the somewhat
surprising properties of such systems.

Let Γ be a countable discrete group (not necessarily Abelian). An algebraic
Γ-action is a homomorphism α : Γ→ Aut(X) for some compact Abelian group
X. It is convenient to use exponential notation for α, writing αγ instead of
α(γ). In Example 1.1, Γ = Z and αk = Ak.

The interest in algebraic actions of groups other (i.e., bigger) than Z has its
roots in two examples: Furstenberg’s example [11], consisting of the N2-action
α on T = R/Z generated by the commuting endomorphisms ×2 and ×3, and
Ledrappier’s example [21], which will play quite an important role in this article.

Example 1.2 (Ledrappier’s example). Consider the compact Abelian group

Y = (Z/2Z)Z
2

with coordinate-wise addition. Each element x ∈ Y has the
form x = (xn)n∈Z2 , where each xn ∈ Z/2Z, and can be thought of as a two-
dimensional array of 0’s and 1’s. There is a natural Z2-shift action σ on Y
defined by (σmx)n = xn−m. Let e1 = (1, 0) and e2 = (0, 1) be the standard
basis for Z2. Define a subgroup XL of Y by

XL = {x ∈ Y : xn + xn+e1 + xn+e2 = 0 for all n ∈ Z2}. (1)

This additive condition is clearly shift-invariant, so that we can define an
algebraic Z2-action αL on X by restricting σ to XL.

Both these examples are deceptively simple. In Furstenberg’s example, the
existence of nonatomic α-invariant probability measures ν on T other than
Lebesgue measure has remained unresolved since 1967 and has led to a major
new direction of research on measure rigidity of algebraic group actions. In
Ledrappier’s example it was the higher order mixing properties of the system
which provided the original focus of work by Ledrappier and others. Another
avenue of research opened up with the replacement of the ‘alphabet’ Z/2Z in (1)
by T, leading to the notion of a ‘principal algebraic Zd-action’ (cf. Example 2.1)
and, beyond that, to the exploration of algebraic actions of arbitrary countable
groups Γ.

However, before starting to explore algebraic group actions at that level of
generality, we return to the more familiar ground of algebraic Zd-actions with
its wealth of examples (see [32] for a detailed account of that theory).

2 Algebraic Zd-actions

For Γ = Zd, the integer group ring ZΓ is isomorphic to the ring

Rd := Z[u±1
1 , . . . , u±1

d ]
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of Laurent polynomials in the commuting variables u1, . . . , ud. We write a
typical element f ∈ Rd as

∑
m∈Zd fmum, where um = um1

1 · · ·umd

d and fm ∈ Z
with fm = 0 for all but finitely many m ∈ Zd. When d = 2, for notational
simplicity, we use variables u and v rather than u1 and u2 throughout, so that
R2 = Z[u±1, v±1].

Example 2.1 (Principal and cyclic Zd-actions). There is a natural shift action

σ of Zd on TZd

given by (σmx)n = xn−m for every x ∈ TZd

and m,n ∈ Zd.
This definition of the shift map is the opposite of the more traditional one,
but is consistent with how shifts must be defined when the acting group is
noncommutative. For f ∈ Rd define

Xf =

x ∈ TZd

:
∑

m∈Zd

fmxn+m = 0 for all n ∈ Zd
 ⊂ TZd

. (2)

As in Ledrappier’s example, this condition on x is invariant under the shift action

σ on TZd

, and so the restriction αf of σ to Xf gives an algebraic Zd-action on
Xf , called the principal algebraic Zd-action defined by f .

For principal actions there is a convenient and very explicit way to describe
the Pontryagin dual X̂f and the Zd-action dual to αf . The dual group of

the Cartesian product TZd

is the direct sum
⊕

m∈Zd Z, which as an additive
group is just Rd. The automorphism dual to the shift-transformation σm is

left multiplication by um on Rd. The dual of the subgroup Xf of TZd

is the
quotient of Rd by the annihilator of Xf , which is the principal ideal fRd. Thus

X̂f = Rd/fRd, which explains the terminology ‘principal action’.

If we replace the principal ideal fRd by an arbitrary ideal I ⊂ Rd, we obtain the
cyclic Rd-module M = Rd/I and the corresponding cyclic algebraic Zd-action

αRd/I on XRd/I = R̂d/I. When I = fRd is principal, we abbreviate these to
αf on Xf , as above.

Example 2.2 (A toral automorphism as a principal Z-action). Let Γ = Z.
Then ZΓ is isomorphic to Z[u±1], the ring of Laurent polynomials in a single
variable u. If f(u) = u2 − u − 1, it is an instructive little exercise to show
that the principal Z-action (Xf , αf ) is isomorphic to the toral automorphism
A = [ 0 1

1 1 ] in Example 1.1.

The Arnold cat map B = A2 = [ 1 1
1 2 ] in Example 1.1 is, of course, also of the

form B = αM for some R1-module M . Show that this module M is again cyclic.
However, the third power C = A3 = [ 1 2

2 3 ] is of the form C = αN for some
R1-module N which is not cyclic (cf. [32] Example 5.3 (2)). What about An

with n > 3? Are any of the corresponding R1-modules cyclic?

Example 2.3 (Furstenberg’s example, revisited). Put Γ = Z2 so that
ZΓ = Z[u±1, v±1]. Let I = 〈u − 2, v − 3〉 = (u − 2)R2 + (v − 3)R2 ⊂ R2

be the nonprincipal ideal generated by u− 2 and v − 3. As in Example 2.1, we
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see that the cyclic Z2-action α = αR2/I is the restriction of the shift-action σ

on TZ2

to the closed, shift-invariant subgroup

X = XR2/I =
{
x ∈ TZ2

: xn+e1 = 2xn and xn+e2 = 3xn for every n ∈ Z2
}
.

If π0 : X → T is the projection which sends each x = (xn)n∈Z2 ∈ X to its zero
coordinate x0, then the diagrams

X
αe1

−−−−→ X

π0

y yπ0

T −−−−→
×2

T

and

X
αe2

−−−−→ X

π0

y yπ0

T −−−−→
×3

T

commute, so that we obtain Furstenberg’s example as a factor of αR2/I .

Example 2.4 (Ledrappier’s example, revisited). If we identify the additive group

Y = (Z/2Z)Z
2

in Example 1.2 with {0, 1
2}

Z2 ⊂ TZ2

= R̂2, then Ŷ = R2/2R2,

and the group X̂ dual to (1) is the cyclic R2-module R2/〈2, f〉, where f(u, v) =
1+u+v ∈ R2, and where 〈2, f〉 = 2R2 +fR2 is the nonprincipal ideal generated
by 2 and f .

For explicit calculations with Ledrappier’s example, it is convenient to rewrite

this R2-module by viewing f as an element f̃ of the ring R
(2)
2 := F2[u±1, v±1]

of Laurent polynomials in u, v with coefficients in the prime field F2 = Z/2Z,

and by identifying X̂ with the R2-module R
(2)
2 /f̃R

(2)
2 .

Example 2.5 (Ledrappier’s example with continuous alphabet). If we replace
the alphabet Z/2Z in Ledrappier’s Example 1.2 by T, we obtain the closed,
shift-invariant subgroup

X ′ = {x ∈ TZ2

: xn + xn+e1
+ xn+e2

= 0 for every n ∈ Z2}. (3)

It is easy to check that the shift-action of Z2 on X̂ ′ coincides with the principal
Z2-action αf on Xf , where f(u, v) = 1 + u+ v.

3 Mixing properties of Algebraic Zd-actions

A little experimentation with (1) in Ledrappier’s Example 1.2 yields

xn + xn+2ke1
+ xn+2ke2

≡ 0 (mod 2), (4)

so that the coordinates xn and xn+2ke1
together determine the coordinate

xn+2ke2
of x for every x ∈ X, n ∈ Zd and k > 0.

Having identified the dual group of Ledrappier’s example with R
(2)
2 /f̃R

(2)
2 in

Example 2.4, Eq. (4) comes as no surprise; since (g + h)2 = g2 + h2 for all
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g, h ∈ R(2)
2 , it follows that f̃(u, v)2k

= 1 +u2k

+ v2k

lies in the annihilator f̃R
(2)
2

of X for every k > 1, precisely the content of (4).

In order to appreciate the significance of (4), we recall that a measure-preserving
action T : n 7→ Tn of Zd on a probability space (Y,T, ν) is mixing if

lim
‖n‖→∞

ν(B1 ∩ TnB2) = ν(B1)ν(B2)

for all sets B1, B2 ∈ T, where ‖n‖ denotes the euclidean norm of n. More
generally, the action T is r-mixing with r > 2 if, for all B1, . . . , Br ∈ T,

ν

( r⋂
i=1

TniBi

)
−→

r∏
i=1

ν(Bi) as ‖ni − nj‖ → ∞ for 1 6 i < j 6 r. (5)

For single measure-preserving automorphisms of probability spaces, the question
of whether mixing implies mixing of every order has been open for well over
50 years [15, p. 99]. However, Ledrappier’s example shows that the answer is
negative for Zd-actions with d > 2, which we now explain.

It is relatively simple to show that there are no long-range correlations between
pairs of coordinates, so that Ledrappier’s example (X,α) is mixing. However,
(4) shows that, if B = {x ∈ X : x0 = 0}, then for all k > 1 we have

B ∩ α2ke1(B) ∩ α2ke2(B) = B ∩ α2ke1(B).

Hence

µ
(
B ∩ α2ke1(B) ∩ α2ke2(B)

)
= µ(B ∩ α2ke1(B)

)
=

1

4
6= 1

8
= µ(B)3 (6)

for all k > 1. Thus Ledrappier’s example is not 3-mixing.

In order to reflect the particularly regular way in which higher-order mixing
breaks down in Ledrappier’s example, we introduce a definition.

Definition 3.1. Let T : n 7→ Tn be a measure-preserving Zd-action on a
probability space (Y,T, ν). A nonempty finite set F ⊂ Zd is mixing if

lim
k→∞

ν
( ⋂
n∈F

T kn(Bn)
)

=
∏
n∈F

ν(Bn)

for every collection of Borel sets Bn ∈ T, n ∈ F . A nonempty finite set F ⊂ Zd
is called nonmixing if it is not mixing.

According to (6), Ledrappier’s example has the nonmixing set F = {0, e1, e2}
of size 3.

More generally, suppose p > 2 is a rational prime, Fp = Z/pZ the corre-

sponding prime field, and R
(p)
d = Fp[u±1

1 , . . . , u±1
d ] is the ring of Laurent

polynomials in u1, . . . , ud with coefficients in Fp. We write a typical element
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f̃ ∈ R(p)
d as f̃ =

∑
n∈Zd f̃nu

n with f̃n ∈ Fp for every n ∈ Zd and denote by

S(f̃) = {n ∈ Zd : f̃n 6= 0} the support of f̃ . Exactly as in the brief discussion of
Ledrappier’s example at the beginning of this section, one obtains the following
result.

Proposition 3.2. Let I ⊂ R
(p)
d be an ideal and let α

R
(p)
d /I

be the cyclic

Rd-action on the group X
R

(p)
d /I

defined by the ring R
(p)
d /I, viewed as an

Rd-module. For every f̃ ∈ I, the set S(f̃) is nonmixing for α
R

(p)
d /I

.

Perhaps surprisingly, such an action α
R

(p)
d /I

may have nonmixing sets which do

not originate from elements of the ideal I. For example, if

g̃(u, v) = 1 + u+ u2 + uv + v2 ∈ R(2)
2 ,

then α
R

(2)
2 /g̃R

(2)
2

also has the nonmixing set F = {0, e1, e2} appearing in Ledrap-

pier’s example, although the ideal g̃R
(2)
2 does not contain any element whose

support has cardinality 3. For explanation and details we refer to [19] and [32,
Section 28].

The question of existence – or nonexistence – of nonmixing sets for general
algebraic Zd-actions turns out to be intimately connected with a result by Kurt
Mahler in his paper [M31] on Taylor coefficients of rational functions. The
results in [18, 30, 31] show that a mixing algebraic Zd-action α on a compact

Abelian group X has nonmixing sets if and only if the dual Rd-module X̂ has an
associated prime ideal I ⊂ Rd with the following properties: if F = Quot(Rd/I)
is the field of fractions of the integral domain Rd/I, and if G ⊂ F is the
multiplicative subgroup generated by the images in Rd/I of the monomials
u1, . . . , ud ∈ Rd, then there exist finitely many elements a1, . . . , ar in G and a
nonzero element (c1, . . . , cr) ∈ Fr, such that

c1a
m
1 + · · ·+ cra

m
r = 1 for infinitely many m > 1. (7)

If the group X is connected, the field F = Quot(Rd/I) in (7) has characteristic

zero for every prime ideal I associated with X̂, and if X is totally disconnected,
F = Quot(Rd/I) always has positive characteristic. For Ledrappier’s example,
the prime ideal in question is I = 〈2, 1 + u+ v〉, and the field F = Quot(Rd/I)
has characteristic 2.

In the former case, when F has characteristic zero, a beautiful p-adic argument
by Kurt Mahler in [M31, p. 57] shows that (7) implies the existence of integers
1 6 k < l 6 r and b > 0 such that

abk = abl . (8)

By translating this back into our dynamical setting one obtains a contradiction
to the hypothesis that α is mixing. This leads to the following conclusion. See
[30] and [32, p. 268].
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Corollary 3.3. Let α be a mixing algebraic Zd-action on a compact connected
Abelian group X. Then, every nonempty finite subset F ⊂ Zd is mixing for α.

In the latter case, when F has positive characteristic, David Masser [19] proved
that (7) implies a more complicated relationship between a1, . . . , ar; if F has
characteristic p > 1, and if Fp is the algebraic closure of the prime field Fp, then
there exist elements b1, . . . , br in the algebraic closure F of F and k, l > 1 such
that ai = bki for i = 1, . . . , r and {bl1, . . . , blr} is linearly dependent over Fp.
This result allows one in principle to determine the nonmixing sets of algebraic
Zd-actions on zero-dimensional compact Abelian groups.

The story of the connection between mixing properties of algebraic Zd-actions
and additive relations in fields, which turns out to have begun with Mahler’s
Theorem [M31, p. 57], doesn’t end with Corollary [30, Cor. 2.3]. Subsequent de-
velopments, based on remarkable work on S-unit equations both in characteristic
zero (cf., e.g., [36]) and in positive characteristic (cf., e.g., [5, 6, 19, 29]), clarified
the connection between nonmixing sets and the order of mixing. The following
result gives a brief and incomplete summary of these later developments.

Theorem 3.4. Let α be a mixing algebraic Zd-action on a compact Abelian
group X.

(1) If X is connected, α is mixing of every order [33, Cor. 3.3].

(2) If X is totally disconnected, α has nonmixing sets if and only if it does not
have completely positive entropy. Moreover, if r > 2, then α is r-mixing
if and only if every subset F ⊂ Zd of cardinality r is mixing for α [29,
p. 190].

4 Entropy and Mahler measure

Entropy is a numerical invariant of dynamical systems which can be defined
for measure-preserving as well as continuous actions. Here, our focus will on
‘topological’ entropy, which provides a rough measure of the distortion of the
topology of a space under a group action by homeomorphisms of that space.

The exact calculation of entropy, or even a numerical approximation, is generally
difficult. However, computing entropy for algebraic actions is easier for a
very important reason: the homogeneity of an algebraic action means that
the calculation of the amount of ‘distortion’ of the space can be reduced to
measuring the distortion of small neighbourhoods of the identity of the group
under the action.

In this section, we consider an algebraic Z-action α on a compact Abelian group
X equipped with Haar measure µ.

Let U be an open neighbourhood of the identity 0X of X. The set of points
in X that remain within U for the first n iterates of α is

⋂n−1
j=0 α

−jU , and the
rate of decay of the measure of this set measures how U changes under the first
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few elements α1, . . . , αn−1 of the action α. In order to obtain a scale invariant
quantity, we consider decreasing sequences of neighbourhoods of the identity
and define the entropy h(α) of α as

h(α) := lim
U↘{0X}

lim sup
n→∞

− 1

n
logµ

(n−1⋂
j=0

α−jU
)
. (9)

What is not apparent from this definition is the crucial property that entropy is
invariant under measure-preserving conjugacy: if (X,α) and (Y, β) are algebraic
Z-actions, and if φ : X → Y is an invertible measurable map which preserves
Haar measure and is equivariant in the sense that φ ◦ αn = βn ◦ φ, then
h(α) = h(β). The proof of this invariance involves, in particular, establishing
the equality of topological and Haar measure-theoretic entropy for algebraic
actions (see [37] for details).

Example 4.1 (k-shift). Let Xk = (Z/kZ)Z, and σk be the shift on Xk, which is
called the k-shift. To compute entropy, it is enough to consider neighbourhoods
Ur = {x ∈ Xk : xj = 0 for −r 6 j 6 r} for large r. Since Haar measure here
is product measure,

µ

(n−1⋂
j=0

σ−jk Ur
)

= µ
(
{x ∈ Xk : xj = 0 for −r 6 j 6 n− 1 + r}

)
=

(
1

k

)n+2r

,

and hence

− 1

n
logµ

(n−1⋂
j=0

σ−jk Ur
)

n→∞−−−−→ log(k)

for every r > 1, and so h(σk) = log(k).

Example 4.2 (Toral automorphism). Let A ∈ GL(r,Z) = Aut(Tr). Then,
the eigenvalues λ1, . . . , λr of A, listed with multiplicity, are all nonzero. The
eigenvalues λi for which |λi| > 1 control the volume decrease in (9). If U is a
‘nice’ small neighbourhood of 0 in Tr (like

∏r
i=1(−ε, ε) for small ε > 0) then,

knowing the Jordan form of A, it is relatively easy to show that we can find
positive constants c1 and c2 such that

c1n
−r
( ∏
|λi|>1

|λi|−n
)

6 µ

(n−1⋂
j=0

A−jU
)

6 c2n
r

( ∏
|λi|>1

|λi|−n
)
.

It then follows from the definition (9) that

h(A) =
∑
|λi|>1

log |λi|. (10)

This formula for entropy was established by Sinai in 1959 [34, 35], shortly after
the introduction of entropy.
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For a polynomial f(u) ∈ C[u], Mahler [M143] defined its ‘measure’ to be

M(f) = exp

[∫ 1

0

log |f(e2πit)|dt
]
.

It is convenient to introduce the logarithmic Mahler measure of f to be

m(f) = logM(f) =

∫ 1

0

log |f(e2πit)|dt.

If we write f(u) = s
∏r
j=1(u− λj), then, as Mahler observed, Jensen’s formula

yields that

m(f) = log(s) +
∑
|λj |>1

log |λj |.

For A ∈ GL(r,Z) as in Example 4.2, let χA(u) = det[uI − A] be its (monic)
characteristic polynomial. The calculation of entropy in this example can then
be expressed as h(A) = m(χA), that is, entropy equals the logarithmic Mahler
measure of the related characteristic polynomial.

The first author (DL) observed this around 1970, but viewed it as merely a
curiosity. It does, however, provide a link between dynamics and the famous
(and still open) Lehmer Problem: does inf{m(f) : f ∈ Z[u] and m(f) > 0} = 0?
The article [3] by David Boyd in this Selecta discusses Lehmer’s Problem in
detail. As shown in [23], this question is equivalent to asking whether there are
toral automorphisms of arbitrarily small positive entropy, and also equivalent
to asking whether there is an ergodic automorphism of TZ with finite entropy.

The next example shows that p-adic fields arise naturally in the study of
algebraic actions, leading to a p-adic version of Mahler measure that is used in
calculating entropy for certain actions.

For each rational prime p, recall that Qp denotes the completion of Q with
respect to the p-adic valuation | · |p, normalised so that |p|p = p−1. We use the
convention that | · |∞ is the usual absolute value on Q, so that Q∞ = R. Each
Qp is a locally compact field, and has a normalised Haar measure µp.

Example 4.3. Let f(u) = 2u− 3, and consider the principal algebraic Z-action

αf on Xf defined in (2). It is easy to check that X̂f
∼= Z[1/6] and that αf is

dual to multiplication by 3/2 on Z[1/6]. Then, locally, Xf is Q2 ×Q3 × R, and
in this local view, αf is the 3× 3 diagonal matrix 3

2 · I.

However, here 3/2 has different sizes in each component:∣∣∣∣32
∣∣∣∣
2

= 2,

∣∣∣∣32
∣∣∣∣
3

=
1

3
,

∣∣∣∣32
∣∣∣∣
∞

=
3

2
.

Reasoning as in Example 4.2, only those ‘eigenvalues’ with size greater that 1
contribute to entropy, and so

h(αf ) = log(2) + log

(
3

2

)
= log(3).
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Observe also that m(f) = log(2) + log
(

3
2

)
, so that

h(αf ) = m(f).

This example combines geometric expansion in Q∞ and arithmetic expansion in
Q2 to calculate entropy.

In order to describe a general setting for such results, we introduce the full

solenoid group Σ = Q̂d, where Qd denotes the rationals with the discrete
topology. If A ∈ GL(r,Q), then A acts via duality on the compact Abelian
group Σr. After a series of papers by several authors dealing with special cases,
Yuzvinskii [38] gave a general formula for the entropy of A.

Theorem 4.4 (Yuzvinskii). Let A ∈ GL(r,Q) have complex eigenvalues
λ1, . . . , λr listed with multiplicity, and let s be the smallest positive integer
such that sχA(u) ∈ Z[u]. Then

h(A; Σr) = log s +
∑
|λj |>1

log |λj |.

Yuzvinskii’s proof relied heavily on complicated algebra. The role of the p-adics,
and the resulting conceptual simplification, was spelled out in [28], which we
now briefly describe.

Let A ∈ GL(n,Q), and Qp denote the algebraic closure of Qp. Then, χA(u)

factors in Qp[u] as χA(u) = (u − λ
(p)
1 ) . . . (u − λ

(p)
r ). We define the p-adic

logarithmic Mahler measure of χA(u) to be

mp(χA) =
∑

|λ(p)
j |p>1

log |λ(p)
j |p,

where, here, | · |p is the (unique) extension of the p-adic absolute value from Q
to Qp.
We will express the ‘global’ entropy of A acting on Σr as the sum of ‘local’
entropies, one for each p 6 ∞. Roughly speaking, Σr is locally the product∏
p6∞Qrp, and each factor is preserved by A. Since entropy adds over products,

it follows that h(A; Σr) =
∑
p6∞ h(A;Qrp), where each summand is the Bowen

entropy of a linear map. It is shown in [28] that h(A;Qrp) = mp(χA) for each
p 6∞ and that this quantity vanishes for all but finitely many p. Hence

h(A; Σr) =
∑
p6∞

mp(χA).

Thus the somewhat mysterious term log(s) in Yuzvinskii’s formula is simply
the sum of the p-adic entropies over p < ∞, while the remaining term is the
local entropy at p =∞.
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Example 4.5. Let A = [3/2] ∈ GL(1,Q). Then s = 2 and λ1 = 3/2, and so
h(A; Σ) = log(3).

Example 4.6. Let B =
[

0 −1
1 6/5

]
∈ GL(2,Q). The complex eigenvalues of B

both have absolute value 1, and so there is no geometric contribution to entropy.
The only nonzero contribution happens in Q5, and h(B,Σ2) = log(5), providing
an interesting example where the only expansion is arithmetic.

Remark 4.7. Consider the polynomials f(u) = 2u− 3, g(u) = 5u2 − 6u+ 5 in
Z[u±1] and define the principal Z-actions αf on Xf and αg on Xg as in (2).
Then, the same calculations as in Example 4.3 show that h(αf ) = m(f) = h(A,Σ)
and h(αg) = m(g) = h(B,Σ2). Here the principal algebraic actions (Xf , αf ) and
(Xg, αg) are equal entropy factors of the actions (Σ, A) and (Σ2, B), respectively,
appearing in Examples 4.5 and 4.6.

We note that the group Xf coincides with the group XR2/I from Furstenberg’s
Example 2.3, although the Z2-action is quite different.

5 Algebraic Zd-actions and Mahler measure

In this section, we discuss entropy for algebraic Zd-actions and the discovery of
its connection with the Mahler measure of polynomials in several variables.

Let α be an algebraic Zd-action on X with Haar measure µ. To define entropy,
we simply replace the iterates {0, 1, . . . , n− 1} used for Z-actions in (9) with
the n-cube Fn = {0, 1, . . . , n− 1}d and set

h(α) := lim
U↘{0X}

lim sup
n→∞

− 1

|Fn|
logµ

( ⋂
j∈Fn

α−jU
)
.

The crucial property of the Fn is that their boundaries are small compared with
their volumes. More precisely, they obey the Følner condition that for every
k ∈ Zd,

|(Fn + k)4Fn|
|Fn|

→ 0 as n→∞, (11)

where | · | denotes cardinality and 4 denotes symmetric difference.

Example 5.1. Recall Ledrappier’s example (X,µ) from Example 1.2. Now, let
Fn = {0, 1, . . . , n− 1}2 and U = {x ∈ X : x(0,0) = 0}. Since µ is shift-invariant,

µ
(⋂

j∈Fn
α−jU

)
= µ

(⋂
j∈Fn

αj U
)
.

Consider the map φn : X → (Z/2Z)Fn given by the restriction φn(x) = x|Fn . Its
image φn(X) is a subgroup of (Z/2Z)Fn and its kernel is

⋂
j∈Fn

αj U . Hence

µ

( ⋂
j∈Fn

αjU
)

=
1

|φn(X)|
.
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Next, we observe that the defining relation x(i,j) + x(i,j+1) + x(i+1,j) = 0
shows that the coordinates of x in Fn determine its coordinates in
{(0, 0), (1, 0), . . . , (2n − 1, 0)} and conversely, and that the coordinates in
the latter range may be chosen freely. Hence |φn(X)| = 22n. Thus, as n→∞,
we have that

− 1

n2
logµ

( ⋂
j∈Fn

α−jU
)

= − 1

n2
logµ

( ⋂
j∈Fn

αjU
)

= − 1

n2
log 2−2n → 0.

A similar argument works for arbitrarily small neighbourhoods U of 0X , showing
that h(α) = 0.

In the spring of 1988, the second author (KS) visited the Institute for Advanced
Study at Princeton. Before leaving for Princeton, KS had been discussing
examples of principal Z2-actions (αf , Xf ) for f(u, v) ∈ R2 with Tom Ward, who
was a PhD student at Warwick at the time, and who had observed positivity of
entropy for some of these examples. In Princeton, KS started thinking about
positivity of entropy for the ‘continuous’ version (3) of Ledrappier’s example,
but was unable to resolve the question.

After Princeton, KS visited Seattle and discussed this problem with DL, who
observed that if the state group is Cn = {0, 1/n, 2/n, . . . , (n − 1)/n} ⊂ T
(so that C2 gives Ledrappier’s original example), then each of these ‘finite
approximations’ has zero entropy for the same reason as in the preceding
example. Since Cn → T in some sense, the continuous Ledrappier example is a
limit of zero entropy approximations, and so should also have zero entropy. DL
was so convinced by this reasoning that he bet KS a Japanese dinner that this
was correct.

However, the attempt to turn this intuition into something rigorous ran into
serious difficulties. After fruitless efforts, it began to occur to the authors that
the entropy might be positive after all. It was then that DL remembered that
for principal algebraic Z-actions αf , entropy equals the logarithmic Mahler
measure m(f) of f . He wrote a note to KS which concluded, ‘And here is a
really crazy conjecture: for general f the entropy should be logM(f), where
M(f) is the Mahler measure of f .’ Motivated by this conjecture, the authors
were subsequently able to obtain the equality h(αf ) = m(f) ≈ 0.3230 for
f(u, v) = 1 +u+v, resulting in a delicious Japanese dinner for KS. The equality
h(αf ) = m(f) conjectured by DL was subsequently proved in full generality in
[27] and provided the crucial step for computing entropy for general algebraic
Zd-actions.

Theorem 5.2 ([27]). Let 0 6= f ∈ Z[u±1
1 , . . . , u±1

d ]. Then, the entropy of the
associated principal algebraic Zd-action αf is given by h(αf ) = m(f).

There are several ways to make this result plausible. We will use the growth
rate of periodic points, which leads to some current research and open problems.
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To motivate what follows, first consider the toral automorphism A = [ 0 1
1 1 ]

acting on T2. It is an instructive exercise to show that the toral automorphism
(T2, [ 0 1

1 1 ]) is the principal algebraic Z-action αf , where f(u) = u2 − u− 1. Let
Pn(A) = {x ∈ T2 : Anx = x}, the subgroup of points in T2 having period n
under A. To compute |Pn(A)|, observe that a point x ∈ T2 is in Pn(A) iff its
lift x̃ ∈ [0, 1)2 ⊂ R2 satisfies (An − I)x̃ ∈ Z2. Thus |Pn(A)| equals the number
of lattice points in the parallelogram (An − I)

(
[0, 1)2

)
, and this is well-known

to be |det(An − I)|. Let Ωn denote the set of nth roots of unity, which is a
cyclic subgroup of S := {z ∈ C : |z| = 1}. Let λ1 and λ2 be the eigenvalues of
A. Then

|Pn(A)| = |det(An − I)| = |(λn1 − 1)(λn2 − 1)|

=

∣∣∣∣ ∏
ζ∈Ωn

(λ1 − ζ)(λ2 − ζ)

∣∣∣∣ =
∏
ζ∈Ωn

|f(ζ)|.

Thus, we can view

1

n
log |Pn(A)| =

1

n

∑
ζ∈Ωn

log |f(ζ)| (12)

as the logarithmic Mahler measure of f over the subgroup Ωn of S, which we
will denote by mΩn

(f). Notice that the right-hand side of (12) is a Riemann

sum approximation to
∫ 1

0
log |f(e2πis)| ds = m(f). Since log |f | is continuous on

S, we see that mΩn(f)→ m(f) = h(αf ) as n→∞, so that the growth rate of
periodic points exists as a limit and equals entropy.

The convergence of mΩn
(f) to m(f) is much more delicate if f has roots on S,

for example if f(u) = u4 + 4u3 − 2u2 + 4u + 1. Then log |f | has logarithmic
singularities on S, and the value of log |f(ζ)| for some ζ ∈ Ωn could be extremely
negative should ζ be very close to a root λ of f , or equivalently, if |λn−1| is very
small. However, a deep Diophantine result of Gelfond [12] says that if λ ∈ S is
an algebraic number, then for every ε > 0 there is a constant C > 0 such that
|λn− 1| > Ce−εn, and using this one can show the convergence mΩn

(f)→ m(f)
for all f ∈ Z[u±1] that have no roots that are roots of unity.

Let us use this approach on the continuous Ledrappier example, i.e., the principal
algebraic Z2-action αf , where f(u, v) = 1 + u+ v. For simplicity, we start with
‘square’ sublattices nZ× nZ = nZ2 ⊂ Z2. Define

Pn×n(αf ) := {x ∈ Xf : αnjx = x for all j ∈ Z2}

to be the subgroup of all points in Xf fixed by iterates in nZ2. A calculation
similar to the 1-dimensional case above suggests that

|Pn×n(αf )| =
∏

(ξ,ζ)∈Ω2
n

|f(ξ, ζ)|, (13)
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so that
1

n2
log |Pn×n(αf )| =

1

n2

∑
(ξ,ζ)∈Ω2

n

log |f(ξ, ζ)| (14)

is a Riemann sum approximation to m(f), and we would therefore expect that
(1/n2) log |Pn×n(αf )| → h(αf ) as n→∞.

However, there is a serious problem. If ω = e2πi/3, then f(ω, ω2) = 0 =
f(ω2, ω). Thus, if 3 | n, two of the summands in the right-hand side of (14) are
log(0) = −∞, and the product in (13) equals 0. Dynamically, what is happening
is that when 3 | n, the subgroup Pn×n(αf ) is no longer finite, but rather a finite
union of cosets of a 2-dimensional torus. The solution to this situation is to
count the connected components of Pn×n(αf ), which corresponds to ignoring
those points in Ω2

n where f vanishes. Thus we define

mΩ2
n
(f) :=

1

n2

∑
(ξ,ζ)∈Ω2

n, f(ξ,ζ) 6=0

log |f(ξ, ζ)|.

With this convention, one can prove that mΩ2
n
(f)→ h(αf ), i.e., that the growth

rate of periodic components exists as a limit and is equal to entropy. For more
information about m(1 + u+ v); see [3] in this Selecta.

For general f ∈ Z[u±1
1 , . . . , u±1

d ], a crucial role is played by the unitary variety
of f , defined as U(f) := {s ∈ Sd : f(s) = 0}. As suggested by the discussion
above, if K is a finite subgroup of Sd, we define

mK(f) :=
1

|K|
∑

s∈KrU(f)

log |f(s)|. (15)

We use the notation K →∞ to mean that Haar measures on the finite subgroups
K converge weakly to Haar measure on Sd.

Problem 5.3. If 0 6= f ∈ Z[u±1
1 , . . . , u±1

d ], does

mK(f)→ m(f) as K →∞? (16)

In other words, do the Riemann sums for log |f | over finite subgroups of Sd
(modified to avoid values of −∞) converge to

∫
Sd log |f |?

In [32], KS had shown that the answer to Problem 5.3 is ‘yes’ if h(αf ) < ∞,
and if one replaces the limit in (16) by ‘lim sup’. In [25], it was shown that the
answer is ‘yes’ if U(f) is finite, and then in [26] that the answer is also ‘yes’ if
the real dimension dimU(f) of U(f) is less than or equal to d− 2. Both papers
use dynamical ideas, in particular they use homoclinic points for the action to
create sufficiently many periodic components.

Example 5.4. Consider a three variable version of Ledrappier’s example with
continuous alphabet, defined by f(u, v, w) = 1 + u+ v + w. Here, the unitary
variety U(f) ⊂ S3 is a union of three circles, each given by setting one of the
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variables equal to −1. Since these circles are cosets of 1-dimensional subgroups,
the dimension of the connected component of the identity for points fixed by
all iterates in nZ3 grows linearly in n. A subtlety in the proof of convergence
in [26], as illustrated in this example, is that although the dimension of the
connected components grows, the linear constraint here can be used to show that
these components do not contribute to entropy.

Convergence in (16) is also a Diophantine problem, essentially asking how close
points in K can come to U(f). Using ideas involving Diophantine analysis,
Vesselin Dimitrov [8] gave a completely different proof of (16) in his 2017 PhD
thesis from Yale, again under the assumption that dimU(f) 6 d−2. Very recent
work of Habegger [13] on special points near definable sets, whose proof relies
on logic and O-minimal sets, was used by Dimitrov to provide yet a third proof,
quite different from the previous two, again only in the case dimU(f) 6 d− 2.

All three of these proofs fail when dimU(f) = d − 1. The following example
illustrates the difficulties.

Example 5.5. Let f(u, v) = 3 − u − u−1 − v − v−1. Here, U(f) is a 1-
dimensional oval in S2, so that log |f | has a 1-dimensional set of logarithmic
singularities. There are only four points on U(f) both of whose coordinates
are roots of unity, (ω±1, 1) and (1, ω±1), where ω = eπi/3 (see [26, Ex. 4.4]).
Whether mK(f) → m(f) as K → ∞ is still open. But for ‘square’ subgroups
K = Ω2

n, Dimitrov [7] has very recently shown convergence using quite difficult
Diophantine arguments, and that this holds for all nonzero f ∈ Z[u±1

1 , . . . , u±1
d ]

using ‘square’ subgroups Ωdn.

We can put Problem 5.3 into a more general context as follows. Let K denote
the set of all compact subgroups of Sd. For K ∈ K, let µK be Haar mea-
sure on K. In analogy with (15), define the logarithmic Mahler measure of
0 6= f ∈ Z[u±1

1 , . . . , u±1
d ] over K to be

mK(f) :=

∫
KrU(f)

log |f(s)|dµK(s),

which agrees with our earlier definition when K is finite.

Now K is a compact metric space with respect to the Hausdorff metric on
compact subsets of Sd. Lawton [20] showed that the function K 7→ mK(f) is
continuous on the closed subset of K consisting of all subgroups having dimension
at least 1. For example, the 1-dimensional subgroups Kn = {(s, sn) : s ∈ S} of
S2 converge to S2 in the Hausdorff metric, and so m

(
f(u, un)

)
→ m

(
f(u, v)

)
as n → ∞, where f(u, un) is considered as a polynomial in Z[u±1]. Boyd [3]
discusses the rate of this convergence, and in particular how fast m(1 + u+ un)
converges to m(u, v). We can therefore reformulate Problem 5.3 in terms of
continuity of Mahler measures on compact subgroups of Sd.

Problem 5.6. Fix 0 6= f ∈ Z[u±1
1 , . . . , u±1

d ]. Is the function K 7→ mK(f)
continuous on K?
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6 Algebraic actions of noncommutative groups

For a general countable group Γ, we denote by ZΓ the integral group ring of
Γ, where Γ is written multiplicatively. A typical element in ZΓ has the form
f =

∑
γ∈Γ fγγ, where each fγ ∈ Z, and where all but finitely many of the

fγ vanish. Multiplication in ZΓ is carried out in the obvious way to extend
multiplication in Γ. If M is a countable left module over ZΓ, regarded as a
discrete Abelian group under addition, the Pontryagin dual XM = M̂ is a
compact Abelian group, and we obtain an algebraic Γ-action αM on XM by
setting, for every γ ∈ Γ, αγM equal to the automorphism of XM dual to left
multiplication by γ on M .

Since every algebraic Γ-action arises in this manner, there is a 1-1 correspondence
between left ZΓ-modules and algebraic Γ-actions, exactly as for Γ = Zd (except
that we now have to be careful about ‘left’ and ‘right’). However, if Γ is
noncommutative, much less is known about (left) ideals in and (left) modules
over ZΓ than is the case for Γ = Zd, and even for principal algebraic Γ-actions
(defined by complete analogy with the principal Zd-actions Example 2.1) our
understanding of their dynamical properties is rudimentary.

In order to fix notation, we again write σ for the left shift-action (σθx)γ = xθ−1γ

of Γ on TΓ, and consider, for f ∈ ZΓ, the closed, shift-invariant subgroup

Xf =
{
x ∈ TΓ :

∑
γ∈Γ

fγxθγ = 0 for all θ ∈ Γ
}
⊂ TΓ. (17)

As in Example 2.1, we call the restriction αf of σ to Xf the principal algebraic
Γ-action defined by f . The shift-transformation σγ on TΓ is again dual to
left multiplication by γ on ZΓ, and the dual of the subgroup Xf ⊂ TΓ is the

quotient of ZΓ by the left principal ideal ZΓf , that is, X̂f = ZΓ/ZΓf .

One afternoon about fifteen years ago, Wolfgang Lück presented a copy of
his new book L2-Invariants: Theory and Applications to Geometry and K-
Theory to his colleague Christopher Deninger at the University of Münster. Not
quite knowing what to do with a thick book on unfamiliar topics, Deninger
started flipping through its pages randomly. By chance, he stumbled on an
example showing that the Mahler measure of f ∈ Z[u±1

1 , . . . , u±1
d ] equals the

Fuglede–Kadison determinant of an associated convolution operator ρf on
`2(Zd). Knowing the connection between entropy of algebraic Zd-actions and
Mahler measure, Deninger realised that the convolution operator approach,
which is easily generalised to arbitrary countable groups Γ, might give a way to
compute entropy for principal algebraic Γ-actions. He was able to show in [4]
that his idea works for expansive principal actions of at least a restricted class
of amenable groups, a breakthrough that initiated the serious study of algebraic
actions of arbitrary countable discrete groups. His insight can be viewed as a
way to define Mahler measure for polynomials in noncommuting variables.

Before 2010, it was widely believed that entropy theory for group actions was
restricted to actions by amenable groups. This changed when Lewis Bowen [2]
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introduced radically new ideas that ultimately allowed an extension of entropy
theory to a much larger class of groups called sofic groups, those having a
certain kind of finite approximation. To date, there is no known example of a
countable group that is not sofic.

In this section, we briefly sketch these two major developments in dynamics,
and how they combined recently in a comprehensive entropy theory for algebraic
actions.

Let 0 6= f ∈ Z[u±1
1 , . . . , u±1

d ]. Define f∗(u1, . . . , ud) := f(u−1
1 , . . . , u−1

d ). Regard
f as a function on Sd, so that f∗ = f̄ , the complex conjugate of f . Consider
the multiplication operator Tf on L2(Sd) given by Tf (φ) = f · φ for φ ∈ L2(Sd).
Then

T ∗f Tf = Tf∗Tf = T|f |2 = T 2
|f |,

and the spectral measure µ|f | of T|f | is the push-forward of Lebesgue measure

on Sd under the map |f |, so that µ|f | is supported on the real interval [0, ‖f‖∞].
Fuglede and Kadison [10] introduced a notion of determinant for certain classes
of operators that include T|f |. We then calculate, using their definition and
change of variables, that

detT|f | := exp

[∫ ∞
0

log tdµ|f |(t)

]
= exp

[∫
Sd

log |f(s)|dµ(s)

]
= M(f).

This is the fact that Deninger came across in Lück’s book.

The Fourier transform gives an isomorphism from L2(Sd) to `2(Zd), and under
this isomorphism the multiplication operator Tf is mapped to the convolution
operator ρf on `2(Zd). Concretely, if we view w ∈ `2(Zd) as a formal sum
w =

∑
n∈Zd wnu

n, then ρf (w) = w · f , extending the customary multiplication
of polynomials. The connection with αf is provided by the observation that if

points t ∈ TZd

are similarly regarded as formal sums, t =
∑

n∈Zd tnu
n, then

Xf = ker ρf∗ . Deninger realised that, since

h(αf ) = m(f) = log detT|f | = log det ρf ,

the calculation of entropy could be phrased entirely in terms of convolution
operators. This avoids the use of Fourier transforms, and suggests a general
way to deal with principal actions of noncommutative groups.

Now let Γ be a general discrete countable group. As above, consider points
w ∈ `2(Γ) as formal sums

∑
γ∈Γ wγγ. For f ∈ ZΓ, there is the convolution

operator ρf on `2(Γ) given by ρf (w) = w · f . The weak operator closure of the
set of complex combinations of these convolutions operators is called the group
von Neumann algebra LΓ of Γ. For U ∈ LΓ, the functional calculus gives an
operator |U | ∈ LΓ with U∗U = |U |2. The positive self-adjoint operator |U | has
a spectral measure µ|U | supported on [0, ‖U‖]. Fuglede and Kadison defined
detU by

det(U) :=

∫ ∞
0

log(t) dµ|U |(t).
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One deep result in this theory is that det(UV ) = (detU)(detV ). This definition
applies to the operators ρf , and we abbreviate det ρf to det f .

Deninger [4] showed that his idea worked for amenable groups having special
kinds of Følner sequences. A series of improvements by several authors culmi-
nated in the definitive result for principal algebraic actions of amenable groups
by Hanfeng Li and Andreas Thom [22]; Let Γ be an amenable group and f ∈ ZΓ;
if ρf is injective on `2(Γ), then h(αf ) = log det f , and otherwise h(αf ) =∞. A
consequence is that h(αf∗) = h(αf ), which is highly nontrivial since there is no
obvious dynamical connection between αf and αf∗ when Γ is noncommutative.

A concrete example of noncommutative Γ is the discrete Heisenberg group H,
the group generated by u, v, and w with relations uw = wu, vw = wv, and
vu = wuv. Even for this simplest infinite noncommutative group, there are
many open problems, e.g., characterise those f ∈ ZH for which h(αf ) = 0, or
determine the higher order mixing properties of principal H-actions. For a
comprehensive survey of what is currently known about algebraic H-actions;
see [24].

At roughly the same time, the extension of entropy theory to sofic groups was
undergoing vigorous development, with algebraic actions providing important
and guiding examples. A lucid and systematic account is contained in the recent
book by David Kerr and Hanfeng Li [17]. This book describes a profound shift
in viewing Γ-actions, from the traditional ‘internal’ view using objects within
the space being acted upon to an ‘external’ view using finite models of the
action. In this way, Følner sets and amenability are avoided, but at the cost of
more abstract and complicated machinery, whose implications are still being
worked out.

With the ability to define entropy for principal Γ-actions for sofic Γ, and a
viable candidate log det f for its value, these two strands of dynamical progress
culminated in the definitive theorem by Ben Hayes [16], who showed that if Γ is
sofic and f ∈ ZΓ, then h(αf ) = log det f provided that ρf is injective on `2(Γ),
and is equal to ∞ otherwise.

The chain of events set in motion by the discovery in [27] that entropy equals
logarithmic Mahler measure for algebraic Zd-actions has led to a remarkable
level of generality in the entropy theory of algebraic actions. However, other
dynamical properties of such actions, like mixing, positivity of entropy, or the
Bernoulli property, still remain rather mysterious as soon as one leaves the
comfortable world of Zd-actions.
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[38] S. A. Yuzvinskĭı, Computing the entropy of a group of endomorphisms,
Sib. Math. J. 8 (1967), 172–178.

Douglas Lind
Department of Mathematics
University of Washington
Seattle, Washington, 98195
United States

Klaus Schmidt
Mathematics Institute
University of Vienna
Oskar-Morgenstern-Platz 1
A-1090 Vienna
Austria

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 57–77



78

Documenta Mathematica · Extra Volume Mahler Selecta (2019)


